SlideShare a Scribd company logo
Wayne Zhang, Uber
Neil Parker, Uber
Large-Scaled Telematics
Analytics in Apache
Spark
#DS3SAIS
Agenda
• Telematics introduction
• Eng pipeline
2
Telematics
3
Source: Smartphone-based Vehicle Telematics - A Ten-Year Anniversary
- Wide availability
- Cheap
- Short upgrade cycle
- Lower quality
- Measure phone motion
Core Pipeline
4
Preprocessing &
Transformation
Sensor Data
Collection
Vehicle
Movement
Inference
Driving Behavior
Inference
Phone Sensor Data
5
● GPS
○ Absolute location, velocity and time
○ Low frequency (<= 1 point per second)
● IMU
○ Relative motion of phone
■ Accelerometer: 3D linear acceleration
■ Gyroscope: 3D angular velocity
○ High frequency (>20 points per second)
GPS Map-Matching
6
Phone Re-Orientation
7
Long Stop Detection
8
Long Stop
Long Stop
Vehicle
Movement
9
Phone Mounting
10
Engineering
11
• Pipeline
– Past
– Present
• Problems millions trips per day
xTbs sensor data per day
xPbs per year
How big is
our data?
Data Pipeline - Past (Streaming)
12
Input
Schema Topic
(Kafka)
Transform
Samza Job
Output
Schema Topic
(Kafka)
• Realtime
Data Pipeline - Present (Batch)
13
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Select logic in SparkSQL
• Flexible
Data Pipeline - Actuality (λ)
14
Input
Schema Topic
(Kafka)
Transform
Samza Job
Output
Schema Topic
(Kafka)
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Business Logic
(JVM)
Data Pipeline - Present
15
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Select logic in SparkSQL
Data Pipeline
16
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Input
Hive Table
(HDFS)
Join logic in SparkSQL
Data Pipeline
17
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Input
Hive Table
(HDFS)
Output
Hive Table
(HDFS)
Scheduler (Every 24hrs)
Data Pipeline
18
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Input
Hive Table
(HDFS)
Output
Hive Table
(HDFS)
Data Pipeline
19
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Data Pipeline
20
Input
Hive Table
(HDFS)
Transform
Spark Job
Output /
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Data Pipeline - Actuality
21
• Data Sources
• OOM Errors
• Too many Namenodes
Eng Problems
22
Eng Problems - Data Sources
23
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Input
Thrift Binaries
(S3)
Join logic in SparkSQL
Doesn’t work
24
Eng Problems - Data Sources
Input
Thrift Binaries
(S3)
Transform
Spark Job
Output
Hive Table
(HDFS)
github.com/airbnb/airbnb-spark-thrift
25
Aside: Encode Decode Invariant
Java Thrift
Class Instance
Spark SQL
Row
26
Aside: Encode Decode Invariant
Java Thrift
Class Instance
Spark SQL
Row
Generate random data to test
(ScalaCheck Library)
Eng Problems - Data Sources
27
Input
Hive Table
(HDFS)
Transform
Spark Job
Output
Hive Table
(HDFS)
Join logic in SparkSQL
Works
Input
Thrift Binaries
(S3)
Transform
Spark Job
Output
Hive Table
(HDFS)
• If hitting OOM related issues, usually increasing
partitions help
– `spark.sql.shuffle.partitions=X
• Where x > 200 (default)
• Might also play with executor-cores and
memory settings
Eng Problems - OOM Errors
28
• If we have more partitions, we create more files
• Solution: Merge file after job run
– github.com/apache/parquet-mr/tree/master/parquet-tools
Eng Problems - # Namenode
29
Looking Towards the Future
30
Thank You!
(And thanks for everyone @ Uber who helped us)
31
Email us if you have any questions:
actuaryzhang@uber.com
nwparker@uber.com
Ad

More Related Content

What's hot (20)

Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Spark Summit
 
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a ServiceZeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Databricks
 
Spark Summit EU talk by Shay Nativ and Dvir Volk
Spark Summit EU talk by Shay Nativ and Dvir VolkSpark Summit EU talk by Shay Nativ and Dvir Volk
Spark Summit EU talk by Shay Nativ and Dvir Volk
Spark Summit
 
Building Robust, Adaptive Streaming Apps with Spark Streaming
Building Robust, Adaptive Streaming Apps with Spark StreamingBuilding Robust, Adaptive Streaming Apps with Spark Streaming
Building Robust, Adaptive Streaming Apps with Spark Streaming
Databricks
 
