SlideShare a Scribd company logo
Functions
3 Introduction
• Divide and conquer
– Construct a program from smaller pieces or components
– Each piece more manageable than the original program
3.2 Program Components in C++
• Programs written by
– combining new functions with “prepackaged” functions in
the C++ standard library.
– new classes with “prepackaged” classes.
• The standard library provides a rich collection of
functions.
• Functions are invoked by a function call
– A function call specifies the function name and provides
information (as arguments) that the called function needs
– Boss to worker analogy:
A boss (the calling function or caller) asks a worker (the called
function) to perform a task and return (i.e., report back) the
results when the task is done.
3.2 Program Components in C++
• Function definitions
– Only written once
– These statements are hidden from other functions.
– Boss to worker analogy:
The boss does not know how the worker gets the job done; he
just wants it done
3.3 Math Library Functions
• Math library functions
– Allow the programmer to perform common mathematical
calculations
– Are used by including the header file <cmath>
• Functions called by writing
functionName (argument)
• Example
cout << sqrt( 900.0 );
– Calls the sqrt (square root) function. The preceding
statement would print 30
– The sqrt function takes an argument of type double and
returns a result of type double, as do all functions in the
math library
3.3 Math Library Functions
• Function arguments can be
– Constants
sqrt( 4 );
– Variables
sqrt( x );
– Expressions
sqrt( sqrt( x ) ) ;
sqrt( 3 - 6x );
3.4 Functions
• Functions
– Allow the programmer to modularize a program
• Local variables
– Known only in the function in which they are defined
– All variables declared in function definitions are local
variables
• Parameters
– Local variables passed when the function is called that
provide the function with outside information
Functions
• Why write functions?
– modularity
– re-use
– maintenance / testing
3.5 Function Definitions
• Create customized functions to
– Take in data
– Perform operations
– Return the result
• Format for function definition:
return-value-type function-name( parameter-list )
{
declarations and statements
}
• Example:
int square( int y)
{
return y * y;
}
1 // Fig. 3.3: fig03_03.cpp
2 // Creating and using a programmer-defined function
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 int square( int ); // function prototype
9
10 int main()
11 {
12 for ( int x = 1; x <= 10; x++ )
13 cout << square( x ) << " ";
14
15 cout << endl;
16 return 0;
17 }
18
19 // Function definition
20 int square( int y )
21 {
22 return y * y;
23 }
1 4 9 16 25 36 49 64 81 100
Notice how parameters and return
value are declared.
1 // Fig. 3.4: fig03_04.cpp
2 // Finding the maximum of three integers
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 int maximum( int, int, int ); // function prototype
10
11 int main()
12 {
13 int a, b, c;
14
15 cout << "Enter three integers: ";
16 cin >> a >> b >> c;
17
18 // a, b and c below are arguments to
19 // the maximum function call
20 cout << "Maximum is: " << maximum( a, b, c ) << endl;
21
22 return 0;
23 }
24
25 // Function maximum definition
26 // x, y and z below are parameters to
27 // the maximum function definition
28 int maximum( int x, int y, int z )
29 {
30 int max = x;
31
32 if ( y > max )
33 max = y;
34
35 if ( z > max )
36 max = z;
37
38 return max;
39 }
Enter three integers: 22 85 17
Maximum is: 85
Enter three integers: 92 35 14
Maximum is: 92
Enter three integers: 45 19 98
Maximum is: 98
3.6 Function Prototypes
• Function prototype
– Function name
– Parameters
• Information the function takes in
• C++ is “strongly typed” – error to pass a parameter of the wrong type
– Return type
• Type of information the function passes back to caller (default int)
• void signifies the function returns nothing
– Only needed if function definition comes after the function
call in the program
• Example:
int maximum( int, int, int );
– Takes in 3 ints
– Returns an int
3.7 Header Files
• Header files
– Contain function prototypes for library functions
– <cstdlib> , <cmath>, etc.
– Load with #include <filename>
• Example:
#include <cmath>
• Custom header files
– Defined by the programmer
– Save as filename.h
– Loaded into program using
#include "filename.h"
3.8 Random Number Generation
• rand function
i = rand();
– Load <cstdlib>
– Generates a pseudorandom number between 0 and RAND_MAX
(usually 32767)
• A pseudorandom number is a preset sequence of "random" numbers
• The same sequence is generated upon every program execution
• srand function
– Jumps to a seeded location in a "random" sequence
srand( seed );
srand( time( 0 ) ); //must include <ctime>
– time( 0 )
• The time at which the program was compiled
– Changes the seed every time the program is compiled, thereby
allowing rand to generate random numbers
3.8 Random Number Generation
• Scaling
– Reduces random number to a certain range
– Modulus ( % ) operator
• Reduces number between 0 and RAND_MAX to a number
between 0 and the scaling factor
– Example
i = rand() % 6 + 1;
• Generates a number between 1 and 6
1 // Fig. 3.7: fig03_07.cpp
2 // Shifted, scaled integers produced by 1 + rand() % 6
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <iomanip>
9
10 using std::setw;
11
12 #include <cstdlib>
13
14 int main()
15 {
16 for ( int i = 1; i <= 20; i++ ) {
17 cout << setw( 10 ) << ( 1 + rand() % 6 );
18
19 if ( i % 5 == 0 )
20 cout << endl;
21 }
22
23 return 0;
24 }
Notice rand() % 6 . This returns a number
between 0 and 5 (scaling). Add 1 to get a
number between 1 and 6.
Executing the program again gives the
same "random" dice rolls.
5 5 3 5 5
2 4 2 5 5
5 3 2 2 1
5 1 4 6 4
1 // Fig. 3.9: fig03_09.cpp
2 // Randomizing die-rolling program
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 #include <iomanip>
10
11 using std::setw;
12
13 #include <cstdlib>
14
15 int main()
16 {
17 unsigned seed;
18
19 cout << "Enter seed: ";
20 cin >> seed;
21 srand( seed );
22
23 for ( int i = 1; i <= 10; i++ ) {
24 cout << setw( 10 ) << 1 + rand() % 6;
25
26 if ( i % 5 == 0 )
27 cout << endl;
28 }
29
30 return 0;
31 }
Program Output
Enter seed: 67
1 6 5 1 4
5 6 3 1 2
Enter seed: 432
4 2 6 4 3
2 5 1 4 4
Enter seed: 67
1 6 5 1 4
5 6 3 1 2
Notice how the die rolls
change with the seed.
3.9 Example: A Game of Chance and
Introducing enum
• Enumeration - set of integers with identifiers
enum typeName {constant1, constant2…};
– Constants start at 0 (default), incremented by 1
– Unique constant names
– Example:
enum Status {CONTINUE, WON, LOST};
• Create an enumeration variable of type typeName
– Variable is constant, its value may not be reassigned
Status enumVar; // create variable
enumVar = WON; // set equal to WON
enumVar = 1; // ERROR
Example: A Game of Chance and
Introducing enum(II)
• Enumeration constants can have values pre-set
