SlideShare a Scribd company logo
JSON-LD and SHACL
for Knowledge Graphs
Dr. Jans Aasman
(allegrograph.com)
Contents
• Knowledge Graphs are getting popular very fast, are you
building a Knowledge Graph already?
• JSON-LD will help you add and delete objects to a
Knowledge Graph as easy as MongoDB
• SHACL will help you validate your data in the Knowledge
Graph.
Knowledge Graphs on the rise
• Line one
All the big ones in the US heavily investing in it
• Good luck trying to find a definition on the web that is not ideology or
vendor based or very application specific
Many technologies make a
Semantic Knowledge Graph
Documents: JSON, JSON-LD Graphs: RDF, Quads, Properties
Storage: Triple Attributes, Security Filters, Compression, Indexing, Full-text
Transactions: “Real” ACID, 2 Phase Commit
Management: Security, Multi-Master Replication, Backup/Restore, Warm Failover
Stored Procs:
JavaScript
Lisp
Prolog
SPARQL
Magic Predicates
Reasoning:
RDFS++
OWL2-RL
Prolog
Probabilistic
NLP:
Taxonomies
Entity Extract
Text Classify
Sentiment
Machine
Learning
ETL:
RDBMS
CSV
TEXT
NoSQL
Events:
Geospatial
Temporal
Social
REST GUI: GRUFF/AGWebView
Java Python Lisp
Built-In Integrations
Cloud:
Amazon AWS
Microsoft Azure
Data Science:
Anaconda
R Studio
Knowledge:
Linked Open Data
Editors:
Ontology, Taxonomy
NoSQL:
Cloudera, MongoDB,
Solr
Containers:
Docker, VMWare
Massively Parallel - Federation and Sharding
OSS Clients
SPARQL Prolog
Don’t worry, it is all easily accessible in
AllegroGraph Architecture
Successful Knowledge Graphs built on
• SKOS Taxonomies & OWL Ontologies
• RDF based Semantic Graph Technologies:
• Based on the uniqueness principle: one Thing, one URL
• If you don’t have that, you don’t have anything
• Property graphs destined to reinvent semantics
• But:
• Your User Experience and Application developers don’t want to learn
that entire stack
Challenge # 1 for UI and application developers:
How do you make it easy to
• Add data to a knowledge graph
• Retrieve data from a knowledge graph
• Validate your data
Solution:
• Knowledge Graphs are getting popular very fast, are you
building a Knowledge Graph already?
• JSON-LD will help you add, retrieve and delete objects to a
Knowledge Graph as easy as MongoDB
• SHACL will help you validate your data in the Knowledge
Graph.
JSON Won
• Messaging:
• the lingua franca for messaging and data exchange
• Configuration:
• JSON is replacing XML for configuration of nearly
anything
• Document and key/value store:
• JSON is the main data format stored in Document Stores
(Couchbase, Mongo, etc…)
JSON – the good
• Simple standard:
• Json.org spec is 5 pages, XML spec on W3C = 60 pages J
• only a few datatypes and with arrays!
• you can make your own complex data types if you want
• Easy to read and parse by humans and machines
• Easy to store in document stores
• Easy to program: support in every programming language
JSON (and JSON stores) – the bad
• No standards Schema (but close!)
• How do I know that the data I received is good, how do I know that
the data I’m going to send to my document store is good?
• No Semantics for attributes
• What does that attribute mean?
• Not set up for linking data
• How do I express linkage between JSON objects?
• No joins or graph search in document stores
• There simply is no concept of a relations between objects
• Client side joins or awkward procedures in javascript in the DB
JSON-LD = 100 % JSON +
• Add basic schema support to JSON: (but SHACL more complete)
• Add semantics to JSON objects: what does this attribute mean
• Designed to link JSON objects together
• Enables joins and graph search in document stores
Learn from JSON-LD.ORG
Google for
allegrograph python tutorial jsonld
It is everywhere: let’s look at this product
Search for @context in the source
JSON alone would lead to confusion, JSON-LD and
SCHEMA.ORG to the rescue
NO Meaning
WITH Meaning
JSON-LD and SHACL for Knowledge Graphs
Demo JSON-LD in Python
• Based on crunch base data from early 2000 till 2014
• Core objects: Investments, acquisitions, investors, companies
• For developers: how can you implement basic CRUD with AllegroGraph
JSONLD
• You can add and retrieve Python dictionaries directly
• Like many other document databases
• Objects are indexed with triples but can also be stored as blobs
• You can retrieve parts of objects in a SPARQL queries
• And you can retrieve as dictionaries.
And now SHACL
Semantic graphs allow you to be very ‘wild’
with your data
• Triples can be added without any schema definition
• Sometimes too flexible for the enterprise
• So the most asked question the last two years:
• Ummm, do you guys support SHACL validation?
SHACL seems to be replacing OWL
• Easier to read
• Less complicated
• OWL can still be derived automatically from SHACL
• Great tutorials on the web.
title
• Line one
SHACL
• Is data modeling language developed by a W3C Working Group.
• describes the “shapes” of the data so that applications can take better advantage
of that data.
• describes which properties go with which classes (like OWL)
• defines constraints on data with standardized models instead of procedural code.
• Has several built-in types of constraints such as cardinality
(minCount/maxCount), value type and allowed values, but it is also possible to
define more complex kinds of constraints for almost arbitrary validation conditions
• SHACL validation tools can verify whether your data fulfills the constraints
described by your data model, similar to how XML Schema or JSON Schema are
being used.
Derived from https://www.topquadrant.com/technology/shacl/tutorial/
Call SHACL validate from the command line
Deep integration with SPARQL
Conclusion: JSON-LD and SHACL
for Knowledge Graphs
• Make life easier for User Experience and Application
Developers that need to work with Knowledge Graphs.
• JSON-LD hides complexity of semantics and graphs
• SHACL easy way to validate new data.
Thank you
Ad