Use r tutorial part1, introduction to sparkr
Use r tutorial part1, introduction to sparkrUse r tutorial part1, introduction to sparkr
Use r tutorial part1, introduction to sparkr
Databricks
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Spark Summit EU talk by Ram Sriharsha and Vlad Feinberg
Spark Summit EU talk by Ram Sriharsha and Vlad FeinbergSpark Summit EU talk by Ram Sriharsha and Vlad Feinberg
Spark Summit EU talk by Ram Sriharsha and Vlad Feinberg
Spark Summit
 
Spark Under the Hood - Meetup @ Data Science London
Spark Under the Hood - Meetup @ Data Science LondonSpark Under the Hood - Meetup @ Data Science London
Spark Under the Hood - Meetup @ Data Science London
Databricks
 
ETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
ETL to ML: Use Apache Spark as an end to end tool for Advanced AnalyticsETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
ETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
Miklos Christine
 
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Spark Summit
 
TuneIn: How to Get Your Hadoop/Spark Jobs Tuned While You’re Sleeping with Ma...
TuneIn: How to Get Your Hadoop/Spark Jobs Tuned While You’re Sleeping with Ma...TuneIn: How to Get Your Hadoop/Spark Jobs Tuned While You’re Sleeping with Ma...
TuneIn: How to Get Your Hadoop/Spark Jobs Tuned While You’re Sleeping with Ma...
Databricks
 
Koalas: Making an Easy Transition from Pandas to Apache Spark
Koalas: Making an Easy Transition from Pandas to Apache SparkKoalas: Making an Easy Transition from Pandas to Apache Spark
Koalas: Making an Easy Transition from Pandas to Apache Spark
Databricks
 
Jump Start into Apache® Spark™ and Databricks
Jump Start into Apache® Spark™ and DatabricksJump Start into Apache® Spark™ and Databricks
Jump Start into Apache® Spark™ and Databricks
Databricks
 
Sqoop on Spark for Data Ingestion
Sqoop on Spark for Data IngestionSqoop on Spark for Data Ingestion
Sqoop on Spark for Data Ingestion
DataWorks Summit
 
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick WendellApache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Databricks
 
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Spark Summit
 
Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks
Databricks
 
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and RSpark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Databricks
 
Operational Tips For Deploying Apache Spark
Operational Tips For Deploying Apache SparkOperational Tips For Deploying Apache Spark
Operational Tips For Deploying Apache Spark
Databricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Spark Summit
 
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a ServiceZeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Databricks
 
Spark Summit EU talk by Shay Nativ and Dvir Volk
Spark Summit EU talk by Shay Nativ and Dvir VolkSpark Summit EU talk by Shay Nativ and Dvir Volk
Spark Summit EU talk by Shay Nativ and Dvir Volk
Spark Summit
 
Building Robust, Adaptive Streaming Apps with Spark Streaming
Building Robust, Adaptive Streaming Apps with Spark StreamingBuilding Robust, Adaptive Streaming Apps with Spark Streaming
Building Robust, Adaptive Streaming Apps with Spark Streaming
Databricks
 
Use r tutorial part1, introduction to sparkr
Use r tutorial part1, introduction to sparkrUse r tutorial part1, introduction to sparkr
Use r tutorial part1, introduction to sparkr
Databricks
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Spark Summit EU talk by Ram Sriharsha and Vlad Feinberg
Spark Summit EU talk by Ram Sriharsha and Vlad FeinbergSpark Summit EU talk by Ram Sriharsha and Vlad Feinberg
Spark Summit EU talk by Ram Sriharsha and Vlad Feinberg
Spark Summit
 
Spark Under the Hood - Meetup @ Data Science London
Spark Under the Hood - Meetup @ Data Science LondonSpark Under the Hood - Meetup @ Data Science London
Spark Under the Hood - Meetup @ Data Science London
Databricks
 
ETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
ETL to ML: Use Apache Spark as an end to end tool for Advanced AnalyticsETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
ETL to ML: Use Apache Spark as an end to end tool for Advanced Analytics
Miklos Christine
 
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Spark Summit
 
TuneIn: How to Get Your Hadoop/Spark Jobs Tuned While You’re Sleeping with Ma...
TuneIn: How to Get Your Hadoop/Spark Jobs Tuned While You’re Sleeping with Ma...TuneIn: How to Get Your Hadoop/Spark Jobs Tuned While You’re Sleeping with Ma...
TuneIn: How to Get Your Hadoop/Spark Jobs Tuned While You’re Sleeping with Ma...
Databricks
 
