SlideShare a Scribd company logo
Learning to Compose Domain-
Specific Transformations for
Data Augmentation
Tatsuya Shirakawa
tatsuya@abeja.asia
ABEJA, Inc. (Researcher)
- Deep Learning
- Computer Vision
- Natural Language Processing
- Graph Convolution / Graph Embedding
- Mathematical Optimization
- https://github.com/TatsuyaShiraka
tech blog → http://tech-blog.abeja.asia/
Poincaré Embeddings Graph Convolution
We are hiring! → https://www.abeja.asia/recruit/
→ https://six.abejainc.com/
A. J. Ratner, H. R. Ehrenberg, et al., “Learning to Compose Domain-
Specific Transformations for Data Augmentation”, NIPS2017
Today’s Paper
3
Problem to solve
• Learning how to compose predefined
data transformations (TFs) to create
naturally transformed data (data
augmentation)
How to solve
• Formulate the problem as a sequence
generation problem
• Learned by policy gradient method
1. Introduction
2. Proposed Method
3. Results
4. Summary
Agenda
4
1.Introduction
2. Proposed Method
3. Results
4. Summary
Agenda
5
Applying sequence of transformation functions
(TFs) to each data to augment dataset
Data Augmentation (DA)
6
Common Assumption

Transformed data are natural and essential
informations (e.g. classes) are kept unchanged


… But massive DA can easily break the assumption
DA can break informations
7
(CIFAR-10)
• Generator generates sequences of TFs
• Discriminator discriminates transformed
data are realistic or not
• End model (learned afterward)
This Paper — Learning to Compose TFs
8
G
D
Df
Technical Remarks: transformation sequences have same length L
1. Introduction
2.Proposed Method
3. Results
4. Summary
Agenda
9
• Discriminator discriminate whether given data
are realistic (1) or not (0)
• Relaxed Assumption

TFs preserve essential information or collapse it
Discriminator
10
Generator G is adversarially learned against D
This leads G to generate transformation sequences
that don’t collapse data
Generative Adversarial Objective
11Technical Remarks: Generator is not conditioned on data
Generator should not learn null transformation
sequences, so maximize
Examples of Null transformation sequence
• Horizontal Flip x 2
• Rotate left 5° and rotate right 5°
Diversity Objective
12
Overall Objective
13
min
✓
max J = ˜J + ↵J 1
d
• We can optimize discriminator and generator
alternatively
• Optimization of discriminator can be done
by simple gradient ascent method
• Optimization of generator needs
optimization of sequence generation
process and cannot be applied simple
gradient descent method
Optimization
14
G
D
Reformulate the optimization problem for G as a
sequential decision making (RL) problem
Optimization of G — RL problem
15
…
h⌧1
h⌧2
h⌧L
x ˜x1 ˜x2 ˜xL
r1 r2 rL
Technical Remarks: loss is defined as loss(x) = log(1-D(x)) in the paper
rt = loss(˜xt) loss(˜xt 1),
LX
t=1
rt = loss(˜xL) loss(x)
Final loss





can be minimized by policy gradient method
Optimization of G — Policy Gradient
16
π … stochastic transition policy
implicitly defined by G
Policy Gradient Method
1.Generate samples (run the policy)
2.Estimate return
3.Improve the policy ✓ ✓ ⌘r✓U(✓)
Independent Model — Mean Field Model

learning task-specific “accuracy” and “frequency”
of each TF 

e.g.
State-based Model — LSTM

some combination of TFs might be very lossy

(e.g. blur -> zoom, brighten -> saturation)
Generator (Policy) Model
17
• D measures whether data are realistic or not
• G (mean field / LSTM) generate sequences of TFs of length L
• Adversarial training for G & D
• Standard gradient ascent method for D
• Policy gradient method for G
Summary of Proposed Method
18
1. Introduction
2. Proposed Method
3.Results
4. Summary
Agenda
19
• MNIST
• CIFAR-10
Datasets
20
• ACE corpus • Mammography Tumor-
Classification Dataset 

(DDSM)
• MNIST
• CIFAR-10
Datasets — Image Datasets
21
• ACE corpus • Mammography Tumor-
Classification Dataset 

(DDSM)
MNIST
CIFAR-10
• MNIST
• CIFAR-10
Datasets — ACE corpus
22
• ACE corpus • Mammography Tumor-
Classification Dataset 

(DDSM)
The goal is to identify
mentions of employer-
employee relations in
news articles
Conditional word swap TF
1.Construct trigram
language model
2.Sample a word
conditioned on the
preceding words
• MNIST
• CIFAR-10
Datasets — DDSM dataset
23
• ACE corpus • Mammography Tumor-
Classification Dataset 

