Likelihood is sometimes difficult to compute because of the complexity of the model. Approximate Bayesian computation (ABC) makes it easy to sample parameters generating approximation of observed data.
This document introduces deep reinforcement learning and provides some examples of its applications. It begins with backgrounds on the history of deep learning and reinforcement learning. It then explains the concepts of reinforcement learning, deep learning, and deep reinforcement learning. Some example applications are controlling building sway, optimizing smart grids, and autonomous vehicles. The document also discusses using deep reinforcement learning for robot control and how understanding the principles can help in problem setting.
Likelihood is sometimes difficult to compute because of the complexity of the model. Approximate Bayesian computation (ABC) makes it easy to sample parameters generating approximation of observed data.
This document introduces deep reinforcement learning and provides some examples of its applications. It begins with backgrounds on the history of deep learning and reinforcement learning. It then explains the concepts of reinforcement learning, deep learning, and deep reinforcement learning. Some example applications are controlling building sway, optimizing smart grids, and autonomous vehicles. The document also discusses using deep reinforcement learning for robot control and how understanding the principles can help in problem setting.
2018/10/20コンピュータビジョン勉強会@関東「ECCV読み会2018」発表資料
Yew, Z. J., & Lee, G. H. (2018). 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration. European Conference on Computer Vision.
This document summarizes a paper titled "DeepI2P: Image-to-Point Cloud Registration via Deep Classification". The paper proposes a method for estimating the camera pose within a point cloud map using a deep learning model. The model first classifies whether points in the point cloud fall within the camera's frustum or image grid. It then performs pose optimization to estimate the camera pose by minimizing the projection error of inlier points onto the image. The method achieves more accurate camera pose estimation compared to existing techniques based on feature matching or depth estimation. It provides a new approach for camera localization using point cloud maps without requiring cross-modal feature learning.
2020/10/10に開催された第4回全日本コンピュータビジョン勉強会「人に関する認識・理解論文読み会」発表資料です。
以下の2本を読みました
Harmonious Attention Network for Person Re-identification. (CVPR2018)
Weekly Supervised Person Re-Identification (CVPR2019)
3. 紹介する論文
3
Learning to Solve Hard Minimal Problems
Petr Hruby (ETH Zurich),Timothy Duff (University ofWashington),
Anton Leykin (Georgia Institude ofTechnology),Tomas Pajdla (Czech
Technical University in Prague)
Best Paper
選んだ理由: