SlideShare a Scribd company logo
DataFrames
in Python
Python Libraries for Data Science
Many popular Python toolboxes/libraries:
• NumPy
• SciPy
• Pandas
• SciKit-Learn
Visualization libraries
• matplotlib
• Seaborn
and many more …
2
All these libraries are
installed on the SCC
Python Libraries for Data Science
NumPy:
 introduces objects for multidimensional arrays and matrices, as well as
functions that allow to easily perform advanced mathematical and statistical
operations on those objects
 provides vectorization of mathematical operations on arrays and matrices
which significantly improves the performance
 many other python libraries are built on NumPy
3
Link: http://www.numpy.org/
Python Libraries for Data Science
SciPy:
 collection of algorithms for linear algebra, differential equations, numerical
integration, optimization, statistics and more
 part of SciPy Stack
 built on NumPy
4
Link: https://www.scipy.org/scipylib/
Python Libraries for Data Science
Pandas:
 adds data structures and tools designed to work with table-like data (similar
to Series and Data Frames in R)
 provides tools for data manipulation: reshaping, merging, sorting, slicing,
aggregation etc.
 allows handling missing data
5
Link: http://pandas.pydata.org/
Link: http://scikit-learn.org/
Python Libraries for Data Science
SciKit-Learn:
 provides machine learning algorithms: classification, regression, clustering,
model validation etc.
 built on NumPy, SciPy and matplotlib
6
Python Libraries for Data Science
matplotlib:
 python 2D plotting library which produces publication quality figures in a
variety of hardcopy formats
 a set of functionalities similar to those of MATLAB
 line plots, scatter plots, barcharts, histograms, pie charts etc.
 relatively low-level; some effort needed to create advanced visualization
7
Link: https://matplotlib.org/
Python Libraries for Data Science
Seaborn:
 based on matplotlib
 provides high level interface for drawing attractive statistical graphics
 Similar (in style) to the popular ggplot2 library in R
8
Link: https://seaborn.pydata.org/
In [ ]:
Loading Python Libraries
9
#Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib as mpl
import seaborn as sns
Press Shift+Enter to execute the jupyter cell
Reading data using pandas
10
#Read excel data
df = pd.read_excel('sample-xlsx-file-for-testing.xlsx')
#Read csv file
df = pd.read_csv('sample-xlsx-file-for-testing.csv')
Note: There is several pandas commands to read other data formats:
In [3]:
Exploring data frames
11
#List first 5 records
df.head()
Out[3]:
In [3]:
Exploring data frames
12
#List last 5 records
df.tail()
Out[3]:
Hands-on exercises
13
 Try to read the first 10, 20, 50 records;
 Can you guess how to view the last few records; Hint:
Data Frame data types
Pandas Type Native Python Type Description
object string The most general dtype. Will be
assigned to your column if column
has mixed types (numbers and
strings).
int64 int Numeric characters. 64 refers to
the memory allocated to hold this
character.
float64 float Numeric characters with decimals.
If a column contains numbers and
NaNs(see below), pandas will
default to float64, in case your
missing value has a decimal.
datetime64, timedelta[ns] N/A (but see the datetime module
in Python’s standard library)
Values meant to hold time data.
Look into these for time series
experiments.
14
In [4]:
Data Frame data types
15
#Check a particular column type
df['Discounts'].dtype
Out[4]: dtype(‘float64')
In [5]: #Check types for all the columns
df.dtypes
Out[4]:
Data Frames attributes
16
Python objects have attributes and methods.
df.attribute description
dtypes list the types of the columns
columns list the column names
axes list the row labels and column names
ndim number of dimensions
size number of elements
shape return a tuple representing the dimensionality
values numpy representation of the data
Data Frames attributes
17
Data Frames attributes
18
Hands-on exercises
19
 Find how many records this data frame has;
 How many elements are there?
 What are the column names?