(DDSM)
Standard image TFs
Subselected so as not to
break class-invariance
Segmentation-based TFs
1.Segment the tumor mass
2.Perform TFs 

(e.g. rotation or shifting)
3.Stitch it into a randomly-
sampled benign tissue
image
Results — CIFAR-10 Classification
24
Basic … random crop
Heur. … random composition of TFs
+ DS … allowing domain-specific TFs (semantic-segmentation-based)
Results — TF Freq. / Seq. Length
25
Results — Training Progress on MNIST
26
https://hazyresearch.github.io/snorkel/blog/tanda.html
• Adversarial Training for Data Augmentation
• Optimization with standard/policy gradient method
• Achieved better performance on several datasets
Summary
27

More Related Content

What's hot (20)

Startup Data Science
Startup Data ScienceStartup Data Science
Startup Data Science
Misha Lisovich
 
Generative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their ApplicationsGenerative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their Applications
Artifacia
 
Transfer Learning -- The Next Frontier for Machine Learning
Transfer Learning -- The Next Frontier for Machine LearningTransfer Learning -- The Next Frontier for Machine Learning
Transfer Learning -- The Next Frontier for Machine Learning
Sebastian Ruder
 
APS GDS data science talk by Trevor Rhone
APS GDS data science talk by Trevor RhoneAPS GDS data science talk by Trevor Rhone
APS GDS data science talk by Trevor Rhone
TrevorDavidRhone
 
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
AI Frontiers
 
Capitalico / Chart Pattern Matching in Financial Trading Using RNN
Capitalico / Chart Pattern Matching in Financial Trading Using RNNCapitalico / Chart Pattern Matching in Financial Trading Using RNN
Capitalico / Chart Pattern Matching in Financial Trading Using RNN
Alpaca
 
InfoGAN and Generative Adversarial Networks
InfoGAN and Generative Adversarial NetworksInfoGAN and Generative Adversarial Networks
InfoGAN and Generative Adversarial Networks
Zak Jost
 
Active learning
Active learningActive learning
Active learning
রাগিব আহসান
 
MOA for the IoT at ACML 2016
MOA for the IoT at ACML 2016 MOA for the IoT at ACML 2016
MOA for the IoT at ACML 2016
Albert Bifet
 
Machine Learning Real Life Applications By Examples
Machine Learning Real Life Applications By ExamplesMachine Learning Real Life Applications By Examples
Machine Learning Real Life Applications By Examples
Mario Cartia
 
Melanie Warrick, Deep Learning Engineer, Skymind.io at MLconf SF - 11/13/15
Melanie Warrick, Deep Learning Engineer, Skymind.io at MLconf SF - 11/13/15Melanie Warrick, Deep Learning Engineer, Skymind.io at MLconf SF - 11/13/15
Melanie Warrick, Deep Learning Engineer, Skymind.io at MLconf SF - 11/13/15
MLconf
 
Pybcn machine learning for dummies with python
Pybcn machine learning for dummies with pythonPybcn machine learning for dummies with python
Pybcn machine learning for dummies with python
Javier Arias Losada
 
Neural Networks and Deep Learning for Physicists
Neural Networks and Deep Learning for PhysicistsNeural Networks and Deep Learning for Physicists
Neural Networks and Deep Learning for Physicists
Héloïse Nonne
 
Big Data Analytics for connected home
Big Data Analytics for connected homeBig Data Analytics for connected home
Big Data Analytics for connected home
Héloïse Nonne
 
李育杰/The Growth of a Data Scientist
李育杰/The Growth of a Data Scientist李育杰/The Growth of a Data Scientist
李育杰/The Growth of a Data Scientist
台灣資料科學年會
 
SEGAN: Speech Enhancement Generative Adversarial Network
SEGAN: Speech Enhancement Generative Adversarial NetworkSEGAN: Speech Enhancement Generative Adversarial Network
SEGAN: Speech Enhancement Generative Adversarial Network
Universitat Politècnica de Catalunya
 
Bol.com
Bol.comBol.com
Bol.com
BigDataExpo
 
Europython - Machine Learning for dummies with Python
Europython - Machine Learning for dummies with PythonEuropython - Machine Learning for dummies with Python
Europython - Machine Learning for dummies with Python
Javier Arias Losada
 
Lent Matlab H Ss
Lent Matlab H SsLent Matlab H Ss
Lent Matlab H Ss
Intro Engineering
 
