SlideShare a Scribd company logo
Leveraging
Generative AI
Ashling Partners | Solutions Engineering | Alp Uguray, 4x UiPath MVP
2
Senior Solutions Engineer at Ashling Partners
4x UiPath MVP Award
Host & Creator at Masters of Automation Podcast
(https://themasters.ai)
Alp Uguray
Introductions
Innovation Ambition Matrix
HOW TO WIN
WHERE
TO
PLAY
TRANSFORMATIONAL
Large market opportunity identified
but very different from what we are
doing today.
ADJACENT
Not doing today, but plugs right into
what we are doing today
CORE
Already doing it today
Develop New
Products & Assets
Add incremental
Products & Assets
Use Existing
Products & Assets
Serve
existing
Markets
&
Customers
Enter
Adjacent
Markets
Serve
Adjacent
Customers
Create
New
Market
Target
New
Customers
4
5
Good ones (Utopic Use)
• Leverages AI versus. Manual execution productivity gains
• Augmentation in task execution as HITL suggestions and recommendations
Not so good ones (Most likely)
• Job Displacement / Re-write
• Digital Misuse
• Digital Divide
• Vulnerability increase with cyberattacks
Worst ones (Cautious view)
• Data Privacy
• Fake Content and IP Law
• Failure of Regulations
• LLMs dominate the communication lines - Don’t know who you speak and widespread
adoption of personalized Face, Voice and Text
Importance of Scenario Planning
Driven by productivity gains and improved Customer and Employee Experiences,
Conversational AI dominance depends on a few different outcomes based on its adoption
6
Focus on realistic applications that can complement existing business capabilities.
• Prioritize applications based on ease of implementation and risk level, gradually moving towards more complex and
valuable ones. An example of a key application is using generative AI for knowledge management, which can provide
immediate value across various business functions
Do not have a perfectionist attitude towards the development of AI applications, which
could trap you in the proof-of-concept phase without ever delivering value.
• An iterative product development approach where applications are developed to solve specific customer or employee
problems and are then continuously adjusted based on feedback until they're ready to be scaled. This ensures that the
efforts have purpose and contribute towards transforming the industry standards​
The importance of ensuring that AI adoption doesn't compromise the organization's
data and intellectual property security, customer data security, brand credibility, and
legal protections.
• Collaboration between leaders from operations, technology and data teams, and the legal department to create
guardrails that empower the organization without hindering it.
Some Guiding Principles in Adoption
What’s prompt engineering?
Prompt engineering is the ‘art’ of optimizing
natural language for a LLM. Effective prompts
provide the relevant context and detail to a LLM,
therefore improving the accuracy and relevance
of the response.
The quality of prompts directly affects the output
of the model. Effective prompts help the model
understand your request and generate
appropriate responses, in complex or ambiguous
scenarios.
Tips / Tricks –
• Zero-shot Learning: never seen your data,
but makes inferences based on
understanding
• CoT (chain-of-thought) reasoning, ‘break it
down, step-by-step’
• Providing relevant context, ‘I am’ or ‘you are’
• First, do ‘xyz’, then do ‘xyz’, finally…
8
Zero-shot learning
This is a problem set up in machine learning where the model is asked to classify data
accurately it has never seen before during training. In other words, the model is expected
to infer classes that were not part of its training data. The model typically leverages high-
level abstractions and understandings learned from the training data to make accurate
predictions on the unseen classes. Zero-shot learning is especially important in settings
where it is costly or time-consuming to collect large labeled datasets for every possible
class.
Few-shot learning
Few-shot learning refers to the concept where a machine learning model is able to
generalize well from a small number of examples – often just one or two, hence the term
"one-shot" or "two-shot" learning. In a traditional machine learning context, models are
often trained on large amounts of data, but in few-shot learning, the idea is to design
models that can extract useful information from a small number of examples and make
accurate predictions. This is similar to how humans can often learn concepts from just a
few examples.
Shot Learnings
Some considerations
Data privacy and security:
• Avoid using real customer data or any personally
identifiable information (PII).
• Use anonymized or synthetic data sets whenever
possible.
• Ensure data storage and transfer follow best practices
and comply with relevant regulations, such as GDPR
or HIPAA.
“Hallucinations” - ChatGPT can make stuff up.
• Be aware of potential biases in data sets and
algorithms, which could lead to unfair or
discriminatory outcomes.
• Use techniques such as data pre-processing or
algorithmic adjustments to minimize the impact of
biases.
Responsible use of AI:
• Ensure that your solution aligns with ethical principles
and responsible AI guidelines.
• Avoid applications that could be harmful,
discriminatory, or promote misinformation.
10
Reinforcement
Learning
Prompt
Engineering
Chain of
Thought
How to get the best out of AGIs
11
RLHF
Reinforcement learning from human
feedback further aligns models.
(Diagram from OpenAI ChatGPT
announcement.)
12
Prompting with the “format trick”
“Use this format:” is all you need.
©
2
0
2
3
S
c
a
l
e
I
n
c
.
13
Specifying tasks using
code prompts
Prompting through partial code.
©
2
0
2
3
S
c
a
l
e
I
n
c
.
14
Specifying tasks using
code prompts
Prompting with imaginary variables.
©
2
0
2
3
S
c
a
l
e
I
n
c
.
15
Using an external interpreter to
overcome model limitations in
conversational Q&A.
“You are GPT-3”
©
2
0
2
3
S
c
a
l
e
I
n
c
.
16
Chain-of-thought prompting
Figure 1 from Jason Wei et al. (2022).
©
2
0
2
3
S
c
a
l
e
I
n
c
.
17
Zero-shot
chain-of-thought
Figure 1 from Takeshi Kojima et al. (2022).
©
2
0
2
3
S
c
a
l
e
I
n
c
.
18
Zero-shot
chain-of-thought
Figure 2 from Takeshi Kojima et al. (2022).
©
2
0
2
3
S
c
a
l
e
I
n
c
.
19
Zero-shot
chain-of-thought
Figure 2 from Takeshi Kojima et al. (2022).
©
2
0
2
3
S
c
a
l
e
I
n
c
.
20
Self-consistency
and consensus
Figure 1 from Xuezhi Wang et al. (2022).
©
2
0
2
3
S
c
a
l
e
I
n
c
.
21
Q&A
Ad

More Related Content

What's hot (20)

Exploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdfExploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdf
Dung Hoang
 
An Introduction to Generative AI - May 18, 2023
An Introduction  to Generative AI - May 18, 2023An Introduction  to Generative AI - May 18, 2023
An Introduction to Generative AI - May 18, 2023
CoriFaklaris1
 
The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021
Steve Omohundro
 
Generative-AI-in-enterprise-20230615.pdf
Generative-AI-in-enterprise-20230615.pdfGenerative-AI-in-enterprise-20230615.pdf
Generative-AI-in-enterprise-20230615.pdf
Liming Zhu
 
Cavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures | Deep Dive: Generative AICavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures
 
Generative AI: Past, Present, and Future – A Practitioner's Perspective
Generative AI: Past, Present, and Future – A Practitioner's PerspectiveGenerative AI: Past, Present, and Future – A Practitioner's Perspective
Generative AI: Past, Present, and Future – A Practitioner's Perspective
Huahai Yang
 
Large Language Models - Chat AI.pdf
Large Language Models - Chat AI.pdfLarge Language Models - Chat AI.pdf
Large Language Models - Chat AI.pdf
David Rostcheck
 
Let's talk about GPT: A crash course in Generative AI for researchers
Let's talk about GPT: A crash course in Generative AI for researchersLet's talk about GPT: A crash course in Generative AI for researchers
Let's talk about GPT: A crash course in Generative AI for researchers
Steven Van Vaerenbergh
 
Generative AI Use cases for Enterprise - Second Session
Generative AI Use cases for Enterprise - Second SessionGenerative AI Use cases for Enterprise - Second Session
Generative AI Use cases for Enterprise - Second Session
Gene Leybzon
 
Using Generative AI
Using Generative AIUsing Generative AI
Using Generative AI
Mark DeLoura
 
Large Language Models Bootcamp
Large Language Models BootcampLarge Language Models Bootcamp
Large Language Models Bootcamp
Data Science Dojo
 
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
Naoki (Neo) SATO
 
Journey of Generative AI
Journey of Generative AIJourney of Generative AI
Journey of Generative AI
thomasjvarghese49
 
Generative AI
Generative AIGenerative AI
Generative AI
lutzsuarnaba1
 
Responsible Generative AI
Responsible Generative AIResponsible Generative AI
Responsible Generative AI
CMassociates
 
AI FOR BUSINESS LEADERS
AI FOR BUSINESS LEADERSAI FOR BUSINESS LEADERS
AI FOR BUSINESS LEADERS
Andre Muscat
 
Generative AI, WiDS 2023.pptx
Generative AI, WiDS 2023.pptxGenerative AI, WiDS 2023.pptx
Generative AI, WiDS 2023.pptx
Colleen Farrelly
 
Webinar on ChatGPT.pptx
Webinar on ChatGPT.pptxWebinar on ChatGPT.pptx
Webinar on ChatGPT.pptx
Abhilash Majumder
 
Generative AI for the rest of us
Generative AI for the rest of usGenerative AI for the rest of us
Generative AI for the rest of us
Massimo Ferre'
 
Generative Models and ChatGPT
Generative Models and ChatGPTGenerative Models and ChatGPT
Generative Models and ChatGPT
Loic Merckel
 
Exploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdfExploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdf
Dung Hoang
 
An Introduction to Generative AI - May 18, 2023
An Introduction  to Generative AI - May 18, 2023An Introduction  to Generative AI - May 18, 2023
An Introduction to Generative AI - May 18, 2023
CoriFaklaris1
 
The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021
Steve Omohundro
 
Generative-AI-in-enterprise-20230615.pdf
Generative-AI-in-enterprise-20230615.pdfGenerative-AI-in-enterprise-20230615.pdf
Generative-AI-in-enterprise-20230615.pdf
Liming Zhu
 
Cavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures | Deep Dive: Generative AICavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures
 
Generative AI: Past, Present, and Future – A Practitioner's Perspective
Generative AI: Past, Present, and Future – A Practitioner's PerspectiveGenerative AI: Past, Present, and Future – A Practitioner's Perspective
Generative AI: Past, Present, and Future – A Practitioner's Perspective
Huahai Yang
 
Large Language Models - Chat AI.pdf
Large Language Models - Chat AI.pdfLarge Language Models - Chat AI.pdf
Large Language Models - Chat AI.pdf
David Rostcheck
 
Let's talk about GPT: A crash course in Generative AI for researchers
Let's talk about GPT: A crash course in Generative AI for researchersLet's talk about GPT: A crash course in Generative AI for researchers
Let's talk about GPT: A crash course in Generative AI for researchers
Steven Van Vaerenbergh
 
Generative AI Use cases for Enterprise - Second Session
Generative AI Use cases for Enterprise - Second SessionGenerative AI Use cases for Enterprise - Second Session
Generative AI Use cases for Enterprise - Second Session
Gene Leybzon
 
Using Generative AI
Using Generative AIUsing Generative AI
Using Generative AI
Mark DeLoura
 
Large Language Models Bootcamp
Large Language Models BootcampLarge Language Models Bootcamp
Large Language Models Bootcamp
Data Science Dojo
 
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
Naoki (Neo) SATO
 
Responsible Generative AI
Responsible Generative AIResponsible Generative AI
Responsible Generative AI
CMassociates
 
AI FOR BUSINESS LEADERS
AI FOR BUSINESS LEADERSAI FOR BUSINESS LEADERS
AI FOR BUSINESS LEADERS
Andre Muscat
 
Generative AI, WiDS 2023.pptx
Generative AI, WiDS 2023.pptxGenerative AI, WiDS 2023.pptx
Generative AI, WiDS 2023.pptx
Colleen Farrelly
 