 What types of columns we have in this data frame?
Data Frames methods
20
df.method() description
head( [n] ), tail( [n] ) first/last n rows
describe() generate descriptive statistics (for numeric columns only)
max(), min() return max/min values for all numeric columns
mean(), median() return mean/median values for all numeric columns
std() standard deviation
sample([n]) returns a random sample of the data frame
dropna() drop all the records with missing values
Unlike attributes, python methods have parenthesis.
All attributes and methods can be listed with a dir() function: dir(df)
Data Frames methods
21
Hands-on exercises
22
 Give the summary for the numeric columns in the dataset
 Calculate standard deviation for all numeric columns;
 What are the mean values of the first 50 records in the dataset? Hint: use
head() method to subset the first 50 records and then calculate the mean
Selecting a column in a Data Frame
Method 1: Subset the data frame using column name:
df['sex']
Method 2: Use the column name as an attribute:
df.sex
Note: there is an attribute rank for pandas data frames, so to select a column with a name
"rank" we should use method 1.
23
Hands-on exercises
24
 Calculate the basic statistics for the Profit column;
 Find how many values in the Profit column (use count method);
 Calculate the average profit;
Data Frames groupby method
25
Using "group by" method we can:
• Split the data into groups based on some criteria
• Calculate statistics (or apply a function) to each group
Data Frames groupby method
26
Once groupby object is created, we can calculate various statistics for each group:
Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object.
When double brackets are used the output is a Data Frame
Data Frames groupby method
27
groupby performance notes:
- no grouping/splitting occurs until it's needed. Creating the groupby object
only verifies that you have passed a valid mapping
- by default the group keys are sorted during the groupby operation. You may
want to pass sort=False for potential speedup:
In [ ]: #Calculate mean profit for each country:
df.groupby(['Country'], sort=False)[['Profit']].mean()
Data Frame: filtering
28
To subset the data we can apply Boolean indexing. This indexing is commonly
known as a filter. For example if we want to subset the rows in which the profit
value is less than 10000:
In [ ]: df_prof = df[ df['Profit'] < 10000 ]
In [ ]: #Select only those rows that rows whose country is Mexico:
df_mex = df[ df['Country'] == 'Mexico' ]
Any Boolean operator can be used to subset the data:
> greater; >= greater or equal;
< less; <= less or equal;
== equal; != not equal;
Data Frames: Slicing
29
There are a number of ways to subset the Data Frame:
• one or more columns
• one or more rows
• a subset of rows and columns
Rows and columns can be selected by their position or label
Data Frames: Slicing
30
When selecting one column, it is possible to use single set of brackets, but the
resulting object will be a Series (not a DataFrame):
In [ ]: #Select column Profit:
df['Profit']
When we need to select more than one column and/or make the output to be a
DataFrame, we should use double brackets:
In [ ]: #Select column Country and Profit:
df[['Country', 'Profit']]
Data Frames: Selecting rows
31
If we need to select a range of rows, we can specify the range using ":"
In [ ]: #Select rows by their position:
df[10:20]
Notice that the first row has a position 0, and the last value in the range is omitted:
So for 0:10 range the first 10 rows are returned with the positions starting with 0
and ending with 9
Data Frames: method loc
32
If we need to select a range of rows, using their labels we can use method loc:
In [ ]: #Select rows by their labels:
df_sub.loc[10:20,['rank','sex','salary']]
Out[ ]:
Data Frames: method iloc
33
If we need to select a range of rows and/or columns, using their positions we can
use method iloc:
In [ ]: #Select rows by their labels:
df_sub.iloc[10:20,[0, 3, 4, 5]]
Out[ ]:
Data Frames: method iloc (summary)
34
df.iloc[0] # First row of a data frame