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Dongmin Choi
 
Generative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their ApplicationsGenerative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their Applications
Artifacia
 
Transfer Learning -- The Next Frontier for Machine Learning
Transfer Learning -- The Next Frontier for Machine LearningTransfer Learning -- The Next Frontier for Machine Learning
Transfer Learning -- The Next Frontier for Machine Learning
Sebastian Ruder
 
APS GDS data science talk by Trevor Rhone
APS GDS data science talk by Trevor RhoneAPS GDS data science talk by Trevor Rhone
APS GDS data science talk by Trevor Rhone
TrevorDavidRhone
 
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
AI Frontiers
 
Capitalico / Chart Pattern Matching in Financial Trading Using RNN
Capitalico / Chart Pattern Matching in Financial Trading Using RNNCapitalico / Chart Pattern Matching in Financial Trading Using RNN
Capitalico / Chart Pattern Matching in Financial Trading Using RNN
Alpaca
 
InfoGAN and Generative Adversarial Networks
InfoGAN and Generative Adversarial NetworksInfoGAN and Generative Adversarial Networks
InfoGAN and Generative Adversarial Networks
Zak Jost
 
MOA for the IoT at ACML 2016
MOA for the IoT at ACML 2016 MOA for the IoT at ACML 2016
MOA for the IoT at ACML 2016
Albert Bifet
 
Machine Learning Real Life Applications By Examples
Machine Learning Real Life Applications By ExamplesMachine Learning Real Life Applications By Examples
Machine Learning Real Life Applications By Examples
Mario Cartia
 
Melanie Warrick, Deep Learning Engineer, Skymind.io at MLconf SF - 11/13/15
Melanie Warrick, Deep Learning Engineer, Skymind.io at MLconf SF - 11/13/15Melanie Warrick, Deep Learning Engineer, Skymind.io at MLconf SF - 11/13/15
Melanie Warrick, Deep Learning Engineer, Skymind.io at MLconf SF - 11/13/15
MLconf
 
Pybcn machine learning for dummies with python
Pybcn machine learning for dummies with pythonPybcn machine learning for dummies with python
Pybcn machine learning for dummies with python
Javier Arias Losada
 
Neural Networks and Deep Learning for Physicists
Neural Networks and Deep Learning for PhysicistsNeural Networks and Deep Learning for Physicists
Neural Networks and Deep Learning for Physicists
Héloïse Nonne
 
Big Data Analytics for connected home
Big Data Analytics for connected homeBig Data Analytics for connected home
Big Data Analytics for connected home
Héloïse Nonne
 
Europython - Machine Learning for dummies with Python
Europython - Machine Learning for dummies with PythonEuropython - Machine Learning for dummies with Python
Europython - Machine Learning for dummies with Python
Javier Arias Losada
 
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Dongmin Choi
 

Similar to Learning to Compose Domain-Specific Transformations for Data Augmentation (20)

Deep Generative Modelling (updated)
Deep Generative Modelling (updated)Deep Generative Modelling (updated)
Deep Generative Modelling (updated)
Petko Nikolov
 
Neural Semi-supervised Learning under Domain Shift
Neural Semi-supervised Learning under Domain ShiftNeural Semi-supervised Learning under Domain Shift
Neural Semi-supervised Learning under Domain Shift
Sebastian Ruder
 
Generative Adversarial Network
Generative Adversarial NetworkGenerative Adversarial Network
Generative Adversarial Network
khalooei
 
Easy to learn deep learning guide - elementry
Easy to learn deep learning guide - elementryEasy to learn deep learning guide - elementry
Easy to learn deep learning guide - elementry
AnjaliSohoni
 
Deep learning and applications in non-cognitive domains II
Deep learning and applications in non-cognitive domains IIDeep learning and applications in non-cognitive domains II
Deep learning and applications in non-cognitive domains II
Deakin University
 
Reproducing and Analyzing Adaptive Computation Time in PyTorch and TensorFlow
Reproducing and Analyzing Adaptive Computation Time in PyTorch and TensorFlowReproducing and Analyzing Adaptive Computation Time in PyTorch and TensorFlow
Reproducing and Analyzing Adaptive Computation Time in PyTorch and TensorFlow
Universitat Politècnica de Catalunya
 
Rethinking Attention with Performers
Rethinking Attention with PerformersRethinking Attention with Performers
Rethinking Attention with Performers
Joonhyung Lee
 
Deep Learning for Time Series Data
Deep Learning for Time Series DataDeep Learning for Time Series Data
Deep Learning for Time Series Data
Arun Kejariwal
 