Generative AI for the rest of us
Generative AI for the rest of usGenerative AI for the rest of us
Generative AI for the rest of us
Massimo Ferre'
 
Generative Models and ChatGPT
Generative Models and ChatGPTGenerative Models and ChatGPT
Generative Models and ChatGPT
Loic Merckel
 

Similar to Leveraging Generative AI & Best practices (20)

Scaling Training Data for AI Applications
Scaling Training Data for AI ApplicationsScaling Training Data for AI Applications
Scaling Training Data for AI Applications
Applause
 
Cloudera Fast Forward Labs: Accelerate machine learning
Cloudera Fast Forward Labs: Accelerate machine learningCloudera Fast Forward Labs: Accelerate machine learning
Cloudera Fast Forward Labs: Accelerate machine learning
Cloudera, Inc.
 
Putting data science in your business a first utility feedback
Putting data science in your business a first utility feedbackPutting data science in your business a first utility feedback
Putting data science in your business a first utility feedback
Peculium Crypto
 
Ai and Design: When, Why and How? - Morgenbooster
Ai and Design: When, Why and How? - MorgenboosterAi and Design: When, Why and How? - Morgenbooster
Ai and Design: When, Why and How? - Morgenbooster
1508 A/S
 
Technology and Innovation - Introduction
Technology and Innovation - IntroductionTechnology and Innovation - Introduction
Technology and Innovation - Introduction
Lee Schlenker
 
AI Orange Belt - Session 3
AI Orange Belt - Session 3AI Orange Belt - Session 3
AI Orange Belt - Session 3
AI Black Belt
 
An AI Maturity Roadmap for Becoming a Data-Driven Organization
An AI Maturity Roadmap for Becoming a Data-Driven OrganizationAn AI Maturity Roadmap for Becoming a Data-Driven Organization
An AI Maturity Roadmap for Becoming a Data-Driven Organization
David Solomon
 
“Responsible AI: Tools and Frameworks for Developing AI Solutions,” a Present...
“Responsible AI: Tools and Frameworks for Developing AI Solutions,” a Present...“Responsible AI: Tools and Frameworks for Developing AI Solutions,” a Present...
“Responsible AI: Tools and Frameworks for Developing AI Solutions,” a Present...
Edge AI and Vision Alliance
 
Oleksii Pavlenko: The Nine Circles of Hell for AI Integrators (UA)
Oleksii Pavlenko: The Nine Circles of Hell for AI Integrators (UA)Oleksii Pavlenko: The Nine Circles of Hell for AI Integrators (UA)
Oleksii Pavlenko: The Nine Circles of Hell for AI Integrators (UA)
Lviv Startup Club
 
INFRAGARD 2014: Back to basics security
INFRAGARD 2014: Back to basics securityINFRAGARD 2014: Back to basics security
INFRAGARD 2014: Back to basics security
Joel Cardella
 
Operationalizing Machine Learning in the Enterprise
Operationalizing Machine Learning in the EnterpriseOperationalizing Machine Learning in the Enterprise
Operationalizing Machine Learning in the Enterprise
mark madsen
 
Transform Banking with Big Data and Automated Machine Learning 9.12.17
Transform Banking with Big Data and Automated Machine Learning 9.12.17Transform Banking with Big Data and Automated Machine Learning 9.12.17
Transform Banking with Big Data and Automated Machine Learning 9.12.17
Cloudera, Inc.
 
5 Questions To Ask Before Getting Started With Data Annotation
5 Questions To Ask Before Getting Started With Data Annotation5 Questions To Ask Before Getting Started With Data Annotation
5 Questions To Ask Before Getting Started With Data Annotation
Innodata, Inc
 
Innovation deck
Innovation deckInnovation deck
Innovation deck
Richard Adams
 
AI Orange Belt - Session 4
AI Orange Belt - Session 4AI Orange Belt - Session 4
AI Orange Belt - Session 4
AI Black Belt
 
How to classify documents automatically using NLP
How to classify documents automatically using NLPHow to classify documents automatically using NLP
How to classify documents automatically using NLP
Skyl.ai
 