df.iloc[i] #(i+1)th row
df.iloc[-1] # Last row
df.iloc[:, 0] # First column
df.iloc[:, -1] # Last column
df.iloc[0:7] #First 7 rows
df.iloc[:, 0:2] #First 2 columns
df.iloc[1:3, 0:2] #Second through third rows and first 2 columns
df.iloc[[0,5], [1,3]] #1st and 6th rows and 2nd and 4th columns
Data Frames: Sorting
35
We can sort the data by a value in the column. By default the sorting will occur in
ascending order and a new data frame is return.
In [ ]: # Create a new data frame from the original sorted by the column Salary
df_sorted = df.sort_values( by ='service')
df_sorted.head()
Out[ ]:
Data Frames: Sorting
36
We can sort the data using 2 or more columns:
In [ ]: df_sorted = df.sort_values( by =['service', 'salary'], ascending = [True, False])
df_sorted.head(10)
Out[ ]:
Missing Values
37
Missing values are marked as NaN
In [ ]: # Read a dataset with missing values
flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv")
In [ ]: # Select the rows that have at least one missing value
flights[flights.isnull().any(axis=1)].head()
Out[ ]:
Missing Values
38
There are a number of methods to deal with missing values in the data frame:
df.method() description
dropna() Drop missing observations
dropna(how='all') Drop observations where all cells is NA
dropna(axis=1, how='all') Drop column if all the values are missing
dropna(thresh = 5) Drop rows that contain less than 5 non-missing values
fillna(0) Replace missing values with zeros
isnull() returns True if the value is missing
notnull() Returns True for non-missing values
Missing Values
39
• When summing the data, missing values will be treated as zero
• If all values are missing, the sum will be equal to NaN
• cumsum() and cumprod() methods ignore missing values but preserve them in
the resulting arrays
• Missing values in GroupBy method are excluded (just like in R)
• Many descriptive statistics methods have skipna option to control if missing
data should be excluded . This value is set to True by default (unlike R)
Aggregation Functions in Pandas
40
Aggregation - computing a summary statistic about each group, i.e.
• compute group sums or means
• compute group sizes/counts
Common aggregation functions:
min, max
count, sum, prod
mean, median, mode, mad
std, var
Aggregation Functions in Pandas
41
agg() method are useful when multiple statistics are computed per column:
In [ ]: flights[['dep_delay','arr_delay']].agg(['min','mean','max'])
Out[ ]:
Basic Descriptive Statistics
42
df.method() description
describe Basic statistics (count, mean, std, min, quantiles, max)
min, max Minimum and maximum values
mean, median, mode Arithmetic average, median and mode
var, std Variance and standard deviation
sem Standard error of mean
skew Sample skewness
kurt kurtosis
Graphics to explore the data
43
To show graphs within Python notebook include inline directive:
In [ ]: %matplotlib inline
Seaborn package is built on matplotlib but provides high level
interface for drawing attractive statistical graphics, similar to ggplot2
library in R. It specifically targets statistical data visualization
Graphics
44
description
distplot histogram
barplot estimate of central tendency for a numeric variable
violinplot similar to boxplot, also shows the probability density of the
data
jointplot Scatterplot
regplot Regression plot
pairplot Pairplot
boxplot boxplot
swarmplot categorical scatterplot
factorplot General categorical plot
Basic statistical Analysis
45
statsmodel and scikit-learn - both have a number of function for statistical analysis
The first one is mostly used for regular analysis using R style formulas, while scikit-learn is
more tailored for Machine Learning.
statsmodels:
• linear regressions
• ANOVA tests
• hypothesis testings
• many more ...
scikit-learn:
• kmeans
• support vector machines
• random forests
• many more ...
See examples in the Tutorial Notebook
Conclusion
Thank you for attending the tutorial.
Please fill the evaluation form:
http://scv.bu.edu/survey/tutorial_evaluation.html
Questions:
email: koleinik@bu.edu (Katia Oleinik)
46
Ad