Koalas: Making an Easy Transition from Pandas to Apache Spark
Koalas: Making an Easy Transition from Pandas to Apache SparkKoalas: Making an Easy Transition from Pandas to Apache Spark
Koalas: Making an Easy Transition from Pandas to Apache Spark
Databricks
 
Jump Start into Apache® Spark™ and Databricks
Jump Start into Apache® Spark™ and DatabricksJump Start into Apache® Spark™ and Databricks
Jump Start into Apache® Spark™ and Databricks
Databricks
 
Sqoop on Spark for Data Ingestion
Sqoop on Spark for Data IngestionSqoop on Spark for Data Ingestion
Sqoop on Spark for Data Ingestion
DataWorks Summit
 
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick WendellApache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Databricks
 
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Spark Summit
 
Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks
Databricks
 
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and RSpark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Databricks
 
Operational Tips For Deploying Apache Spark
Operational Tips For Deploying Apache SparkOperational Tips For Deploying Apache Spark
Operational Tips For Deploying Apache Spark
Databricks
 

Similar to Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil Parker (20)

Large-scaled telematics analytics
Large-scaled telematics analyticsLarge-scaled telematics analytics
Large-scaled telematics analytics
DataWorks Summit
 
Strata Stinger Talk October 2013
Strata Stinger Talk October 2013Strata Stinger Talk October 2013
Strata Stinger Talk October 2013
alanfgates
 
Big Data Day LA 2015 - Big Data Day LA 2015 - Applying GeoSpatial Analytics u...
Big Data Day LA 2015 - Big Data Day LA 2015 - Applying GeoSpatial Analytics u...Big Data Day LA 2015 - Big Data Day LA 2015 - Applying GeoSpatial Analytics u...
Big Data Day LA 2015 - Big Data Day LA 2015 - Applying GeoSpatial Analytics u...
Data Con LA
 
Dev Ops Training
Dev Ops TrainingDev Ops Training
Dev Ops Training
Spark Summit
 
Introduction to Spark on Hadoop
Introduction to Spark on HadoopIntroduction to Spark on Hadoop
Introduction to Spark on Hadoop
Carol McDonald
 
Pivotal Real Time Data Stream Analytics
Pivotal Real Time Data Stream AnalyticsPivotal Real Time Data Stream Analytics
Pivotal Real Time Data Stream Analytics
kgshukla
 
Kentik Network@Scale (Dan Ellis)
Kentik Network@Scale (Dan Ellis)Kentik Network@Scale (Dan Ellis)
Kentik Network@Scale (Dan Ellis)
gvillain
 
Free Code Friday - Spark Streaming with HBase
Free Code Friday - Spark Streaming with HBaseFree Code Friday - Spark Streaming with HBase
Free Code Friday - Spark Streaming with HBase
MapR Technologies
 
Paradigmas de procesamiento en Big Data: estado actual, tendencias y oportu...
Paradigmas de procesamiento en  Big Data: estado actual,  tendencias y oportu...Paradigmas de procesamiento en  Big Data: estado actual,  tendencias y oportu...
Paradigmas de procesamiento en Big Data: estado actual, tendencias y oportu...
Facultad de Informática UCM
 
Predictive Analytics San Diego
Predictive Analytics San DiegoPredictive Analytics San Diego
Predictive Analytics San Diego
MapR Technologies
 
Edward King SPEDDEXES 2014
Edward King SPEDDEXES 2014Edward King SPEDDEXES 2014
Edward King SPEDDEXES 2014
aceas13tern
 
Dynamically Optimizing Queries over Large Scale Data Platforms
Dynamically Optimizing Queries over Large Scale Data PlatformsDynamically Optimizing Queries over Large Scale Data Platforms
Dynamically Optimizing Queries over Large Scale Data Platforms
INRIA-OAK
 
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Robert Metzger
 
Yahoo compares Storm and Spark
Yahoo compares Storm and SparkYahoo compares Storm and Spark
Yahoo compares Storm and Spark
Chicago Hadoop Users Group
 
Cost-based query optimization in Apache Hive 0.14
Cost-based query optimization in Apache Hive 0.14Cost-based query optimization in Apache Hive 0.14
Cost-based query optimization in Apache Hive 0.14
Julian Hyde
 
The power of hadoop in business
The power of hadoop in businessThe power of hadoop in business
The power of hadoop in business
MapR Technologies
 