[GAN by Hung-yi Lee]Part 1: General introduction of GAN
[GAN by Hung-yi Lee]Part 1: General introduction of GAN[GAN by Hung-yi Lee]Part 1: General introduction of GAN
[GAN by Hung-yi Lee]Part 1: General introduction of GAN
NAVER Engineering
 
Deep Generative Modelling
Deep Generative ModellingDeep Generative Modelling
Deep Generative Modelling
Petko Nikolov
 
Android and Deep Learning
Android and Deep LearningAndroid and Deep Learning
Android and Deep Learning
Oswald Campesato
 
The Success of Deep Generative Models
The Success of Deep Generative ModelsThe Success of Deep Generative Models
The Success of Deep Generative Models
inside-BigData.com
 
Practical deep learning for computer vision
Practical deep learning for computer visionPractical deep learning for computer vision
Practical deep learning for computer vision
Eran Shlomo
 
自然方策勾配法の基礎と応用
自然方策勾配法の基礎と応用自然方策勾配法の基礎と応用
自然方策勾配法の基礎と応用
Ryo Iwaki
 
2020 ssi-distinguished-projects
2020 ssi-distinguished-projects2020 ssi-distinguished-projects
2020 ssi-distinguished-projects
Anne Lee
 
Deep learning with Keras
Deep learning with KerasDeep learning with Keras
Deep learning with Keras
QuantUniversity
 
Launching into machine learning
Launching into machine learningLaunching into machine learning
Launching into machine learning
Dr.R. Gunavathi Ramasamy
 
Deep Generative Learning for All
Deep Generative Learning for AllDeep Generative Learning for All
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural Networks
Jeremy Nixon
 
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Deep Generative Modelling (updated)
Deep Generative Modelling (updated)Deep Generative Modelling (updated)
Deep Generative Modelling (updated)
Petko Nikolov
 
Neural Semi-supervised Learning under Domain Shift
Neural Semi-supervised Learning under Domain ShiftNeural Semi-supervised Learning under Domain Shift
Neural Semi-supervised Learning under Domain Shift
Sebastian Ruder
 
Generative Adversarial Network
Generative Adversarial NetworkGenerative Adversarial Network
Generative Adversarial Network
khalooei
 
Easy to learn deep learning guide - elementry
Easy to learn deep learning guide - elementryEasy to learn deep learning guide - elementry
Easy to learn deep learning guide - elementry
AnjaliSohoni
 
Deep learning and applications in non-cognitive domains II
Deep learning and applications in non-cognitive domains IIDeep learning and applications in non-cognitive domains II
Deep learning and applications in non-cognitive domains II
Deakin University
 
Reproducing and Analyzing Adaptive Computation Time in PyTorch and TensorFlow
Reproducing and Analyzing Adaptive Computation Time in PyTorch and TensorFlowReproducing and Analyzing Adaptive Computation Time in PyTorch and TensorFlow
Reproducing and Analyzing Adaptive Computation Time in PyTorch and TensorFlow
Universitat Politècnica de Catalunya
 
Rethinking Attention with Performers
Rethinking Attention with PerformersRethinking Attention with Performers
Rethinking Attention with Performers
Joonhyung Lee
 
Deep Learning for Time Series Data
Deep Learning for Time Series DataDeep Learning for Time Series Data
Deep Learning for Time Series Data
Arun Kejariwal
 
[GAN by Hung-yi Lee]Part 1: General introduction of GAN
[GAN by Hung-yi Lee]Part 1: General introduction of GAN[GAN by Hung-yi Lee]Part 1: General introduction of GAN
[GAN by Hung-yi Lee]Part 1: General introduction of GAN
NAVER Engineering
 
Deep Generative Modelling
Deep Generative ModellingDeep Generative Modelling
Deep Generative Modelling
Petko Nikolov
 
The Success of Deep Generative Models
The Success of Deep Generative ModelsThe Success of Deep Generative Models
The Success of Deep Generative Models
inside-BigData.com
 
Practical deep learning for computer vision
Practical deep learning for computer visionPractical deep learning for computer vision
Practical deep learning for computer vision
Eran Shlomo
 
自然方策勾配法の基礎と応用
自然方策勾配法の基礎と応用自然方策勾配法の基礎と応用
自然方策勾配法の基礎と応用
Ryo Iwaki
 
2020 ssi-distinguished-projects
2020 ssi-distinguished-projects2020 ssi-distinguished-projects
2020 ssi-distinguished-projects
Anne Lee
 