More Related Content

Similar to Lecture 9.pptx (20)

Python-for-Data-Analysis.pptx
Python-for-Data-Analysis.pptxPython-for-Data-Analysis.pptx
Python-for-Data-Analysis.pptx
tangadhurai
 
interenship.pptx
interenship.pptxinterenship.pptx
interenship.pptx
Naveen316549
 
Python-for-Data-Analysis.pdf
Python-for-Data-Analysis.pdfPython-for-Data-Analysis.pdf
Python-for-Data-Analysis.pdf
ssuser598883
 
More on Pandas.pptx
More on Pandas.pptxMore on Pandas.pptx
More on Pandas.pptx
VirajPathania1
 
Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018
DataLab Community
 
Unit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptxUnit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptx
prakashvs7
 
introduction to data structures in pandas
introduction to data structures in pandasintroduction to data structures in pandas
introduction to data structures in pandas
vidhyapm2
 
Lecture 1 Pandas Basics.pptx machine learning
Lecture 1 Pandas Basics.pptx machine learningLecture 1 Pandas Basics.pptx machine learning
Lecture 1 Pandas Basics.pptx machine learning
my6305874
 
Pandas yayyyyyyyyyyyyyyyyyin Python.pptx
Pandas yayyyyyyyyyyyyyyyyyin Python.pptxPandas yayyyyyyyyyyyyyyyyyin Python.pptx
Pandas yayyyyyyyyyyyyyyyyyin Python.pptx
AamnaRaza1
 
PANDAS IN PYTHON (Series and DataFrame)
PANDAS IN PYTHON  (Series and DataFrame)PANDAS IN PYTHON  (Series and DataFrame)
PANDAS IN PYTHON (Series and DataFrame)
Harshitha190299
 
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesgesdvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
iapreddy2004
 
Unit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptxUnit 3_Numpy_VP.pptx
Unit 3_Numpy_VP.pptx
vishnupriyapm4
 
Unit 1 Ch 2 Data Frames digital vis.pptx
Unit 1 Ch 2 Data Frames digital vis.pptxUnit 1 Ch 2 Data Frames digital vis.pptx
Unit 1 Ch 2 Data Frames digital vis.pptx
abida451786
 
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptxfINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
dataKarthik
 
series and dataframes from python is discussed
series and dataframes from python is discussedseries and dataframes from python is discussed
series and dataframes from python is discussed
vidhyapm2
 
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
XII -  2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdfXII -  2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
KrishnaJyotish1
 
Pandas Dataframe reading data Kirti final.pptx
Pandas Dataframe reading data  Kirti final.pptxPandas Dataframe reading data  Kirti final.pptx
Pandas Dataframe reading data Kirti final.pptx
Kirti Verma
 
Data Exploration in R.pptx
Data Exploration in R.pptxData Exploration in R.pptx
Data Exploration in R.pptx
Ramakrishna Reddy Bijjam
 
pandasppt with informative topics coverage.pptx
pandasppt with informative topics coverage.pptxpandasppt with informative topics coverage.pptx
pandasppt with informative topics coverage.pptx
vallarasu200364
 
R programming & Machine Learning
R programming & Machine LearningR programming & Machine Learning
R programming & Machine Learning
AmanBhalla14
 
Python-for-Data-Analysis.pptx
Python-for-Data-Analysis.pptxPython-for-Data-Analysis.pptx
Python-for-Data-Analysis.pptx
tangadhurai
 
Python-for-Data-Analysis.pdf
Python-for-Data-Analysis.pdfPython-for-Data-Analysis.pdf
Python-for-Data-Analysis.pdf
ssuser598883
 
Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018
DataLab Community
 
Unit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptxUnit 3_Numpy_Vsp.pptx
Unit 3_Numpy_Vsp.pptx
prakashvs7
 
introduction to data structures in pandas
introduction to data structures in pandasintroduction to data structures in pandas
introduction to data structures in pandas
vidhyapm2
 
Lecture 1 Pandas Basics.pptx machine learning
Lecture 1 Pandas Basics.pptx machine learningLecture 1 Pandas Basics.pptx machine learning
Lecture 1 Pandas Basics.pptx machine learning
my6305874
 
Pandas yayyyyyyyyyyyyyyyyyin Python.pptx
Pandas yayyyyyyyyyyyyyyyyyin Python.pptxPandas yayyyyyyyyyyyyyyyyyin Python.pptx
Pandas yayyyyyyyyyyyyyyyyyin Python.pptx
AamnaRaza1
 
PANDAS IN PYTHON (Series and DataFrame)
PANDAS IN PYTHON  (Series and DataFrame)PANDAS IN PYTHON  (Series and DataFrame)
PANDAS IN PYTHON (Series and DataFrame)
Harshitha190299
 
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesgesdvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
dvdxsfdxfdfdfdffddvfbgbesseesesgesesseseggesges
iapreddy2004
 
