This document provides an unabridged review of supervised machine learning regression and classification techniques. It begins with an introduction to machine learning and artificial intelligence. It then describes regression and classification techniques for supervised learning problems, including linear regression, logistic regression, k-nearest neighbors, naive bayes, decision trees, support vector machines, and random forests. Practical examples are provided using Python code for applying these techniques to housing price prediction and iris species classification problems. The document concludes that the primary goal was to provide an extensive review of supervised machine learning methods.