In recent years, Yahoo has brought the big data ecosystem and machine learning together to discover mathematical models for search ranking, online advertising, content recommendation, and mobile applications. We use distributed computing clusters with CPUs and GPUs to train these models from 100’s of petabytes of data. A collection of distributed algorithms have been developed to achieve 10-1000x the scale and speed of alternative solutions. Our algorithms construct regression/classification models and semantic vectors within hours, even for billions of training examples and parameters. We have made our distributed deep learning solutions, CaffeOnSpark and TensorFlowOnSpark, available as open source. In this talk, we highlight Yahoo use cases where big data and machine learning technologies are best exemplified. We explain algorithm/system challenges to scale ML algorithms for massive datasets. We provide a technical overview of CaffeOnSpark and TensorFlowOnSpark to jumpstart your journey of large-scale machine learning. Speakers: Andy Feng is a VP of Architecture at Yahoo, leading the architecture and design of big data and machine learning initiatives. He has architected large-scale systems for personalization, ad serving, NoSQL, and cloud infrastructure. Prior to Yahoo, he was a Chief Architect at Netscape/AOL, and Principal Scientist at Xerox. He received a Ph.D. degree in computer science from Osaka University, Japan.