Unit 1 Ch 2 Data Frames digital vis.pptx
Unit 1 Ch 2 Data Frames digital vis.pptxUnit 1 Ch 2 Data Frames digital vis.pptx
Unit 1 Ch 2 Data Frames digital vis.pptx
abida451786
 
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptxfINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
fINAL Lesson_5_Data_Manipulation_using_R_v1.pptx
dataKarthik
 
series and dataframes from python is discussed
series and dataframes from python is discussedseries and dataframes from python is discussed
series and dataframes from python is discussed
vidhyapm2
 
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
XII -  2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdfXII -  2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
KrishnaJyotish1
 
Pandas Dataframe reading data Kirti final.pptx
Pandas Dataframe reading data  Kirti final.pptxPandas Dataframe reading data  Kirti final.pptx
Pandas Dataframe reading data Kirti final.pptx
Kirti Verma
 
pandasppt with informative topics coverage.pptx
pandasppt with informative topics coverage.pptxpandasppt with informative topics coverage.pptx
pandasppt with informative topics coverage.pptx
vallarasu200364
 
R programming & Machine Learning
R programming & Machine LearningR programming & Machine Learning
R programming & Machine Learning
AmanBhalla14
 

Recently uploaded (20)

04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Ad

Lecture 9.pptx

  • 2. Python Libraries for Data Science Many popular Python toolboxes/libraries: • NumPy • SciPy • Pandas • SciKit-Learn Visualization libraries • matplotlib • Seaborn and many more … 2 All these libraries are installed on the SCC
  • 3. Python Libraries for Data Science NumPy:  introduces objects for multidimensional arrays and matrices, as well as functions that allow to easily perform advanced mathematical and statistical operations on those objects  provides vectorization of mathematical operations on arrays and matrices which significantly improves the performance  many other python libraries are built on NumPy 3 Link: http://www.numpy.org/
  • 4. Python Libraries for Data Science SciPy:  collection of algorithms for linear algebra, differential equations, numerical integration, optimization, statistics and more  part of SciPy Stack  built on NumPy 4 Link: https://www.scipy.org/scipylib/
  • 5. Python Libraries for Data Science Pandas:  adds data structures and tools designed to work with table-like data (similar to Series and Data Frames in R)  provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.  allows handling missing data 5 Link: http://pandas.pydata.org/
  • 6. Link: http://scikit-learn.org/ Python Libraries for Data Science SciKit-Learn:  provides machine learning algorithms: classification, regression, clustering, model validation etc.  built on NumPy, SciPy and matplotlib 6
  • 7. Python Libraries for Data Science matplotlib:  python 2D plotting library which produces publication quality figures in a variety of hardcopy formats  a set of functionalities similar to those of MATLAB  line plots, scatter plots, barcharts, histograms, pie charts etc.  relatively low-level; some effort needed to create advanced visualization 7 Link: https://matplotlib.org/
  • 8. Python Libraries for Data Science Seaborn:  based on matplotlib  provides high level interface for drawing attractive statistical graphics  Similar (in style) to the popular ggplot2 library in R 8 Link: https://seaborn.pydata.org/
  • 9. In [ ]: Loading Python Libraries 9 #Import Python Libraries import numpy as np import scipy as sp import pandas as pd import matplotlib as mpl import seaborn as sns Press Shift+Enter to execute the jupyter cell
  • 10. Reading data using pandas 10 #Read excel data df = pd.read_excel('sample-xlsx-file-for-testing.xlsx') #Read csv file df = pd.read_csv('sample-xlsx-file-for-testing.csv') Note: There is several pandas commands to read other data formats:
  • 11. In [3]: Exploring data frames 11 #List first 5 records df.head() Out[3]:
  • 12. In [3]: Exploring data frames 12 #List last 5 records df.tail() Out[3]:
  • 13. Hands-on exercises 13  Try to read the first 10, 20, 50 records;  Can you guess how to view the last few records; Hint:
  • 14. Data Frame data types Pandas Type Native Python Type Description object string The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings). int64 int Numeric characters. 64 refers to the memory allocated to hold this character. float64 float Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal. datetime64, timedelta[ns] N/A (but see the datetime module in Python’s standard library) Values meant to hold time data. Look into these for time series experiments. 14