Deep learning with Keras
Deep learning with KerasDeep learning with Keras
Deep learning with Keras
QuantUniversity
 
Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural Networks
Jeremy Nixon
 
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 

More from Tatsuya Shirakawa (13)

NeurIPS2021読み会 Fairness in Ranking under Uncertainty
NeurIPS2021読み会 Fairness in Ranking under UncertaintyNeurIPS2021読み会 Fairness in Ranking under Uncertainty
NeurIPS2021読み会 Fairness in Ranking under Uncertainty
Tatsuya Shirakawa
 
2021 10-07 kdd2021読み会 uc phrase
2021 10-07 kdd2021読み会 uc phrase2021 10-07 kdd2021読み会 uc phrase
2021 10-07 kdd2021読み会 uc phrase
Tatsuya Shirakawa
 
医療ビッグデータの今後を見通すために知っておきたい機械学習の基礎〜最前線 agains COVID-19
医療ビッグデータの今後を見通すために知っておきたい機械学習の基礎〜最前線 agains COVID-19医療ビッグデータの今後を見通すために知っておきたい機械学習の基礎〜最前線 agains COVID-19
医療ビッグデータの今後を見通すために知っておきたい機械学習の基礎〜最前線 agains COVID-19
Tatsuya Shirakawa
 
ICCV2019 report
ICCV2019 reportICCV2019 report
ICCV2019 report
Tatsuya Shirakawa
 
Retail Face Analysis Inside-Out
Retail Face Analysis Inside-OutRetail Face Analysis Inside-Out
Retail Face Analysis Inside-Out
Tatsuya Shirakawa
 
データに内在する構造をみるための埋め込み手法
データに内在する構造をみるための埋め込み手法データに内在する構造をみるための埋め込み手法
データに内在する構造をみるための埋め込み手法
Tatsuya Shirakawa
 
ヒトの機械学習
ヒトの機械学習ヒトの機械学習
ヒトの機械学習
Tatsuya Shirakawa
 
Seeing Unseens with Machine Learning -- 
見えていないものを見出す機械学習
Seeing Unseens with Machine Learning -- 
見えていないものを見出す機械学習Seeing Unseens with Machine Learning -- 
見えていないものを見出す機械学習
Seeing Unseens with Machine Learning -- 
見えていないものを見出す機械学習
Tatsuya Shirakawa
 
Taskonomy: Disentangling Task Transfer Learning -- Scouty Meetup 2018 Feb., ...
 Taskonomy: Disentangling Task Transfer Learning -- Scouty Meetup 2018 Feb., ... Taskonomy: Disentangling Task Transfer Learning -- Scouty Meetup 2018 Feb., ...
Taskonomy: Disentangling Task Transfer Learning -- Scouty Meetup 2018 Feb., ...
Tatsuya Shirakawa
 
Hyperbolic Neural Networks
Hyperbolic Neural NetworksHyperbolic Neural Networks
Hyperbolic Neural Networks
Tatsuya Shirakawa
 
Poincare embeddings for Learning Hierarchical Representations
Poincare embeddings for Learning Hierarchical RepresentationsPoincare embeddings for Learning Hierarchical Representations
Poincare embeddings for Learning Hierarchical Representations
Tatsuya Shirakawa
 
Dynamic filter networks
Dynamic filter networksDynamic filter networks
Dynamic filter networks
Tatsuya Shirakawa
 
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive FlowImproving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Tatsuya Shirakawa
 
NeurIPS2021読み会 Fairness in Ranking under Uncertainty
NeurIPS2021読み会 Fairness in Ranking under UncertaintyNeurIPS2021読み会 Fairness in Ranking under Uncertainty
NeurIPS2021読み会 Fairness in Ranking under Uncertainty
Tatsuya Shirakawa
 
2021 10-07 kdd2021読み会 uc phrase
2021 10-07 kdd2021読み会 uc phrase2021 10-07 kdd2021読み会 uc phrase
2021 10-07 kdd2021読み会 uc phrase
Tatsuya Shirakawa
 
医療ビッグデータの今後を見通すために知っておきたい機械学習の基礎〜最前線 agains COVID-19
医療ビッグデータの今後を見通すために知っておきたい機械学習の基礎〜最前線 agains COVID-19医療ビッグデータの今後を見通すために知っておきたい機械学習の基礎〜最前線 agains COVID-19
医療ビッグデータの今後を見通すために知っておきたい機械学習の基礎〜最前線 agains COVID-19
Tatsuya Shirakawa
 