enum Months { JAN = 1, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, DEC};
– Starts at 1, increments by 1
• Craps simulator rules
– Roll two dice
• 7 or 11 on first throw, player wins
• 2, 3, or 12 on first throw, player loses
• 4, 5, 6, 8, 9, 10
– value becomes player's "point"
– player must roll his point before rolling 7 to win
1 // Fig. 3.10: fig03_10.cpp
2 // Craps
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <cstdlib>
9
10 #include <ctime>
11
12 using std::time;
13
14 int rollDice( void ); // function prototype
15
16 int main()
17 {
18 enum Status { CONTINUE, WON, LOST };
19 int sum, myPoint;
20 Status gameStatus;
21
22 srand( time( 0 ) );
23 sum = rollDice(); // first roll of the dice
24
25 switch ( sum ) {
26 case 7:
27 case 11: // win on first roll
28 gameStatus = WON;
29 break;
30 case 2:
31 case 3:
32 case 12: // lose on first roll
33 gameStatus = LOST;
34 break;
Notice how the
enum is defined
35 default: // remember point
36 gameStatus = CONTINUE;
37 myPoint = sum;
38 cout << "Point is " << myPoint << endl;
39 break; // optional
40 }
41
42 while ( gameStatus == CONTINUE ) { // keep rolling
43 sum = rollDice();
44
45 if ( sum == myPoint ) // win by making point
46 gameStatus = WON;
47 else
48 if ( sum == 7 ) // lose by rolling 7
49 gameStatus = LOST;
50 }
51
52 if ( gameStatus == WON )
53 cout << "Player wins" << endl;
54 else
55 cout << "Player loses" << endl;
56
57 return 0;
58 }
59
Player rolled 6 + 5 = 11
Player wins
Player rolled 6 + 5 = 11
Player wins
Player rolled 4 + 6 = 10
Point is 10
Player rolled 2 + 4 = 6
Player rolled 6 + 5 = 11
Player rolled 3 + 3 = 6
Player rolled 6 + 4 = 10
Player wins
Player rolled 1 + 3 = 4
Point is 4
Player rolled 1 + 4 = 5
Player rolled 5 + 4 = 9
Player rolled 4 + 6 = 10
Player rolled 6 + 3 = 9
Player rolled 1 + 2 = 3
Player rolled 5 + 2 = 7
Player loses
60 int rollDice( void )
61 {
62 int die1, die2, workSum;
63
64 die1 = 1 + rand() % 6;
65 die2 = 1 + rand() % 6;
66 workSum = die1 + die2;
67 cout << "Player rolled " << die1 << " + " << die2
68 << " = " << workSum << endl;
69
70 return workSum;
71 }
3.10 Storage Classes
• Storage class specifiers
– Storage class
• Where object exists in memory
– Scope
• Where object is referenced in program
– Linkage
• Where an identifier is known
• Automatic storage
– Object created and destroyed within its block
– auto
• Default for local variables.
• Example:
auto float x, y;
– register
• Tries to put variables into high-speed registers
– Can only be used with local variables and parameters
Storage Classes
• Static storage
– Variables exist for entire program execution
– static
• Local variables defined in functions
• Keep value after function ends
• Only known in their own function
– Extern
• Default for global variables and functions.
• Known in any function
Scope Rules
• File scope
– Defined outside a function, known in all functions
– Examples include, global variables, function definitions and
functions prototypes
• Function scope
– Can only be referenced inside a function body
– Only labels (start:, case:, etc.)
• Block scope
– Declared inside a block. Begins at declaration, ends at }
– Variables, function parameters (local variables of function)
– Outer blocks “hidden” from inner blocks if same variable name
• Function prototype scope
– Identifiers in parameter list
– Names in function prototype optional, and can be used anywhere
1. Function prototypes
1.1 Initialize global variable
1.2 Initialize local variable
1 // Fig. 3.12: fig03_12.cpp
2 // A scoping example
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 void a( void ); // function prototype
9 void b( void ); // function prototype
10 void c( void ); // function prototype
11
12 int x = 1; // global variable
13
14 int main()
15 {
16 int x = 5; // local variable to main
17
18 cout << "local x in outer scope of main is " << x << endl;
19
20 { // start new scope
21 int x = 7;
22
23 cout << "local x in inner scope of main is " << x << endl;
24 } // end new scope
25
26 cout << "local x in outer scope of main is " << x << endl;
27
28 a(); // a has automatic local x
29 b(); // b has static local x
30 c(); // c uses global x
31 a(); // a reinitializes automatic local x
32 b(); // static local x retains its previous value
33 c(); // global x also retains its value
34
x is different inside and outside
the block.
local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5
3.1 Define Functions
35 cout << "local x in main is " << x << endl;
36
37 return 0;
38 }
39
40 void a( void )
41 {
42 int x = 25; // initialized each time a is called
43
44 cout << endl << "local x in a is " << x
45 << " after entering a" << endl;
46 ++x;
47 cout << "local x in a is " << x
48 << " before exiting a" << endl;
49 }
50
51 void b( void )
52 {
53 static int x = 50; // Static initialization only
54 // first time b is called.
55 cout << endl << "local static x is " << x
56 << " on entering b" << endl;
57 ++x;
58 cout << "local static x is " << x
59 << " on exiting b" << endl;
60 }
61
62 void c( void )
63 {
64 cout << endl << "global x is " << x
65 << " on entering c" << endl;
66 x *= 10;
67 cout << "global x is " << x << " on exiting c" << endl;
68 }
Local automatic variables are
created and destroyed each
time a is called.
Local static variables are
not destroyed when the
function ends.
Global variables are always
accessible. Function c
references the global x.
local x in a is 25 after entering a
local x in a is 26 before exiting a
local static x is 50 on entering b
local static x is 51 on exiting b
global x is 1 on entering c
global x is 10 on exiting c
local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5
local x in a is 25 after entering a
local x in a is 26 before exiting a
local static x is 50 on entering b
local static x is 51 on exiting b
global x is 1 on entering c
global x is 10 on exiting c
local x in a is 25 after entering a
local x in a is 26 before exiting a
local static x is 51 on entering b
local static x is 52 on exiting b
global x is 10 on entering c
global x is 100 on exiting c
local x in main is 5
References and Reference
Parameters
• Call by value
– Copy of data passed to function
– Changes to copy do not change original
– Used to prevent unwanted side effects
• Call by reference
– Function can directly access data
– Changes affect original
• Reference parameter alias for argument
– & is used to signify a reference
void change( int &variable )
{ variable += 3; }
– Adds 3 to the variable inputted
int y = &x.
– A change to y will now affect x as well
1 // Fig. 3.20: fig03_20.cpp
2 // Comparing call-by-value and call-by-reference
3 // with references.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 int squareByValue( int );
10 void squareByReference( int & );
11
12 int main()
13 {
14 int x = 2, z = 4;
15
16 cout << "x = " << x << " before squareByValuen"
17 << "Value returned by squareByValue: "
18 << squareByValue( x ) << endl
19 << "x = " << x << " after squareByValuen" << endl;
20
21 cout << "z = " << z << " before squareByReference" << endl;
22 squareByReference( z );
23 cout << "z = " << z << " after squareByReference" << endl;
24
25 return 0;
26 }
27
28 int squareByValue( int a )
29 {
30 return a *= a; // caller's argument not modified
31 }
x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue
z = 4 before squareByReference
z = 16 after squareByReference
32
33 void squareByReference( int &cRef )
34 {
35 cRef *= cRef; // caller's argument modified
36 }
3.12 Recursion
• Recursive functions
– Are functions that calls themselves
– Can only solve a base case
– If not base case, the function breaks the problem into a
slightly smaller, slightly simpler, problem that resembles the
original problem and
• Launches a new copy of itself to work on the smaller problem,
slowly converging towards the base case
• Makes a call to itself inside the return statement
– Eventually the base case gets solved and then that value
works its way back up to solve the whole problem
Recursion
• Example: factorial
n! = n * ( n – 1 ) * ( n – 2 ) * … * 1
– Recursive relationship ( n! = n * ( n – 1 )! )
5! = 5 * 4!
4! = 4 * 3!…
– Base case (1! = 0! = 1)
The Fibonacci Series
• Fibonacci series: 0, 1, 1, 2, 3, 5, 8...
– Each number sum of two previous ones
– Example of a recursive formula:
fib(n) = fib(n-1) + fib(n-2)
• C++ code for fibonacci function
long fibonacci( long n )
{
if ( n == 0 || n == 1 ) // base case
return n;
else if ( n < 0 )
return –1;
else
return fibonacci( n - 1 ) + fibonacci( n – 2 );
}
The Fibonacci Series
• Diagram of Fibonnaci function
f( 3 )
f( 1 )
f( 2 )
f( 1 ) f( 0 ) return 1
return 1 return 0
return +
+
return
1. Function prototype
1.1 Initialize variables
2. Input an integer
1 // Fig. 3.15: fig03_15.cpp
2 // Recursive fibonacci function
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 unsigned long fibonacci( unsigned long );
10
11 int main()
12 {
13 unsigned long result, number;
14
15 cout << "Enter an integer: ";
16 cin >> number;
17 result = fibonacci( number );
18 cout << "Fibonacci(" << number << ") = " << result << endl;
19 return 0;
20 }
21
22 // Recursive definition of function fibonacci
23 unsigned long fibonacci( unsigned long n )
24 {
25 if ( n == 0 || n == 1 ) // base case
26 return n;
27 else // recursive case
28 return fibonacci( n - 1 ) + fibonacci( n - 2 );
29 }
Program Output
Enter an integer: 0
Fibonacci(0) = 0
Enter an integer: 1
Fibonacci(1) = 1
Enter an integer: 2
Fibonacci(2) = 1
Enter an integer: 3
Fibonacci(3) = 2
Enter an integer: 4
Fibonacci(4) = 3
Enter an integer: 5
Fibonacci(5) = 5
Enter an integer: 6
Fibonacci(6) = 8
Enter an integer: 10
Fibonacci(10) = 55
Enter an integer: 20
Fibonacci(20) = 6765
Enter an integer: 30
Fibonacci(30) = 832040
Enter an integer: 35
Fibonacci(35) = 9227465
3.14 Recursion vs. Iteration
• Repetition
– Iteration: explicit loop
– Recursion: repeated function calls
• Termination
– Iteration: loop condition fails
– Recursion: base case recognized
• Both can have infinite loops
• Balance between performance (iteration) and good
software engineering (recursion)
Functions with Empty Parameter Lists
• Empty parameter lists
– Either writing void or leaving a parameter list empty
indicates that the function takes no arguments
void print();
or
void print( void );
– Function print takes no arguments and returns no value
1 // Fig. 3.18: fig03_18.cpp
2 // Functions that take no arguments
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 void function1();
9 void function2( void );
10
11 int main()
12 {
13 function1();
14 function2();
15
16 return 0;
17 }
18
19 void function1()
20 {
21 cout << "function1 takes no arguments" << endl;
22 }
23
24 void function2( void )
25 {
26 cout << "function2 also takes no arguments" << endl;
27 }
function1 takes no arguments
function2 also takes no arguments
Inline Functions
• inline functions
– Reduce function-call overhead
– Asks the compiler to copy code into program instead of using a
function call
– Compiler can ignore inline
– Should be used with small, often-used functions
• Example:
inline double cube( const double s )
{ return s * s * s; }
3.18 Default Arguments
• If function parameter omitted, gets default value
– Can be constants, global variables, or function calls
– If not enough parameters specified, rightmost go to their
defaults
• Set defaults in function prototype
int defaultFunction( int x = 1,
int y = 2, int z = 3 );
1 // Fig. 3.23: fig03_23.cpp
2 // Using default arguments
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 int boxVolume( int length = 1, int width = 1, int height = 1 );
9
10 int main()
11 {
12 cout << "The default box volume is: " << boxVolume()
13 << "nnThe volume of a box with length 10,n"
14 << "width 1 and height 1 is: " << boxVolume( 10 )
15 << "nnThe volume of a box with length 10,n"
16 << "width 5 and height 1 is: " << boxVolume( 10, 5 )
17 << "nnThe volume of a box with length 10,n"
18 << "width 5 and height 2 is: " << boxVolume( 10, 5, 2 )
19 << endl;
20
21 return 0;
22 }
23
24 // Calculate the volume of a box
25 int boxVolume( int length, int width, int height )
26 {
27 return length * width * height;
28 }
Program Output
The default box volume is: 1
The volume of a box with length 10,
width 1 and height 1 is: 10
The volume of a box with length 10,
width 5 and height 1 is: 50
The volume of a box with length 10,
width 5 and height 2 is: 100
3.19 Unary Scope Resolution Operator
• Unary scope resolution operator (::)
– Access global variables if a local variable has same name
– not needed if names are different
– instead of variable use ::variable
1 // Fig. 3.24: fig03_24.cpp
2 // Using the unary scope resolution operator
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <iomanip>
9
10 using std::setprecision;
11
12 const double PI = 3.14159265358979;
13
14 int main()
15 {
16 const float PI = static_cast< float >( ::PI );
17
18 cout << setprecision( 20 )
19 << " Local float value of PI = " << PI
20 << "nGlobal double value of PI = " << ::PI << endl;
21
22 return 0;
23 }
Local float value of PI = 3.141592741012573242
Global double value of PI = 3.141592653589790007
3.20 Function Overloading
• Function overloading
– Having functions with same name and different parameters
– Should perform similar tasks ( i.e., a function to square
ints, and function to square floats).
int square( int x) {return x * x;}
float square(float x) { return x * x; }
– Program chooses function by signature
• signature determined by function name and parameter types
– Can have the same return types
1 // Fig. 3.25: fig03_25.cpp
2 // Using overloaded functions
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 int square( int x ) { return x * x; }
9
10 double square( double y ) { return y * y; }
11
12 int main()
13 {
14 cout << "The square of integer 7 is " << square( 7 )
15 << "nThe square of double 7.5 is " << square( 7.5 )
16 << endl;
17
18 return 0;
19 }
The square of integer 7 is 49
The square of double 7.5 is 56.25

More Related Content

Similar to lecture56.ppt (20)

PPT
C chap05
Kausar Khan
 
PPTX
Functions in C++
home
 
PPT
2.overview of c++ ________lecture2
Warui Maina
 
PPT
Functions123
sandhubuta
 
PPT
Functions12
sandhubuta
 
PPTX
Object oriented programming system with C++
msharshitha03s
 
PPTX
CPP Homework Help
C++ Homework Help
 
PPT
Chapter 9 Value-Returning Functions
mshellman
 
PPTX
Functions in C++
home
 
PDF
(3) cpp procedural programming
Nico Ludwig
 
PPT
Chapter 3 Expressions and Inteactivity
GhulamHussain142878
 
PPTX
Fundamental of programming Fundamental of programming
LidetAdmassu
 
PPT
chapterintroductiontomodularprogramming-230112092330-e3eb5a74 (1).ppt
harinipradeep15
 
PPT
Chapter Introduction to Modular Programming.ppt
AmanuelZewdie4
 
PDF
Acm aleppo cpc training second session
Ahmad Bashar Eter
 
PPTX
CBSE, Grade12, Computer Science, Random Numbers - Notes
Malathi Senthil
 
PPT
Basics of cpp
vinay chauhan
 
PDF
Chapter 1.pdf
JoemerCastillo3
 
PDF
This is a chapter about arrays and vectors in c++
daoudnicole40
 
PPTX
Programming For Engineers Functions - Part #1.pptx
NoorAntakia
 
C chap05
Kausar Khan
 
Functions in C++
home
 
2.overview of c++ ________lecture2
Warui Maina
 
Functions123
sandhubuta
 
Functions12
sandhubuta
 
Object oriented programming system with C++
msharshitha03s
 
CPP Homework Help
C++ Homework Help
 
Chapter 9 Value-Returning Functions
mshellman
 
Functions in C++
home
 
(3) cpp procedural programming
Nico Ludwig
 
Chapter 3 Expressions and Inteactivity
GhulamHussain142878
 
Fundamental of programming Fundamental of programming
LidetAdmassu
 
chapterintroductiontomodularprogramming-230112092330-e3eb5a74 (1).ppt
harinipradeep15
 
Chapter Introduction to Modular Programming.ppt
AmanuelZewdie4
 
Acm aleppo cpc training second session
Ahmad Bashar Eter
 
CBSE, Grade12, Computer Science, Random Numbers - Notes
Malathi Senthil
 
Basics of cpp
vinay chauhan
 
Chapter 1.pdf
JoemerCastillo3
 
This is a chapter about arrays and vectors in c++
daoudnicole40
 
Programming For Engineers Functions - Part #1.pptx
NoorAntakia
 

More from AqeelAbbas94 (20)

PPT
trees_introduction.ppt ug yg i gg yg gj
AqeelAbbas94
 
PPT
ch6_2_v1.ppt yh jkkj jhjh h jhyj hg hghh
AqeelAbbas94
 
PPT
lecture_5 (2).ppt hjhrrgjbgrmgrhbgrgghjd
AqeelAbbas94
 
PPT
1-Lec - Introduction vhvv,vbvv,v (2).ppt
AqeelAbbas94
 
PPT
2-Lec - History of OOP and Java (1) .ppt
AqeelAbbas94
 
PPTX
Lecture-32-33.pptx
AqeelAbbas94
 
PPTX
10-Lec - Nested IF Statement.pptx
AqeelAbbas94
 
PPTX
blue.pptx
AqeelAbbas94
 
PPTX
use_case+use_case description.pptx
AqeelAbbas94
 
PPT
555e81217b39f1c1262b33d0.ppt
AqeelAbbas94
 
PPTX
12-Lec - Repetition For Loop.pptx
AqeelAbbas94
 
PPTX
hexagon.pptx
AqeelAbbas94
 
PPT
Lecture1.ppt
AqeelAbbas94
 
PDF
wepik-exploring-the-robust-features-of-samsung-health-app-enhancing-well-bein...
AqeelAbbas94
 
PPT
04.ppt
AqeelAbbas94
 
PPT
19-Lec - Multidimensional Arrays.ppt
AqeelAbbas94
 
PPT
SelectionSort.ppt
AqeelAbbas94
 
PPT
Lecture2 (1).ppt
AqeelAbbas94
 
PPT
ch06.ppt
AqeelAbbas94
 
PPTX
Your Title goes Here.pptx
AqeelAbbas94
 
trees_introduction.ppt ug yg i gg yg gj
AqeelAbbas94
 
ch6_2_v1.ppt yh jkkj jhjh h jhyj hg hghh
AqeelAbbas94
 
lecture_5 (2).ppt hjhrrgjbgrmgrhbgrgghjd
AqeelAbbas94
 
1-Lec - Introduction vhvv,vbvv,v (2).ppt
AqeelAbbas94
 
2-Lec - History of OOP and Java (1) .ppt
AqeelAbbas94
 
Lecture-32-33.pptx
AqeelAbbas94
 
10-Lec - Nested IF Statement.pptx
AqeelAbbas94
 
blue.pptx
AqeelAbbas94
 
use_case+use_case description.pptx
AqeelAbbas94
 
555e81217b39f1c1262b33d0.ppt
AqeelAbbas94
 
12-Lec - Repetition For Loop.pptx
AqeelAbbas94
 
hexagon.pptx
AqeelAbbas94
 
Lecture1.ppt
AqeelAbbas94
 
wepik-exploring-the-robust-features-of-samsung-health-app-enhancing-well-bein...
AqeelAbbas94
 