  • 15. In [4]: Data Frame data types 15 #Check a particular column type df['Discounts'].dtype Out[4]: dtype(‘float64') In [5]: #Check types for all the columns df.dtypes Out[4]:
  • 16. Data Frames attributes 16 Python objects have attributes and methods. df.attribute description dtypes list the types of the columns columns list the column names axes list the row labels and column names ndim number of dimensions size number of elements shape return a tuple representing the dimensionality values numpy representation of the data
  • 19. Hands-on exercises 19  Find how many records this data frame has;  How many elements are there?  What are the column names?  What types of columns we have in this data frame?
  • 20. Data Frames methods 20 df.method() description head( [n] ), tail( [n] ) first/last n rows describe() generate descriptive statistics (for numeric columns only) max(), min() return max/min values for all numeric columns mean(), median() return mean/median values for all numeric columns std() standard deviation sample([n]) returns a random sample of the data frame dropna() drop all the records with missing values Unlike attributes, python methods have parenthesis. All attributes and methods can be listed with a dir() function: dir(df)
  • 22. Hands-on exercises 22  Give the summary for the numeric columns in the dataset  Calculate standard deviation for all numeric columns;  What are the mean values of the first 50 records in the dataset? Hint: use head() method to subset the first 50 records and then calculate the mean
  • 23. Selecting a column in a Data Frame Method 1: Subset the data frame using column name: df['sex'] Method 2: Use the column name as an attribute: df.sex Note: there is an attribute rank for pandas data frames, so to select a column with a name "rank" we should use method 1. 23
  • 24. Hands-on exercises 24  Calculate the basic statistics for the Profit column;  Find how many values in the Profit column (use count method);  Calculate the average profit;
  • 25. Data Frames groupby method 25 Using "group by" method we can: • Split the data into groups based on some criteria • Calculate statistics (or apply a function) to each group
  • 26. Data Frames groupby method 26 Once groupby object is created, we can calculate various statistics for each group: Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object. When double brackets are used the output is a Data Frame
  • 27. Data Frames groupby method 27 groupby performance notes: - no grouping/splitting occurs until it's needed. Creating the groupby object only verifies that you have passed a valid mapping - by default the group keys are sorted during the groupby operation. You may want to pass sort=False for potential speedup: In [ ]: #Calculate mean profit for each country: df.groupby(['Country'], sort=False)[['Profit']].mean()
  • 28. Data Frame: filtering 28 To subset the data we can apply Boolean indexing. This indexing is commonly known as a filter. For example if we want to subset the rows in which the profit value is less than 10000: In [ ]: df_prof = df[ df['Profit'] < 10000 ] In [ ]: #Select only those rows that rows whose country is Mexico: df_mex = df[ df['Country'] == 'Mexico' ] Any Boolean operator can be used to subset the data: > greater; >= greater or equal; < less; <= less or equal; == equal; != not equal;
  • 29. Data Frames: Slicing 29 There are a number of ways to subset the Data Frame: • one or more columns • one or more rows • a subset of rows and columns Rows and columns can be selected by their position or label
  • 30. Data Frames: Slicing 30 When selecting one column, it is possible to use single set of brackets, but the resulting object will be a Series (not a DataFrame): In [ ]: #Select column Profit: df['Profit'] When we need to select more than one column and/or make the output to be a DataFrame, we should use double brackets: In [ ]: #Select column Country and Profit: df[['Country', 'Profit']]
  • 31. Data Frames: Selecting rows 31 If we need to select a range of rows, we can specify the range using ":" In [ ]: #Select rows by their position: df[10:20] Notice that the first row has a position 0, and the last value in the range is omitted: So for 0:10 range the first 10 rows are returned with the positions starting with 0 and ending with 9