Big Data Analytics Platforms by KTH and RISE SICS
Big Data Analytics Platforms by KTH and RISE SICSBig Data Analytics Platforms by KTH and RISE SICS
Big Data Analytics Platforms by KTH and RISE SICS
Big Data Value Association
 
Apache HAWQ Architecture
Apache HAWQ ArchitectureApache HAWQ Architecture
Apache HAWQ Architecture
Alexey Grishchenko
 
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in ProductionTugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Codemotion
 
Apache Hadoop YARN - The Future of Data Processing with Hadoop
Apache Hadoop YARN - The Future of Data Processing with HadoopApache Hadoop YARN - The Future of Data Processing with Hadoop
Apache Hadoop YARN - The Future of Data Processing with Hadoop
Hortonworks
 
Large-scaled telematics analytics
Large-scaled telematics analyticsLarge-scaled telematics analytics
Large-scaled telematics analytics
DataWorks Summit
 
Strata Stinger Talk October 2013
Strata Stinger Talk October 2013Strata Stinger Talk October 2013
Strata Stinger Talk October 2013
alanfgates
 
Big Data Day LA 2015 - Big Data Day LA 2015 - Applying GeoSpatial Analytics u...
Big Data Day LA 2015 - Big Data Day LA 2015 - Applying GeoSpatial Analytics u...Big Data Day LA 2015 - Big Data Day LA 2015 - Applying GeoSpatial Analytics u...
Big Data Day LA 2015 - Big Data Day LA 2015 - Applying GeoSpatial Analytics u...
Data Con LA
 
Introduction to Spark on Hadoop
Introduction to Spark on HadoopIntroduction to Spark on Hadoop
Introduction to Spark on Hadoop
Carol McDonald
 
Pivotal Real Time Data Stream Analytics
Pivotal Real Time Data Stream AnalyticsPivotal Real Time Data Stream Analytics
Pivotal Real Time Data Stream Analytics
kgshukla
 
Kentik Network@Scale (Dan Ellis)
Kentik Network@Scale (Dan Ellis)Kentik Network@Scale (Dan Ellis)
Kentik Network@Scale (Dan Ellis)
gvillain
 
Free Code Friday - Spark Streaming with HBase
Free Code Friday - Spark Streaming with HBaseFree Code Friday - Spark Streaming with HBase
Free Code Friday - Spark Streaming with HBase
MapR Technologies
 
Paradigmas de procesamiento en Big Data: estado actual, tendencias y oportu...
Paradigmas de procesamiento en  Big Data: estado actual,  tendencias y oportu...Paradigmas de procesamiento en  Big Data: estado actual,  tendencias y oportu...
Paradigmas de procesamiento en Big Data: estado actual, tendencias y oportu...
Facultad de Informática UCM
 
Predictive Analytics San Diego
Predictive Analytics San DiegoPredictive Analytics San Diego
Predictive Analytics San Diego
MapR Technologies
 
Edward King SPEDDEXES 2014
Edward King SPEDDEXES 2014Edward King SPEDDEXES 2014
Edward King SPEDDEXES 2014
aceas13tern
 
Dynamically Optimizing Queries over Large Scale Data Platforms
Dynamically Optimizing Queries over Large Scale Data PlatformsDynamically Optimizing Queries over Large Scale Data Platforms
Dynamically Optimizing Queries over Large Scale Data Platforms
INRIA-OAK
 
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Apache Flink Meetup Munich (November 2015): Flink Overview, Architecture, Int...
Robert Metzger
 
Cost-based query optimization in Apache Hive 0.14
Cost-based query optimization in Apache Hive 0.14Cost-based query optimization in Apache Hive 0.14
Cost-based query optimization in Apache Hive 0.14
Julian Hyde
 
The power of hadoop in business
The power of hadoop in businessThe power of hadoop in business
The power of hadoop in business
MapR Technologies
 
Big Data Analytics Platforms by KTH and RISE SICS
Big Data Analytics Platforms by KTH and RISE SICSBig Data Analytics Platforms by KTH and RISE SICS
Big Data Analytics Platforms by KTH and RISE SICS
Big Data Value Association
 
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in ProductionTugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Codemotion
 
Apache Hadoop YARN - The Future of Data Processing with Hadoop
Apache Hadoop YARN - The Future of Data Processing with HadoopApache Hadoop YARN - The Future of Data Processing with Hadoop
Apache Hadoop YARN - The Future of Data Processing with Hadoop
Hortonworks
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Ad

Recently uploaded (20)

Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 

Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil Parker