04.ppt
AqeelAbbas94
 
19-Lec - Multidimensional Arrays.ppt
AqeelAbbas94
 
SelectionSort.ppt
AqeelAbbas94
 
Lecture2 (1).ppt
AqeelAbbas94
 
ch06.ppt
AqeelAbbas94
 
Your Title goes Here.pptx
AqeelAbbas94
 
Ad

Recently uploaded (20)

PDF
Netflix Social Watchlists Business Proposal
lexarofficial222
 
PPTX
Real Options Analysis in an Era of Market Volatility and Technological Disrup...
abakahmbeahvincent
 
PDF
The Best eSIM Provider for Europe in 2025
Airhub
 
PPTX
Baby Solids Food Schedule - Introducing Solids at 5 Months.pptx
Sanchita Daswani
 
PDF
Deception Technology: The Cybersecurity Paradigm We Didn’t Know We Needed
GauriKale30
 
PDF
Matthew Muckey - A Distinguished Classical Trumpet Player
Matthew Muckey
 
PDF
A Brief Introduction About Dorian Fenwick
Dorian Fenwick
 
PDF
Your Best Year Yet Create a Sharp, Focused AOP for FY2026
ChristopherVicGamuya
 
PDF
Natesan Thanthoni: The Agile Visionary Transforming Virbac IMEA (India, Middl...
red402426
 
PDF
MusicVideoTreatmentForFreebyParrisLaVon.pdf
gamilton
 
PDF
Global Media Planning and Buying Market Trends 2025
Rupal Dekate
 
PDF
Albaik Franchise All Information Update.pdf
AL-Baik Franchise
 
PDF
Adnan Imam - A Dynamic Freelance Writer
Adnan Imam
 
PPTX
business and preparing for good business
jaslehannvillaflor
 
PPTX
Manuscript and Types of Headings used in EDPM.pptx
RosanHaye1
 
PDF
Beyond the Launch: Solving Deep Problems in Traditional Industries with Tech
EkoInnovationCentre
 
PDF
John Polit: Strategic Leadership & Growth Advisor for the Modern Business World
John Polit
 
PDF
CFG application - 2025 - Curtis Funding Group, LLC
Curt MacRae
 
PPTX
Financing_Beetle_Farming_within kenyanKenya.pptx
ryan269603
 
PDF
Maksym Vyshnivetskyi: Управління якістю (UA)
Lviv Startup Club
 
Netflix Social Watchlists Business Proposal
lexarofficial222
 
Real Options Analysis in an Era of Market Volatility and Technological Disrup...
abakahmbeahvincent
 
The Best eSIM Provider for Europe in 2025
Airhub
 
Baby Solids Food Schedule - Introducing Solids at 5 Months.pptx
Sanchita Daswani
 
Deception Technology: The Cybersecurity Paradigm We Didn’t Know We Needed
GauriKale30
 
Matthew Muckey - A Distinguished Classical Trumpet Player
Matthew Muckey
 
A Brief Introduction About Dorian Fenwick
Dorian Fenwick
 
Your Best Year Yet Create a Sharp, Focused AOP for FY2026
ChristopherVicGamuya
 
Natesan Thanthoni: The Agile Visionary Transforming Virbac IMEA (India, Middl...
red402426
 
MusicVideoTreatmentForFreebyParrisLaVon.pdf
gamilton
 
Global Media Planning and Buying Market Trends 2025
Rupal Dekate
 
Albaik Franchise All Information Update.pdf
AL-Baik Franchise
 
Adnan Imam - A Dynamic Freelance Writer
Adnan Imam
 
business and preparing for good business
jaslehannvillaflor
 
Manuscript and Types of Headings used in EDPM.pptx
RosanHaye1
 
Beyond the Launch: Solving Deep Problems in Traditional Industries with Tech
EkoInnovationCentre
 
John Polit: Strategic Leadership & Growth Advisor for the Modern Business World
John Polit
 