  • 32. Data Frames: method loc 32 If we need to select a range of rows, using their labels we can use method loc: In [ ]: #Select rows by their labels: df_sub.loc[10:20,['rank','sex','salary']] Out[ ]:
  • 33. Data Frames: method iloc 33 If we need to select a range of rows and/or columns, using their positions we can use method iloc: In [ ]: #Select rows by their labels: df_sub.iloc[10:20,[0, 3, 4, 5]] Out[ ]:
  • 34. Data Frames: method iloc (summary) 34 df.iloc[0] # First row of a data frame df.iloc[i] #(i+1)th row df.iloc[-1] # Last row df.iloc[:, 0] # First column df.iloc[:, -1] # Last column df.iloc[0:7] #First 7 rows df.iloc[:, 0:2] #First 2 columns df.iloc[1:3, 0:2] #Second through third rows and first 2 columns df.iloc[[0,5], [1,3]] #1st and 6th rows and 2nd and 4th columns
  • 35. Data Frames: Sorting 35 We can sort the data by a value in the column. By default the sorting will occur in ascending order and a new data frame is return. In [ ]: # Create a new data frame from the original sorted by the column Salary df_sorted = df.sort_values( by ='service') df_sorted.head() Out[ ]:
  • 36. Data Frames: Sorting 36 We can sort the data using 2 or more columns: In [ ]: df_sorted = df.sort_values( by =['service', 'salary'], ascending = [True, False]) df_sorted.head(10) Out[ ]:
  • 37. Missing Values 37 Missing values are marked as NaN In [ ]: # Read a dataset with missing values flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv") In [ ]: # Select the rows that have at least one missing value flights[flights.isnull().any(axis=1)].head() Out[ ]:
  • 38. Missing Values 38 There are a number of methods to deal with missing values in the data frame: df.method() description dropna() Drop missing observations dropna(how='all') Drop observations where all cells is NA dropna(axis=1, how='all') Drop column if all the values are missing dropna(thresh = 5) Drop rows that contain less than 5 non-missing values fillna(0) Replace missing values with zeros isnull() returns True if the value is missing notnull() Returns True for non-missing values
  • 39. Missing Values 39 • When summing the data, missing values will be treated as zero • If all values are missing, the sum will be equal to NaN • cumsum() and cumprod() methods ignore missing values but preserve them in the resulting arrays • Missing values in GroupBy method are excluded (just like in R) • Many descriptive statistics methods have skipna option to control if missing data should be excluded . This value is set to True by default (unlike R)
  • 40. Aggregation Functions in Pandas 40 Aggregation - computing a summary statistic about each group, i.e. • compute group sums or means • compute group sizes/counts Common aggregation functions: min, max count, sum, prod mean, median, mode, mad std, var
  • 41. Aggregation Functions in Pandas 41 agg() method are useful when multiple statistics are computed per column: In [ ]: flights[['dep_delay','arr_delay']].agg(['min','mean','max']) Out[ ]:
  • 42. Basic Descriptive Statistics 42 df.method() description describe Basic statistics (count, mean, std, min, quantiles, max) min, max Minimum and maximum values mean, median, mode Arithmetic average, median and mode var, std Variance and standard deviation sem Standard error of mean skew Sample skewness kurt kurtosis
  • 43. Graphics to explore the data 43 To show graphs within Python notebook include inline directive: In [ ]: %matplotlib inline Seaborn package is built on matplotlib but provides high level interface for drawing attractive statistical graphics, similar to ggplot2 library in R. It specifically targets statistical data visualization
  • 44. Graphics 44 description distplot histogram barplot estimate of central tendency for a numeric variable violinplot similar to boxplot, also shows the probability density of the data jointplot Scatterplot regplot Regression plot pairplot Pairplot boxplot boxplot swarmplot categorical scatterplot factorplot General categorical plot
  • 45. Basic statistical Analysis 45 statsmodel and scikit-learn - both have a number of function for statistical analysis The first one is mostly used for regular analysis using R style formulas, while scikit-learn is more tailored for Machine Learning. statsmodels: • linear regressions • ANOVA tests • hypothesis testings • many more ... scikit-learn: • kmeans • support vector machines • random forests • many more ... See examples in the Tutorial Notebook
  • 46. Conclusion Thank you for attending the tutorial. Please fill the evaluation form: http://scv.bu.edu/survey/tutorial_evaluation.html Questions: email: [email protected] (Katia Oleinik) 46