More Related Content

What's hot (20)

RDF, SPARQL and Semantic Repositories
RDF, SPARQL and Semantic RepositoriesRDF, SPARQL and Semantic Repositories
RDF, SPARQL and Semantic Repositories
Marin Dimitrov
 
RDF Data Model
RDF Data ModelRDF Data Model
RDF Data Model
Jose Emilio Labra Gayo
 
JSON-LD and MongoDB
JSON-LD and MongoDBJSON-LD and MongoDB
JSON-LD and MongoDB
Gregg Kellogg
 
Oracle Cloud is Best for Oracle Database - High Availability
Oracle Cloud is Best for Oracle Database - High AvailabilityOracle Cloud is Best for Oracle Database - High Availability
Oracle Cloud is Best for Oracle Database - High Availability
Markus Michalewicz
 
RDF validation tutorial
RDF validation tutorialRDF validation tutorial
RDF validation tutorial
Jose Emilio Labra Gayo
 
Jena – A Semantic Web Framework for Java
Jena – A Semantic Web Framework for JavaJena – A Semantic Web Framework for Java
Jena – A Semantic Web Framework for Java
Aleksander Pohl
 
RDF and OWL
RDF and OWLRDF and OWL
RDF and OWL
Rachel Lovinger
 
Getting Started with Knowledge Graphs
Getting Started with Knowledge GraphsGetting Started with Knowledge Graphs
Getting Started with Knowledge Graphs
Peter Haase
 
JSON-LD for RESTful services
JSON-LD for RESTful servicesJSON-LD for RESTful services
JSON-LD for RESTful services
Markus Lanthaler
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
MongoDB
 
RDF 개념 및 구문 소개
RDF 개념 및 구문 소개RDF 개념 및 구문 소개
RDF 개념 및 구문 소개
Dongbum Kim
 
An Introduction to SPARQL
An Introduction to SPARQLAn Introduction to SPARQL
An Introduction to SPARQL
Olaf Hartig
 
LODを使ってみよう!
LODを使ってみよう!LODを使ってみよう!
LODを使ってみよう!
uedayou
 
Validating RDF data: Challenges and perspectives
Validating RDF data: Challenges and perspectivesValidating RDF data: Challenges and perspectives
Validating RDF data: Challenges and perspectives
Jose Emilio Labra Gayo
 
