This document discusses various machine learning methods for malware detection, including support vector machines (SVM), random forests, and decision trees. It provides an overview of each method and related works that have applied these techniques. Specifically, it examines analyses that used linear SVM, random forests on Android apps, and an improved decision tree algorithm to classify malware families. The document concludes that machine learning methods have become important for malware detection as signatures alone cannot keep up with new malware variants.