Demystifying ML/AI
Demystifying ML/AIDemystifying ML/AI
Demystifying ML/AI
Matthew Reynolds
 
Data and analytic strategies for developing ethical it
Data and analytic strategies for developing ethical itData and analytic strategies for developing ethical it
Data and analytic strategies for developing ethical it
Hyoun Park
 
Why Everything You Know About bigdata Is A Lie
Why Everything You Know About bigdata Is A LieWhy Everything You Know About bigdata Is A Lie
Why Everything You Know About bigdata Is A Lie
Sunil Ranka
 
Key Stages in AI Software Development Lifecycle
Key Stages in AI Software Development LifecycleKey Stages in AI Software Development Lifecycle
Key Stages in AI Software Development Lifecycle
Shiv Technolabs Pvt. Ltd.
 
Scaling Training Data for AI Applications
Scaling Training Data for AI ApplicationsScaling Training Data for AI Applications
Scaling Training Data for AI Applications
Applause
 
Cloudera Fast Forward Labs: Accelerate machine learning
Cloudera Fast Forward Labs: Accelerate machine learningCloudera Fast Forward Labs: Accelerate machine learning
Cloudera Fast Forward Labs: Accelerate machine learning
Cloudera, Inc.
 
Putting data science in your business a first utility feedback
Putting data science in your business a first utility feedbackPutting data science in your business a first utility feedback
Putting data science in your business a first utility feedback
Peculium Crypto
 
Ai and Design: When, Why and How? - Morgenbooster
Ai and Design: When, Why and How? - MorgenboosterAi and Design: When, Why and How? - Morgenbooster
Ai and Design: When, Why and How? - Morgenbooster
1508 A/S
 
Technology and Innovation - Introduction
Technology and Innovation - IntroductionTechnology and Innovation - Introduction
Technology and Innovation - Introduction
Lee Schlenker
 
AI Orange Belt - Session 3
AI Orange Belt - Session 3AI Orange Belt - Session 3
AI Orange Belt - Session 3
AI Black Belt
 
An AI Maturity Roadmap for Becoming a Data-Driven Organization
An AI Maturity Roadmap for Becoming a Data-Driven OrganizationAn AI Maturity Roadmap for Becoming a Data-Driven Organization
An AI Maturity Roadmap for Becoming a Data-Driven Organization
David Solomon
 
“Responsible AI: Tools and Frameworks for Developing AI Solutions,” a Present...
“Responsible AI: Tools and Frameworks for Developing AI Solutions,” a Present...“Responsible AI: Tools and Frameworks for Developing AI Solutions,” a Present...
“Responsible AI: Tools and Frameworks for Developing AI Solutions,” a Present...
Edge AI and Vision Alliance
 
Oleksii Pavlenko: The Nine Circles of Hell for AI Integrators (UA)
Oleksii Pavlenko: The Nine Circles of Hell for AI Integrators (UA)Oleksii Pavlenko: The Nine Circles of Hell for AI Integrators (UA)
Oleksii Pavlenko: The Nine Circles of Hell for AI Integrators (UA)
Lviv Startup Club
 
INFRAGARD 2014: Back to basics security
INFRAGARD 2014: Back to basics securityINFRAGARD 2014: Back to basics security
INFRAGARD 2014: Back to basics security
Joel Cardella
 
Operationalizing Machine Learning in the Enterprise
Operationalizing Machine Learning in the EnterpriseOperationalizing Machine Learning in the Enterprise
Operationalizing Machine Learning in the Enterprise
mark madsen
 
Transform Banking with Big Data and Automated Machine Learning 9.12.17
Transform Banking with Big Data and Automated Machine Learning 9.12.17Transform Banking with Big Data and Automated Machine Learning 9.12.17
Transform Banking with Big Data and Automated Machine Learning 9.12.17
Cloudera, Inc.
 