SPARQL Tutorial
SPARQL TutorialSPARQL Tutorial
SPARQL Tutorial
Leigh Dodds
 
ISWC2023-McGuinnessTWC16x9FinalShort.pdf
ISWC2023-McGuinnessTWC16x9FinalShort.pdfISWC2023-McGuinnessTWC16x9FinalShort.pdf
ISWC2023-McGuinnessTWC16x9FinalShort.pdf
Deborah McGuinness
 
RDF Refineの使い方
RDF Refineの使い方RDF Refineの使い方
RDF Refineの使い方
National Institute of Informatics (NII)
 
LODI/Linked Open Data連続講義 第1回 「オープンデータからLinked Open Dataへ」
LODI/Linked Open Data連続講義 第1回 「オープンデータからLinked Open Dataへ」LODI/Linked Open Data連続講義 第1回 「オープンデータからLinked Open Dataへ」
LODI/Linked Open Data連続講義 第1回 「オープンデータからLinked Open Dataへ」
National Institute of Informatics (NII)
 
Selecting Software for Taxonomy, Thesaurus and Ontology Management
Selecting Software for Taxonomy, Thesaurus and Ontology ManagementSelecting Software for Taxonomy, Thesaurus and Ontology Management
Selecting Software for Taxonomy, Thesaurus and Ontology Management
Heather Hedden
 
SHACL in Apache jena - ApacheCon2020
SHACL in Apache jena - ApacheCon2020SHACL in Apache jena - ApacheCon2020
SHACL in Apache jena - ApacheCon2020
andyseaborne
 
RDF, SPARQL and Semantic Repositories
RDF, SPARQL and Semantic RepositoriesRDF, SPARQL and Semantic Repositories
RDF, SPARQL and Semantic Repositories
Marin Dimitrov
 
Oracle Cloud is Best for Oracle Database - High Availability
Oracle Cloud is Best for Oracle Database - High AvailabilityOracle Cloud is Best for Oracle Database - High Availability
Oracle Cloud is Best for Oracle Database - High Availability
Markus Michalewicz
 
Jena – A Semantic Web Framework for Java
Jena – A Semantic Web Framework for JavaJena – A Semantic Web Framework for Java
Jena – A Semantic Web Framework for Java
Aleksander Pohl
 
Getting Started with Knowledge Graphs
Getting Started with Knowledge GraphsGetting Started with Knowledge Graphs
Getting Started with Knowledge Graphs
Peter Haase
 
JSON-LD for RESTful services
JSON-LD for RESTful servicesJSON-LD for RESTful services
JSON-LD for RESTful services
Markus Lanthaler
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
MongoDB
 
RDF 개념 및 구문 소개
RDF 개념 및 구문 소개RDF 개념 및 구문 소개
RDF 개념 및 구문 소개
Dongbum Kim
 
An Introduction to SPARQL
An Introduction to SPARQLAn Introduction to SPARQL
An Introduction to SPARQL
Olaf Hartig
 
LODを使ってみよう!
LODを使ってみよう!LODを使ってみよう!
LODを使ってみよう!
uedayou
 
Validating RDF data: Challenges and perspectives
Validating RDF data: Challenges and perspectivesValidating RDF data: Challenges and perspectives
Validating RDF data: Challenges and perspectives
Jose Emilio Labra Gayo
 
ISWC2023-McGuinnessTWC16x9FinalShort.pdf
ISWC2023-McGuinnessTWC16x9FinalShort.pdfISWC2023-McGuinnessTWC16x9FinalShort.pdf
ISWC2023-McGuinnessTWC16x9FinalShort.pdf
Deborah McGuinness
 
LODI/Linked Open Data連続講義 第1回 「オープンデータからLinked Open Dataへ」
LODI/Linked Open Data連続講義 第1回 「オープンデータからLinked Open Dataへ」LODI/Linked Open Data連続講義 第1回 「オープンデータからLinked Open Dataへ」
LODI/Linked Open Data連続講義 第1回 「オープンデータからLinked Open Dataへ」
National Institute of Informatics (NII)
 