Retail Face Analysis Inside-Out
Retail Face Analysis Inside-OutRetail Face Analysis Inside-Out
Retail Face Analysis Inside-Out
Tatsuya Shirakawa
 
データに内在する構造をみるための埋め込み手法
データに内在する構造をみるための埋め込み手法データに内在する構造をみるための埋め込み手法
データに内在する構造をみるための埋め込み手法
Tatsuya Shirakawa
 
Seeing Unseens with Machine Learning -- 
見えていないものを見出す機械学習
Seeing Unseens with Machine Learning -- 
見えていないものを見出す機械学習Seeing Unseens with Machine Learning -- 
見えていないものを見出す機械学習
Seeing Unseens with Machine Learning -- 
見えていないものを見出す機械学習
Tatsuya Shirakawa
 
Taskonomy: Disentangling Task Transfer Learning -- Scouty Meetup 2018 Feb., ...
 Taskonomy: Disentangling Task Transfer Learning -- Scouty Meetup 2018 Feb., ... Taskonomy: Disentangling Task Transfer Learning -- Scouty Meetup 2018 Feb., ...
Taskonomy: Disentangling Task Transfer Learning -- Scouty Meetup 2018 Feb., ...
Tatsuya Shirakawa
 
Poincare embeddings for Learning Hierarchical Representations
Poincare embeddings for Learning Hierarchical RepresentationsPoincare embeddings for Learning Hierarchical Representations
Poincare embeddings for Learning Hierarchical Representations
Tatsuya Shirakawa
 
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive FlowImproving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Tatsuya Shirakawa
 

Recently uploaded (20)

Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Designer
 
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays
 
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays
 
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays
 
Cyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptxCyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptx
vilakshbhargava
 
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiuLec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
saifalroby72
 
STRABAG SE - Investor Presentation - February 2024.pdf
STRABAG SE - Investor Presentation - February 2024.pdfSTRABAG SE - Investor Presentation - February 2024.pdf
STRABAG SE - Investor Presentation - February 2024.pdf
andrianalampka
 
time_series_forecasting_constructor_uni.pptx
time_series_forecasting_constructor_uni.pptxtime_series_forecasting_constructor_uni.pptx
time_series_forecasting_constructor_uni.pptx
stefanopinto1113
 
Veterinary Anatomy, The Regional Gross Anatomy of Domestic Animals (VetBooks....
Veterinary Anatomy, The Regional Gross Anatomy of Domestic Animals (VetBooks....Veterinary Anatomy, The Regional Gross Anatomy of Domestic Animals (VetBooks....
Veterinary Anatomy, The Regional Gross Anatomy of Domestic Animals (VetBooks....
JazmnAltamirano1
 
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
JunZhao68
 
Blue Dark Professional Geometric Business Project Presentation .pdf
Blue Dark Professional Geometric Business Project Presentation .pdfBlue Dark Professional Geometric Business Project Presentation .pdf
Blue Dark Professional Geometric Business Project Presentation .pdf
mohammadhaidarayoobi
 
Geospatial Data_ Unlocking the Power for Smarter Urban Planning.docx
Geospatial Data_ Unlocking the Power for Smarter Urban Planning.docxGeospatial Data_ Unlocking the Power for Smarter Urban Planning.docx
Geospatial Data_ Unlocking the Power for Smarter Urban Planning.docx
sofiawilliams5966
 
time_series_forecasting_constructor_uni.pptx
time_series_forecasting_constructor_uni.pptxtime_series_forecasting_constructor_uni.pptx
time_series_forecasting_constructor_uni.pptx
stefanopinto1113
 
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays
 
Understanding LLM Temperature: A comprehensive Guide
Understanding LLM Temperature: A comprehensive GuideUnderstanding LLM Temperature: A comprehensive Guide
Understanding LLM Temperature: A comprehensive Guide
Tamanna36
 
BADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and InterpretationBADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and Interpretation
srishtisingh1813
 
Embracing AI in Project Management: Final Insights & Future Vision
Embracing AI in Project Management: Final Insights & Future VisionEmbracing AI in Project Management: Final Insights & Future Vision
Embracing AI in Project Management: Final Insights & Future Vision
KavehMomeni1
 
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays
 
Ppt. AP Bio_ Lecture Presentation Ch. 09.ppt
Ppt. AP Bio_ Lecture Presentation Ch. 09.pptPpt. AP Bio_ Lecture Presentation Ch. 09.ppt
Ppt. AP Bio_ Lecture Presentation Ch. 09.ppt
jimmygoat123456789
 