5 Questions To Ask Before Getting Started With Data Annotation
5 Questions To Ask Before Getting Started With Data Annotation5 Questions To Ask Before Getting Started With Data Annotation
5 Questions To Ask Before Getting Started With Data Annotation
Innodata, Inc
 
AI Orange Belt - Session 4
AI Orange Belt - Session 4AI Orange Belt - Session 4
AI Orange Belt - Session 4
AI Black Belt
 
How to classify documents automatically using NLP
How to classify documents automatically using NLPHow to classify documents automatically using NLP
How to classify documents automatically using NLP
Skyl.ai
 
Data and analytic strategies for developing ethical it
Data and analytic strategies for developing ethical itData and analytic strategies for developing ethical it
Data and analytic strategies for developing ethical it
Hyoun Park
 
Why Everything You Know About bigdata Is A Lie
Why Everything You Know About bigdata Is A LieWhy Everything You Know About bigdata Is A Lie
Why Everything You Know About bigdata Is A Lie
Sunil Ranka
 
Key Stages in AI Software Development Lifecycle
Key Stages in AI Software Development LifecycleKey Stages in AI Software Development Lifecycle
Key Stages in AI Software Development Lifecycle
Shiv Technolabs Pvt. Ltd.
 
Ad

More from DianaGray10 (20)

UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
UiPath Automation Developer Associate 2025 Series - Career Office Hours
UiPath Automation Developer Associate 2025 Series - Career Office HoursUiPath Automation Developer Associate 2025 Series - Career Office Hours
UiPath Automation Developer Associate 2025 Series - Career Office Hours
DianaGray10
 
SAP Automation with UiPath: Leveraging AI for SAP Automation - Part 8 of 8
SAP Automation with UiPath: Leveraging AI for SAP Automation - Part 8 of 8SAP Automation with UiPath: Leveraging AI for SAP Automation - Part 8 of 8
SAP Automation with UiPath: Leveraging AI for SAP Automation - Part 8 of 8
DianaGray10
 
SAP Automation with UiPath: Top 10 Use Cases Across FI/MM/SD/Basis/PP Modules...
SAP Automation with UiPath: Top 10 Use Cases Across FI/MM/SD/Basis/PP Modules...SAP Automation with UiPath: Top 10 Use Cases Across FI/MM/SD/Basis/PP Modules...
SAP Automation with UiPath: Top 10 Use Cases Across FI/MM/SD/Basis/PP Modules...
DianaGray10
 
SAP Automation with UiPath: Solution Accelerators and Best Practices - Part 6...
SAP Automation with UiPath: Solution Accelerators and Best Practices - Part 6...SAP Automation with UiPath: Solution Accelerators and Best Practices - Part 6...
SAP Automation with UiPath: Solution Accelerators and Best Practices - Part 6...
DianaGray10
 
UiPath NY AI Series: Session 4: UiPath AutoPilot for Developers using Studio Web
UiPath NY AI Series: Session 4: UiPath AutoPilot for Developers using Studio WebUiPath NY AI Series: Session 4: UiPath AutoPilot for Developers using Studio Web
UiPath NY AI Series: Session 4: UiPath AutoPilot for Developers using Studio Web
DianaGray10
 
SAP Automation with UiPath: SAP Test Automation - Part 5 of 8
SAP Automation with UiPath: SAP Test Automation - Part 5 of 8SAP Automation with UiPath: SAP Test Automation - Part 5 of 8
SAP Automation with UiPath: SAP Test Automation - Part 5 of 8
DianaGray10
 
UiPath Agentic automation with Autopilot for everyone + new features/releases
UiPath Agentic  automation with Autopilot for everyone + new features/releasesUiPath Agentic  automation with Autopilot for everyone + new features/releases
UiPath Agentic automation with Autopilot for everyone + new features/releases
DianaGray10
 