Selecting Software for Taxonomy, Thesaurus and Ontology Management
Selecting Software for Taxonomy, Thesaurus and Ontology ManagementSelecting Software for Taxonomy, Thesaurus and Ontology Management
Selecting Software for Taxonomy, Thesaurus and Ontology Management
Heather Hedden
 
SHACL in Apache jena - ApacheCon2020
SHACL in Apache jena - ApacheCon2020SHACL in Apache jena - ApacheCon2020
SHACL in Apache jena - ApacheCon2020
andyseaborne
 

Similar to JSON-LD and SHACL for Knowledge Graphs (20)

MongoDB Basics
MongoDB BasicsMongoDB Basics
MongoDB Basics
Sarang Shravagi
 
SQL to NoSQL: Top 6 Questions
SQL to NoSQL: Top 6 QuestionsSQL to NoSQL: Top 6 Questions
SQL to NoSQL: Top 6 Questions
Mike Broberg
 
Practical Machine Learning for Smarter Search with Spark+Solr
Practical Machine Learning for Smarter Search with Spark+SolrPractical Machine Learning for Smarter Search with Spark+Solr
Practical Machine Learning for Smarter Search with Spark+Solr
Jake Mannix
 
Practical Machine Learning for Smarter Search with Solr and Spark
Practical Machine Learning for Smarter Search with Solr and SparkPractical Machine Learning for Smarter Search with Solr and Spark
Practical Machine Learning for Smarter Search with Solr and Spark
Jake Mannix
 
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
MLconf
 
Drupal and Apache Stanbol
Drupal and Apache StanbolDrupal and Apache Stanbol
Drupal and Apache Stanbol
Alkuvoima
 
MongoDB
MongoDBMongoDB
MongoDB
Rony Gregory
 
Sharing a Startup’s Big Data Lessons
Sharing a Startup’s Big Data LessonsSharing a Startup’s Big Data Lessons
Sharing a Startup’s Big Data Lessons
George Stathis
 
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Lucas Jellema
 
Ontologies & linked open data
Ontologies & linked open dataOntologies & linked open data
Ontologies & linked open data
João Rocha da Silva
 
Introducción a NoSQL
Introducción a NoSQLIntroducción a NoSQL
Introducción a NoSQL
MongoDB
 
Validations in javascript in ReactJs concepts
Validations in javascript in ReactJs conceptsValidations in javascript in ReactJs concepts
Validations in javascript in ReactJs concepts
rajkumarmech801
 
JSON-LD Update
JSON-LD UpdateJSON-LD Update
JSON-LD Update
Gregg Kellogg
 
Case study of Rujhaan.com (A social news app )
Case study of Rujhaan.com (A social news app )Case study of Rujhaan.com (A social news app )
Case study of Rujhaan.com (A social news app )
Rahul Jain
 
Database@Home - Data Driven : Loading, Indexing, and Searching with Text and ...
Database@Home - Data Driven : Loading, Indexing, and Searching with Text and ...Database@Home - Data Driven : Loading, Indexing, and Searching with Text and ...
Database@Home - Data Driven : Loading, Indexing, and Searching with Text and ...
Tammy Bednar
 
No sq lv1_0
No sq lv1_0No sq lv1_0
No sq lv1_0
Tuan Luong
 
JSON as a SQL Datatype
JSON as a SQL DatatypeJSON as a SQL Datatype
JSON as a SQL Datatype
Robert Sell
 
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and SparkVital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital.AI
 
SharePoint and the User Interface with JavaScript
SharePoint and the User Interface with JavaScriptSharePoint and the User Interface with JavaScript
SharePoint and the User Interface with JavaScript
Regroove
 
NoSQL
NoSQLNoSQL
NoSQL
Radu Vunvulea
 
SQL to NoSQL: Top 6 Questions
SQL to NoSQL: Top 6 QuestionsSQL to NoSQL: Top 6 Questions
SQL to NoSQL: Top 6 Questions
Mike Broberg
 
Practical Machine Learning for Smarter Search with Spark+Solr
Practical Machine Learning for Smarter Search with Spark+SolrPractical Machine Learning for Smarter Search with Spark+Solr
Practical Machine Learning for Smarter Search with Spark+Solr
Jake Mannix
 