Introduction to information about Data Structure.pptx
Introduction to information about Data Structure.pptxIntroduction to information about Data Structure.pptx
Introduction to information about Data Structure.pptx
tarrebulehora
 
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Glary Utilities Pro 5.157.0.183 Crack + Key Download [Latest]
Designer
 
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays
 
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays
 
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays
 
Cyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptxCyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptx
vilakshbhargava
 
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiuLec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
saifalroby72
 
STRABAG SE - Investor Presentation - February 2024.pdf
STRABAG SE - Investor Presentation - February 2024.pdfSTRABAG SE - Investor Presentation - February 2024.pdf
STRABAG SE - Investor Presentation - February 2024.pdf
andrianalampka
 
time_series_forecasting_constructor_uni.pptx
time_series_forecasting_constructor_uni.pptxtime_series_forecasting_constructor_uni.pptx
time_series_forecasting_constructor_uni.pptx
stefanopinto1113
 
Veterinary Anatomy, The Regional Gross Anatomy of Domestic Animals (VetBooks....
Veterinary Anatomy, The Regional Gross Anatomy of Domestic Animals (VetBooks....Veterinary Anatomy, The Regional Gross Anatomy of Domestic Animals (VetBooks....
Veterinary Anatomy, The Regional Gross Anatomy of Domestic Animals (VetBooks....
JazmnAltamirano1
 
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
语法专题3-状语从句.pdf 英语语法基础部分,涉及到状语从句部分的内容来米爱上
JunZhao68
 
Blue Dark Professional Geometric Business Project Presentation .pdf
Blue Dark Professional Geometric Business Project Presentation .pdfBlue Dark Professional Geometric Business Project Presentation .pdf
Blue Dark Professional Geometric Business Project Presentation .pdf
mohammadhaidarayoobi
 
Geospatial Data_ Unlocking the Power for Smarter Urban Planning.docx
Geospatial Data_ Unlocking the Power for Smarter Urban Planning.docxGeospatial Data_ Unlocking the Power for Smarter Urban Planning.docx
Geospatial Data_ Unlocking the Power for Smarter Urban Planning.docx
sofiawilliams5966
 
time_series_forecasting_constructor_uni.pptx
time_series_forecasting_constructor_uni.pptxtime_series_forecasting_constructor_uni.pptx
time_series_forecasting_constructor_uni.pptx
stefanopinto1113
 
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays
 
Understanding LLM Temperature: A comprehensive Guide
Understanding LLM Temperature: A comprehensive GuideUnderstanding LLM Temperature: A comprehensive Guide
Understanding LLM Temperature: A comprehensive Guide
Tamanna36
 
BADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and InterpretationBADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and Interpretation
srishtisingh1813
 
Embracing AI in Project Management: Final Insights & Future Vision
Embracing AI in Project Management: Final Insights & Future VisionEmbracing AI in Project Management: Final Insights & Future Vision
Embracing AI in Project Management: Final Insights & Future Vision
KavehMomeni1
 
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays
 
Ppt. AP Bio_ Lecture Presentation Ch. 09.ppt
Ppt. AP Bio_ Lecture Presentation Ch. 09.pptPpt. AP Bio_ Lecture Presentation Ch. 09.ppt
Ppt. AP Bio_ Lecture Presentation Ch. 09.ppt
jimmygoat123456789
 
Introduction to information about Data Structure.pptx
Introduction to information about Data Structure.pptxIntroduction to information about Data Structure.pptx
Introduction to information about Data Structure.pptx
tarrebulehora
 