CFG application - 2025 - Curtis Funding Group, LLC
Curt MacRae
 
Financing_Beetle_Farming_within kenyanKenya.pptx
ryan269603
 
Maksym Vyshnivetskyi: Управління якістю (UA)
Lviv Startup Club
 
Ad

lecture56.ppt

  • 2. 3 Introduction • Divide and conquer – Construct a program from smaller pieces or components – Each piece more manageable than the original program
  • 3. 3.2 Program Components in C++ • Programs written by – combining new functions with “prepackaged” functions in the C++ standard library. – new classes with “prepackaged” classes. • The standard library provides a rich collection of functions. • Functions are invoked by a function call – A function call specifies the function name and provides information (as arguments) that the called function needs – Boss to worker analogy: A boss (the calling function or caller) asks a worker (the called function) to perform a task and return (i.e., report back) the results when the task is done.
  • 4. 3.2 Program Components in C++ • Function definitions – Only written once – These statements are hidden from other functions. – Boss to worker analogy: The boss does not know how the worker gets the job done; he just wants it done
  • 5. 3.3 Math Library Functions • Math library functions – Allow the programmer to perform common mathematical calculations – Are used by including the header file <cmath> • Functions called by writing functionName (argument) • Example cout << sqrt( 900.0 ); – Calls the sqrt (square root) function. The preceding statement would print 30 – The sqrt function takes an argument of type double and returns a result of type double, as do all functions in the math library
  • 6. 3.3 Math Library Functions • Function arguments can be – Constants sqrt( 4 ); – Variables sqrt( x ); – Expressions sqrt( sqrt( x ) ) ; sqrt( 3 - 6x );
  • 7. 3.4 Functions • Functions – Allow the programmer to modularize a program • Local variables – Known only in the function in which they are defined – All variables declared in function definitions are local variables • Parameters – Local variables passed when the function is called that provide the function with outside information
  • 8. Functions • Why write functions? – modularity – re-use – maintenance / testing
  • 9. 3.5 Function Definitions • Create customized functions to – Take in data – Perform operations – Return the result • Format for function definition: return-value-type function-name( parameter-list ) { declarations and statements } • Example: int square( int y) { return y * y; }
  • 10. 1 // Fig. 3.3: fig03_03.cpp 2 // Creating and using a programmer-defined function 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 int square( int ); // function prototype 9 10 int main() 11 { 12 for ( int x = 1; x <= 10; x++ ) 13 cout << square( x ) << " "; 14 15 cout << endl; 16 return 0; 17 } 18 19 // Function definition 20 int square( int y ) 21 { 22 return y * y; 23 } 1 4 9 16 25 36 49 64 81 100 Notice how parameters and return value are declared.
  • 11. 1 // Fig. 3.4: fig03_04.cpp 2 // Finding the maximum of three integers 3 #include <iostream> 4 5 using std::cout; 6 using std::cin; 7 using std::endl; 8 9 int maximum( int, int, int ); // function prototype 10 11 int main() 12 { 13 int a, b, c; 14 15 cout << "Enter three integers: "; 16 cin >> a >> b >> c; 17 18 // a, b and c below are arguments to 19 // the maximum function call 20 cout << "Maximum is: " << maximum( a, b, c ) << endl;
  • 12. 21 22 return 0; 23 } 24 25 // Function maximum definition 26 // x, y and z below are parameters to 27 // the maximum function definition 28 int maximum( int x, int y, int z ) 29 { 30 int max = x; 31 32 if ( y > max ) 33 max = y; 34 35 if ( z > max ) 36 max = z; 37 38 return max; 39 } Enter three integers: 22 85 17 Maximum is: 85 Enter three integers: 92 35 14 Maximum is: 92 Enter three integers: 45 19 98 Maximum is: 98
  • 13. 3.6 Function Prototypes • Function prototype – Function name – Parameters • Information the function takes in • C++ is “strongly typed” – error to pass a parameter of the wrong type – Return type • Type of information the function passes back to caller (default int) • void signifies the function returns nothing – Only needed if function definition comes after the function call in the program • Example: int maximum( int, int, int ); – Takes in 3 ints – Returns an int
  • 14. 3.7 Header Files • Header files – Contain function prototypes for library functions – <cstdlib> , <cmath>, etc. – Load with #include <filename> • Example: #include <cmath> • Custom header files – Defined by the programmer – Save as filename.h – Loaded into program using #include "filename.h"
  • 15. 3.8 Random Number Generation • rand function i = rand(); – Load <cstdlib> – Generates a pseudorandom number between 0 and RAND_MAX (usually 32767) • A pseudorandom number is a preset sequence of "random" numbers • The same sequence is generated upon every program execution • srand function – Jumps to a seeded location in a "random" sequence srand( seed ); srand( time( 0 ) ); //must include <ctime> – time( 0 ) • The time at which the program was compiled – Changes the seed every time the program is compiled, thereby allowing rand to generate random numbers
  • 16. 3.8 Random Number Generation • Scaling – Reduces random number to a certain range – Modulus ( % ) operator • Reduces number between 0 and RAND_MAX to a number between 0 and the scaling factor – Example i = rand() % 6 + 1; • Generates a number between 1 and 6
  • 17. 1 // Fig. 3.7: fig03_07.cpp 2 // Shifted, scaled integers produced by 1 + rand() % 6 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 #include <iomanip> 9 10 using std::setw; 11 12 #include <cstdlib> 13 14 int main() 15 { 16 for ( int i = 1; i <= 20; i++ ) { 17 cout << setw( 10 ) << ( 1 + rand() % 6 ); 18 19 if ( i % 5 == 0 ) 20 cout << endl; 21 } 22 23 return 0; 24 } Notice rand() % 6 . This returns a number between 0 and 5 (scaling). Add 1 to get a number between 1 and 6. Executing the program again gives the same "random" dice rolls. 5 5 3 5 5 2 4 2 5 5 5 3 2 2 1 5 1 4 6 4
  • 18. 1 // Fig. 3.9: fig03_09.cpp 2 // Randomizing die-rolling program 3 #include <iostream> 4 5 using std::cout; 6 using std::cin; 7 using std::endl; 8 9 #include <iomanip> 10 11 using std::setw; 12 13 #include <cstdlib> 14 15 int main() 16 { 17 unsigned seed; 18 19 cout << "Enter seed: "; 20 cin >> seed; 21 srand( seed ); 22 23 for ( int i = 1; i <= 10; i++ ) { 24 cout << setw( 10 ) << 1 + rand() % 6; 25 26 if ( i % 5 == 0 ) 27 cout << endl; 28 } 29 30 return 0; 31 }
  • 19. Program Output Enter seed: 67 1 6 5 1 4 5 6 3 1 2 Enter seed: 432 4 2 6 4 3 2 5 1 4 4 Enter seed: 67 1 6 5 1 4 5 6 3 1 2 Notice how the die rolls change with the seed.
  • 20. 3.9 Example: A Game of Chance and Introducing enum • Enumeration - set of integers with identifiers enum typeName {constant1, constant2…}; – Constants start at 0 (default), incremented by 1 – Unique constant names – Example: enum Status {CONTINUE, WON, LOST}; • Create an enumeration variable of type typeName – Variable is constant, its value may not be reassigned Status enumVar; // create variable enumVar = WON; // set equal to WON enumVar = 1; // ERROR