Practical Machine Learning for Smarter Search with Solr and Spark
Practical Machine Learning for Smarter Search with Solr and SparkPractical Machine Learning for Smarter Search with Solr and Spark
Practical Machine Learning for Smarter Search with Solr and Spark
Jake Mannix
 
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
MLconf
 
Drupal and Apache Stanbol
Drupal and Apache StanbolDrupal and Apache Stanbol
Drupal and Apache Stanbol
Alkuvoima
 
Sharing a Startup’s Big Data Lessons
Sharing a Startup’s Big Data LessonsSharing a Startup’s Big Data Lessons
Sharing a Startup’s Big Data Lessons
George Stathis
 
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Lucas Jellema
 
Introducción a NoSQL
Introducción a NoSQLIntroducción a NoSQL
Introducción a NoSQL
MongoDB
 
Validations in javascript in ReactJs concepts
Validations in javascript in ReactJs conceptsValidations in javascript in ReactJs concepts
Validations in javascript in ReactJs concepts
rajkumarmech801
 
Case study of Rujhaan.com (A social news app )
Case study of Rujhaan.com (A social news app )Case study of Rujhaan.com (A social news app )
Case study of Rujhaan.com (A social news app )
Rahul Jain
 
Database@Home - Data Driven : Loading, Indexing, and Searching with Text and ...
Database@Home - Data Driven : Loading, Indexing, and Searching with Text and ...Database@Home - Data Driven : Loading, Indexing, and Searching with Text and ...
Database@Home - Data Driven : Loading, Indexing, and Searching with Text and ...
Tammy Bednar
 
JSON as a SQL Datatype
JSON as a SQL DatatypeJSON as a SQL Datatype
JSON as a SQL Datatype
Robert Sell
 
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and SparkVital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital.AI
 
SharePoint and the User Interface with JavaScript
SharePoint and the User Interface with JavaScriptSharePoint and the User Interface with JavaScript
SharePoint and the User Interface with JavaScript
Regroove
 
Ad

Recently uploaded (20)

Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025
kashifyounis067
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Top 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docxTop 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docx
Portli
 
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
Egor Kaleynik
 
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfMicrosoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
TechSoup
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
How to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud PerformanceHow to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud Performance
ThousandEyes
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025
kashifyounis067
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Andre Hora
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025
kashifyounis067
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Top 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docxTop 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docx
Portli
 
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
Egor Kaleynik
 
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfMicrosoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
TechSoup
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
How to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud PerformanceHow to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud Performance
ThousandEyes
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025
kashifyounis067
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Andre Hora
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
Ad