Learning to Compose Domain-Specific Transformations for Data Augmentation

  • 1. Learning to Compose Domain- Specific Transformations for Data Augmentation Tatsuya Shirakawa [email protected]
  • 2. ABEJA, Inc. (Researcher) - Deep Learning - Computer Vision - Natural Language Processing - Graph Convolution / Graph Embedding - Mathematical Optimization - https://github.com/TatsuyaShiraka tech blog → http://tech-blog.abeja.asia/ Poincaré Embeddings Graph Convolution We are hiring! → https://www.abeja.asia/recruit/ → https://six.abejainc.com/
  • 3. A. J. Ratner, H. R. Ehrenberg, et al., “Learning to Compose Domain- Specific Transformations for Data Augmentation”, NIPS2017 Today’s Paper 3 Problem to solve • Learning how to compose predefined data transformations (TFs) to create naturally transformed data (data augmentation) How to solve • Formulate the problem as a sequence generation problem • Learned by policy gradient method
  • 4. 1. Introduction 2. Proposed Method 3. Results 4. Summary Agenda 4
  • 5. 1.Introduction 2. Proposed Method 3. Results 4. Summary Agenda 5
  • 6. Applying sequence of transformation functions (TFs) to each data to augment dataset Data Augmentation (DA) 6
  • 7. Common Assumption
 Transformed data are natural and essential informations (e.g. classes) are kept unchanged 
 … But massive DA can easily break the assumption DA can break informations 7 (CIFAR-10)
  • 8. • Generator generates sequences of TFs • Discriminator discriminates transformed data are realistic or not • End model (learned afterward) This Paper — Learning to Compose TFs 8 G D Df Technical Remarks: transformation sequences have same length L
  • 9. 1. Introduction 2.Proposed Method 3. Results 4. Summary Agenda 9
  • 10. • Discriminator discriminate whether given data are realistic (1) or not (0) • Relaxed Assumption
 TFs preserve essential information or collapse it Discriminator 10
  • 11. Generator G is adversarially learned against D This leads G to generate transformation sequences that don’t collapse data Generative Adversarial Objective 11Technical Remarks: Generator is not conditioned on data
  • 12. Generator should not learn null transformation sequences, so maximize Examples of Null transformation sequence • Horizontal Flip x 2 • Rotate left 5° and rotate right 5° Diversity Objective 12
  • 14. • We can optimize discriminator and generator alternatively • Optimization of discriminator can be done by simple gradient ascent method • Optimization of generator needs optimization of sequence generation process and cannot be applied simple gradient descent method Optimization 14 G D
  • 15. Reformulate the optimization problem for G as a sequential decision making (RL) problem Optimization of G — RL problem 15 … h⌧1 h⌧2 h⌧L x ˜x1 ˜x2 ˜xL r1 r2 rL Technical Remarks: loss is defined as loss(x) = log(1-D(x)) in the paper rt = loss(˜xt) loss(˜xt 1), LX t=1 rt = loss(˜xL) loss(x)
  • 16. Final loss
 
 
 can be minimized by policy gradient method Optimization of G — Policy Gradient 16 π … stochastic transition policy implicitly defined by G Policy Gradient Method 1.Generate samples (run the policy) 2.Estimate return 3.Improve the policy ✓ ✓ ⌘r✓U(✓)
  • 17. Independent Model — Mean Field Model
 learning task-specific “accuracy” and “frequency” of each TF 
 e.g. State-based Model — LSTM
 some combination of TFs might be very lossy
 (e.g. blur -> zoom, brighten -> saturation) Generator (Policy) Model 17
  • 18. • D measures whether data are realistic or not • G (mean field / LSTM) generate sequences of TFs of length L • Adversarial training for G & D • Standard gradient ascent method for D • Policy gradient method for G Summary of Proposed Method 18
  • 19. 1. Introduction 2. Proposed Method 3.Results 4. Summary Agenda 19
  • 20. • MNIST • CIFAR-10 Datasets 20 • ACE corpus • Mammography Tumor- Classification Dataset 
 (DDSM)
  • 21. • MNIST • CIFAR-10 Datasets — Image Datasets 21 • ACE corpus • Mammography Tumor- Classification Dataset 
 (DDSM) MNIST CIFAR-10
  • 22. • MNIST • CIFAR-10 Datasets — ACE corpus 22 • ACE corpus • Mammography Tumor- Classification Dataset 
 (DDSM) The goal is to identify mentions of employer- employee relations in news articles Conditional word swap TF 1.Construct trigram language model 2.Sample a word conditioned on the preceding words
  • 23. • MNIST • CIFAR-10 Datasets — DDSM dataset 23 • ACE corpus • Mammography Tumor- Classification Dataset 
 (DDSM) Standard image TFs Subselected so as not to break class-invariance Segmentation-based TFs 1.Segment the tumor mass 2.Perform TFs 
 (e.g. rotation or shifting) 3.Stitch it into a randomly- sampled benign tissue image
  • 24. Results — CIFAR-10 Classification 24 Basic … random crop Heur. … random composition of TFs + DS … allowing domain-specific TFs (semantic-segmentation-based)
  • 25. Results — TF Freq. / Seq. Length 25
  • 26. Results — Training Progress on MNIST 26 https://hazyresearch.github.io/snorkel/blog/tanda.html
  • 27. • Adversarial Training for Data Augmentation • Optimization with standard/policy gradient method • Achieved better performance on several datasets Summary 27