  • 21. Example: A Game of Chance and Introducing enum(II) • Enumeration constants can have values pre-set enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC}; – Starts at 1, increments by 1 • Craps simulator rules – Roll two dice • 7 or 11 on first throw, player wins • 2, 3, or 12 on first throw, player loses • 4, 5, 6, 8, 9, 10 – value becomes player's "point" – player must roll his point before rolling 7 to win
  • 22. 1 // Fig. 3.10: fig03_10.cpp 2 // Craps 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 #include <cstdlib> 9 10 #include <ctime> 11 12 using std::time; 13 14 int rollDice( void ); // function prototype 15 16 int main() 17 { 18 enum Status { CONTINUE, WON, LOST }; 19 int sum, myPoint; 20 Status gameStatus; 21 22 srand( time( 0 ) ); 23 sum = rollDice(); // first roll of the dice 24 25 switch ( sum ) { 26 case 7: 27 case 11: // win on first roll 28 gameStatus = WON; 29 break; 30 case 2: 31 case 3: 32 case 12: // lose on first roll 33 gameStatus = LOST; 34 break; Notice how the enum is defined
  • 23. 35 default: // remember point 36 gameStatus = CONTINUE; 37 myPoint = sum; 38 cout << "Point is " << myPoint << endl; 39 break; // optional 40 } 41 42 while ( gameStatus == CONTINUE ) { // keep rolling 43 sum = rollDice(); 44 45 if ( sum == myPoint ) // win by making point 46 gameStatus = WON; 47 else 48 if ( sum == 7 ) // lose by rolling 7 49 gameStatus = LOST; 50 } 51 52 if ( gameStatus == WON ) 53 cout << "Player wins" << endl; 54 else 55 cout << "Player loses" << endl; 56 57 return 0; 58 } 59
  • 24. Player rolled 6 + 5 = 11 Player wins Player rolled 6 + 5 = 11 Player wins Player rolled 4 + 6 = 10 Point is 10 Player rolled 2 + 4 = 6 Player rolled 6 + 5 = 11 Player rolled 3 + 3 = 6 Player rolled 6 + 4 = 10 Player wins Player rolled 1 + 3 = 4 Point is 4 Player rolled 1 + 4 = 5 Player rolled 5 + 4 = 9 Player rolled 4 + 6 = 10 Player rolled 6 + 3 = 9 Player rolled 1 + 2 = 3 Player rolled 5 + 2 = 7 Player loses 60 int rollDice( void ) 61 { 62 int die1, die2, workSum; 63 64 die1 = 1 + rand() % 6; 65 die2 = 1 + rand() % 6; 66 workSum = die1 + die2; 67 cout << "Player rolled " << die1 << " + " << die2 68 << " = " << workSum << endl; 69 70 return workSum; 71 }
  • 25. 3.10 Storage Classes • Storage class specifiers – Storage class • Where object exists in memory – Scope • Where object is referenced in program – Linkage • Where an identifier is known • Automatic storage – Object created and destroyed within its block – auto • Default for local variables. • Example: auto float x, y; – register • Tries to put variables into high-speed registers – Can only be used with local variables and parameters
  • 26. Storage Classes • Static storage – Variables exist for entire program execution – static • Local variables defined in functions • Keep value after function ends • Only known in their own function – Extern • Default for global variables and functions. • Known in any function
  • 27. Scope Rules • File scope – Defined outside a function, known in all functions – Examples include, global variables, function definitions and functions prototypes • Function scope – Can only be referenced inside a function body – Only labels (start:, case:, etc.) • Block scope – Declared inside a block. Begins at declaration, ends at } – Variables, function parameters (local variables of function) – Outer blocks “hidden” from inner blocks if same variable name • Function prototype scope – Identifiers in parameter list – Names in function prototype optional, and can be used anywhere
  • 28. 1. Function prototypes 1.1 Initialize global variable 1.2 Initialize local variable 1 // Fig. 3.12: fig03_12.cpp 2 // A scoping example 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 void a( void ); // function prototype 9 void b( void ); // function prototype 10 void c( void ); // function prototype 11 12 int x = 1; // global variable 13 14 int main() 15 { 16 int x = 5; // local variable to main 17 18 cout << "local x in outer scope of main is " << x << endl; 19 20 { // start new scope 21 int x = 7; 22 23 cout << "local x in inner scope of main is " << x << endl; 24 } // end new scope 25 26 cout << "local x in outer scope of main is " << x << endl; 27 28 a(); // a has automatic local x 29 b(); // b has static local x 30 c(); // c uses global x 31 a(); // a reinitializes automatic local x 32 b(); // static local x retains its previous value 33 c(); // global x also retains its value 34 x is different inside and outside the block. local x in outer scope of main is 5 local x in inner scope of main is 7 local x in outer scope of main is 5
  • 29. 3.1 Define Functions 35 cout << "local x in main is " << x << endl; 36 37 return 0; 38 } 39 40 void a( void ) 41 { 42 int x = 25; // initialized each time a is called 43 44 cout << endl << "local x in a is " << x 45 << " after entering a" << endl; 46 ++x; 47 cout << "local x in a is " << x 48 << " before exiting a" << endl; 49 } 50 51 void b( void ) 52 { 53 static int x = 50; // Static initialization only 54 // first time b is called. 55 cout << endl << "local static x is " << x 56 << " on entering b" << endl; 57 ++x; 58 cout << "local static x is " << x 59 << " on exiting b" << endl; 60 } 61 62 void c( void ) 63 { 64 cout << endl << "global x is " << x 65 << " on entering c" << endl; 66 x *= 10; 67 cout << "global x is " << x << " on exiting c" << endl; 68 } Local automatic variables are created and destroyed each time a is called. Local static variables are not destroyed when the function ends. Global variables are always accessible. Function c references the global x. local x in a is 25 after entering a local x in a is 26 before exiting a local static x is 50 on entering b local static x is 51 on exiting b global x is 1 on entering c global x is 10 on exiting c
  • 30. local x in outer scope of main is 5 local x in inner scope of main is 7 local x in outer scope of main is 5 local x in a is 25 after entering a local x in a is 26 before exiting a local static x is 50 on entering b local static x is 51 on exiting b global x is 1 on entering c global x is 10 on exiting c local x in a is 25 after entering a local x in a is 26 before exiting a local static x is 51 on entering b local static x is 52 on exiting b global x is 10 on entering c global x is 100 on exiting c local x in main is 5
  • 31. References and Reference Parameters • Call by value – Copy of data passed to function – Changes to copy do not change original – Used to prevent unwanted side effects • Call by reference – Function can directly access data – Changes affect original • Reference parameter alias for argument – & is used to signify a reference void change( int &variable ) { variable += 3; } – Adds 3 to the variable inputted int y = &x. – A change to y will now affect x as well
  • 32. 1 // Fig. 3.20: fig03_20.cpp 2 // Comparing call-by-value and call-by-reference 3 // with references. 4 #include <iostream> 5 6 using std::cout; 7 using std::endl; 8 9 int squareByValue( int ); 10 void squareByReference( int & ); 11 12 int main() 13 { 14 int x = 2, z = 4; 15 16 cout << "x = " << x << " before squareByValuen" 17 << "Value returned by squareByValue: " 18 << squareByValue( x ) << endl 19 << "x = " << x << " after squareByValuen" << endl; 20 21 cout << "z = " << z << " before squareByReference" << endl; 22 squareByReference( z ); 23 cout << "z = " << z << " after squareByReference" << endl; 24 25 return 0; 26 } 27 28 int squareByValue( int a ) 29 { 30 return a *= a; // caller's argument not modified 31 }