JSON-LD and SHACL for Knowledge Graphs

  • 1. JSON-LD and SHACL for Knowledge Graphs Dr. Jans Aasman (allegrograph.com)
  • 2. Contents • Knowledge Graphs are getting popular very fast, are you building a Knowledge Graph already? • JSON-LD will help you add and delete objects to a Knowledge Graph as easy as MongoDB • SHACL will help you validate your data in the Knowledge Graph.
  • 3. Knowledge Graphs on the rise • Line one
  • 4. All the big ones in the US heavily investing in it • Good luck trying to find a definition on the web that is not ideology or vendor based or very application specific
  • 5. Many technologies make a Semantic Knowledge Graph
  • 6. Documents: JSON, JSON-LD Graphs: RDF, Quads, Properties Storage: Triple Attributes, Security Filters, Compression, Indexing, Full-text Transactions: “Real” ACID, 2 Phase Commit Management: Security, Multi-Master Replication, Backup/Restore, Warm Failover Stored Procs: JavaScript Lisp Prolog SPARQL Magic Predicates Reasoning: RDFS++ OWL2-RL Prolog Probabilistic NLP: Taxonomies Entity Extract Text Classify Sentiment Machine Learning ETL: RDBMS CSV TEXT NoSQL Events: Geospatial Temporal Social REST GUI: GRUFF/AGWebView Java Python Lisp Built-In Integrations Cloud: Amazon AWS Microsoft Azure Data Science: Anaconda R Studio Knowledge: Linked Open Data Editors: Ontology, Taxonomy NoSQL: Cloudera, MongoDB, Solr Containers: Docker, VMWare Massively Parallel - Federation and Sharding OSS Clients SPARQL Prolog Don’t worry, it is all easily accessible in AllegroGraph Architecture
  • 7. Successful Knowledge Graphs built on • SKOS Taxonomies & OWL Ontologies • RDF based Semantic Graph Technologies: • Based on the uniqueness principle: one Thing, one URL • If you don’t have that, you don’t have anything • Property graphs destined to reinvent semantics • But: • Your User Experience and Application developers don’t want to learn that entire stack
  • 8. Challenge # 1 for UI and application developers: How do you make it easy to • Add data to a knowledge graph • Retrieve data from a knowledge graph • Validate your data
  • 9. Solution: • Knowledge Graphs are getting popular very fast, are you building a Knowledge Graph already? • JSON-LD will help you add, retrieve and delete objects to a Knowledge Graph as easy as MongoDB • SHACL will help you validate your data in the Knowledge Graph.
  • 10. JSON Won • Messaging: • the lingua franca for messaging and data exchange • Configuration: • JSON is replacing XML for configuration of nearly anything • Document and key/value store: • JSON is the main data format stored in Document Stores (Couchbase, Mongo, etc…)
  • 11. JSON – the good • Simple standard: • Json.org spec is 5 pages, XML spec on W3C = 60 pages J • only a few datatypes and with arrays! • you can make your own complex data types if you want • Easy to read and parse by humans and machines • Easy to store in document stores • Easy to program: support in every programming language
  • 12. JSON (and JSON stores) – the bad • No standards Schema (but close!) • How do I know that the data I received is good, how do I know that the data I’m going to send to my document store is good? • No Semantics for attributes • What does that attribute mean? • Not set up for linking data • How do I express linkage between JSON objects? • No joins or graph search in document stores • There simply is no concept of a relations between objects • Client side joins or awkward procedures in javascript in the DB
  • 13. JSON-LD = 100 % JSON + • Add basic schema support to JSON: (but SHACL more complete) • Add semantics to JSON objects: what does this attribute mean • Designed to link JSON objects together • Enables joins and graph search in document stores
  • 16. It is everywhere: let’s look at this product
  • 17. Search for @context in the source
  • 18. JSON alone would lead to confusion, JSON-LD and SCHEMA.ORG to the rescue NO Meaning WITH Meaning
  • 20. Demo JSON-LD in Python • Based on crunch base data from early 2000 till 2014 • Core objects: Investments, acquisitions, investors, companies • For developers: how can you implement basic CRUD with AllegroGraph JSONLD • You can add and retrieve Python dictionaries directly • Like many other document databases • Objects are indexed with triples but can also be stored as blobs • You can retrieve parts of objects in a SPARQL queries • And you can retrieve as dictionaries.
  • 22. Semantic graphs allow you to be very ‘wild’ with your data • Triples can be added without any schema definition • Sometimes too flexible for the enterprise • So the most asked question the last two years: • Ummm, do you guys support SHACL validation?
  • 23. SHACL seems to be replacing OWL • Easier to read • Less complicated • OWL can still be derived automatically from SHACL • Great tutorials on the web.
  • 25. SHACL • Is data modeling language developed by a W3C Working Group. • describes the “shapes” of the data so that applications can take better advantage of that data. • describes which properties go with which classes (like OWL) • defines constraints on data with standardized models instead of procedural code. • Has several built-in types of constraints such as cardinality (minCount/maxCount), value type and allowed values, but it is also possible to define more complex kinds of constraints for almost arbitrary validation conditions • SHACL validation tools can verify whether your data fulfills the constraints described by your data model, similar to how XML Schema or JSON Schema are being used. Derived from https://www.topquadrant.com/technology/shacl/tutorial/
  • 26. Call SHACL validate from the command line
  • 28. Conclusion: JSON-LD and SHACL for Knowledge Graphs • Make life easier for User Experience and Application Developers that need to work with Knowledge Graphs. • JSON-LD hides complexity of semantics and graphs • SHACL easy way to validate new data.