  • 33. x = 2 before squareByValue Value returned by squareByValue: 4 x = 2 after squareByValue z = 4 before squareByReference z = 16 after squareByReference 32 33 void squareByReference( int &cRef ) 34 { 35 cRef *= cRef; // caller's argument modified 36 }
  • 34. 3.12 Recursion • Recursive functions – Are functions that calls themselves – Can only solve a base case – If not base case, the function breaks the problem into a slightly smaller, slightly simpler, problem that resembles the original problem and • Launches a new copy of itself to work on the smaller problem, slowly converging towards the base case • Makes a call to itself inside the return statement – Eventually the base case gets solved and then that value works its way back up to solve the whole problem
  • 35. Recursion • Example: factorial n! = n * ( n – 1 ) * ( n – 2 ) * … * 1 – Recursive relationship ( n! = n * ( n – 1 )! ) 5! = 5 * 4! 4! = 4 * 3!… – Base case (1! = 0! = 1)
  • 36. The Fibonacci Series • Fibonacci series: 0, 1, 1, 2, 3, 5, 8... – Each number sum of two previous ones – Example of a recursive formula: fib(n) = fib(n-1) + fib(n-2) • C++ code for fibonacci function long fibonacci( long n ) { if ( n == 0 || n == 1 ) // base case return n; else if ( n < 0 ) return –1; else return fibonacci( n - 1 ) + fibonacci( n – 2 ); }
  • 37. The Fibonacci Series • Diagram of Fibonnaci function f( 3 ) f( 1 ) f( 2 ) f( 1 ) f( 0 ) return 1 return 1 return 0 return + + return
  • 38. 1. Function prototype 1.1 Initialize variables 2. Input an integer 1 // Fig. 3.15: fig03_15.cpp 2 // Recursive fibonacci function 3 #include <iostream> 4 5 using std::cout; 6 using std::cin; 7 using std::endl; 8 9 unsigned long fibonacci( unsigned long ); 10 11 int main() 12 { 13 unsigned long result, number; 14 15 cout << "Enter an integer: "; 16 cin >> number; 17 result = fibonacci( number ); 18 cout << "Fibonacci(" << number << ") = " << result << endl; 19 return 0; 20 } 21 22 // Recursive definition of function fibonacci 23 unsigned long fibonacci( unsigned long n ) 24 { 25 if ( n == 0 || n == 1 ) // base case 26 return n; 27 else // recursive case 28 return fibonacci( n - 1 ) + fibonacci( n - 2 ); 29 }
  • 39. Program Output Enter an integer: 0 Fibonacci(0) = 0 Enter an integer: 1 Fibonacci(1) = 1 Enter an integer: 2 Fibonacci(2) = 1 Enter an integer: 3 Fibonacci(3) = 2 Enter an integer: 4 Fibonacci(4) = 3 Enter an integer: 5 Fibonacci(5) = 5 Enter an integer: 6 Fibonacci(6) = 8 Enter an integer: 10 Fibonacci(10) = 55 Enter an integer: 20 Fibonacci(20) = 6765 Enter an integer: 30 Fibonacci(30) = 832040 Enter an integer: 35 Fibonacci(35) = 9227465
  • 40. 3.14 Recursion vs. Iteration • Repetition – Iteration: explicit loop – Recursion: repeated function calls • Termination – Iteration: loop condition fails – Recursion: base case recognized • Both can have infinite loops • Balance between performance (iteration) and good software engineering (recursion)
  • 41. Functions with Empty Parameter Lists • Empty parameter lists – Either writing void or leaving a parameter list empty indicates that the function takes no arguments void print(); or void print( void ); – Function print takes no arguments and returns no value
  • 42. 1 // Fig. 3.18: fig03_18.cpp 2 // Functions that take no arguments 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 void function1(); 9 void function2( void ); 10 11 int main() 12 { 13 function1(); 14 function2(); 15 16 return 0; 17 } 18 19 void function1() 20 { 21 cout << "function1 takes no arguments" << endl; 22 } 23 24 void function2( void ) 25 { 26 cout << "function2 also takes no arguments" << endl; 27 } function1 takes no arguments function2 also takes no arguments
  • 43. Inline Functions • inline functions – Reduce function-call overhead – Asks the compiler to copy code into program instead of using a function call – Compiler can ignore inline – Should be used with small, often-used functions • Example: inline double cube( const double s ) { return s * s * s; }
  • 44. 3.18 Default Arguments • If function parameter omitted, gets default value – Can be constants, global variables, or function calls – If not enough parameters specified, rightmost go to their defaults • Set defaults in function prototype int defaultFunction( int x = 1, int y = 2, int z = 3 );
  • 45. 1 // Fig. 3.23: fig03_23.cpp 2 // Using default arguments 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 int boxVolume( int length = 1, int width = 1, int height = 1 ); 9 10 int main() 11 { 12 cout << "The default box volume is: " << boxVolume() 13 << "nnThe volume of a box with length 10,n" 14 << "width 1 and height 1 is: " << boxVolume( 10 ) 15 << "nnThe volume of a box with length 10,n" 16 << "width 5 and height 1 is: " << boxVolume( 10, 5 ) 17 << "nnThe volume of a box with length 10,n" 18 << "width 5 and height 2 is: " << boxVolume( 10, 5, 2 ) 19 << endl; 20 21 return 0; 22 } 23 24 // Calculate the volume of a box 25 int boxVolume( int length, int width, int height ) 26 { 27 return length * width * height; 28 }
  • 46. Program Output The default box volume is: 1 The volume of a box with length 10, width 1 and height 1 is: 10 The volume of a box with length 10, width 5 and height 1 is: 50 The volume of a box with length 10, width 5 and height 2 is: 100
  • 47. 3.19 Unary Scope Resolution Operator • Unary scope resolution operator (::) – Access global variables if a local variable has same name – not needed if names are different – instead of variable use ::variable
  • 48. 1 // Fig. 3.24: fig03_24.cpp 2 // Using the unary scope resolution operator 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 #include <iomanip> 9 10 using std::setprecision; 11 12 const double PI = 3.14159265358979; 13 14 int main() 15 { 16 const float PI = static_cast< float >( ::PI ); 17 18 cout << setprecision( 20 ) 19 << " Local float value of PI = " << PI 20 << "nGlobal double value of PI = " << ::PI << endl; 21 22 return 0; 23 } Local float value of PI = 3.141592741012573242 Global double value of PI = 3.141592653589790007
  • 49. 3.20 Function Overloading • Function overloading – Having functions with same name and different parameters – Should perform similar tasks ( i.e., a function to square ints, and function to square floats). int square( int x) {return x * x;} float square(float x) { return x * x; } – Program chooses function by signature • signature determined by function name and parameter types – Can have the same return types
  • 50. 1 // Fig. 3.25: fig03_25.cpp 2 // Using overloaded functions 3 #include <iostream> 4 5 using std::cout; 6 using std::endl; 7 8 int square( int x ) { return x * x; } 9 10 double square( double y ) { return y * y; } 11 12 int main() 13 { 14 cout << "The square of integer 7 is " << square( 7 ) 15 << "nThe square of double 7.5 is " << square( 7.5 ) 16 << endl; 17 18 return 0; 19 } The square of integer 7 is 49 The square of double 7.5 is 56.25