UiPath NY AI Series: Session 3: UiPath Autopilot for Everyone with Clipboard AI
UiPath NY AI Series: Session 3:  UiPath Autopilot for Everyone with Clipboard AIUiPath NY AI Series: Session 3:  UiPath Autopilot for Everyone with Clipboard AI
UiPath NY AI Series: Session 3: UiPath Autopilot for Everyone with Clipboard AI
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 8
UiPath Automation Developer Associate Training Series 2025 - Session 8UiPath Automation Developer Associate Training Series 2025 - Session 8
UiPath Automation Developer Associate Training Series 2025 - Session 8
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 7
UiPath Automation Developer Associate Training Series 2025 - Session 7UiPath Automation Developer Associate Training Series 2025 - Session 7
UiPath Automation Developer Associate Training Series 2025 - Session 7
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 6
UiPath Automation Developer Associate Training Series 2025 - Session 6UiPath Automation Developer Associate Training Series 2025 - Session 6
UiPath Automation Developer Associate Training Series 2025 - Session 6
DianaGray10
 
UiPath NY AI Series: Session 2: UiPath Generative AI Capabilities
UiPath NY AI Series: Session 2: UiPath Generative AI CapabilitiesUiPath NY AI Series: Session 2: UiPath Generative AI Capabilities
UiPath NY AI Series: Session 2: UiPath Generative AI Capabilities
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 5
UiPath Automation Developer Associate Training Series 2025 - Session 5UiPath Automation Developer Associate Training Series 2025 - Session 5
UiPath Automation Developer Associate Training Series 2025 - Session 5
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 4
UiPath Automation Developer Associate Training Series 2025 - Session 4UiPath Automation Developer Associate Training Series 2025 - Session 4
UiPath Automation Developer Associate Training Series 2025 - Session 4
DianaGray10
 
UiPath NY AI Series: Session 1: Introduction to Agentic AI with UiPath
UiPath NY AI Series: Session 1: Introduction to Agentic AI with UiPathUiPath NY AI Series: Session 1: Introduction to Agentic AI with UiPath
UiPath NY AI Series: Session 1: Introduction to Agentic AI with UiPath
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 3
UiPath Automation Developer Associate Training Series 2025 - Session 3UiPath Automation Developer Associate Training Series 2025 - Session 3
UiPath Automation Developer Associate Training Series 2025 - Session 3
DianaGray10
 
Future-Proof Your Career with AI Options
Future-Proof Your  Career with AI OptionsFuture-Proof Your  Career with AI Options
Future-Proof Your Career with AI Options
DianaGray10
 
UiPath Document Understanding - Generative AI and Active learning capabilities
UiPath Document Understanding - Generative AI and Active learning capabilitiesUiPath Document Understanding - Generative AI and Active learning capabilities
UiPath Document Understanding - Generative AI and Active learning capabilities
DianaGray10
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
UiPath Automation Developer Associate 2025 Series - Career Office Hours
UiPath Automation Developer Associate 2025 Series - Career Office HoursUiPath Automation Developer Associate 2025 Series - Career Office Hours
UiPath Automation Developer Associate 2025 Series - Career Office Hours
DianaGray10
 
SAP Automation with UiPath: Leveraging AI for SAP Automation - Part 8 of 8
SAP Automation with UiPath: Leveraging AI for SAP Automation - Part 8 of 8SAP Automation with UiPath: Leveraging AI for SAP Automation - Part 8 of 8
SAP Automation with UiPath: Leveraging AI for SAP Automation - Part 8 of 8
DianaGray10
 
SAP Automation with UiPath: Top 10 Use Cases Across FI/MM/SD/Basis/PP Modules...
SAP Automation with UiPath: Top 10 Use Cases Across FI/MM/SD/Basis/PP Modules...SAP Automation with UiPath: Top 10 Use Cases Across FI/MM/SD/Basis/PP Modules...
SAP Automation with UiPath: Top 10 Use Cases Across FI/MM/SD/Basis/PP Modules...
DianaGray10
 
SAP Automation with UiPath: Solution Accelerators and Best Practices - Part 6...
SAP Automation with UiPath: Solution Accelerators and Best Practices - Part 6...SAP Automation with UiPath: Solution Accelerators and Best Practices - Part 6...
SAP Automation with UiPath: Solution Accelerators and Best Practices - Part 6...
DianaGray10
 
UiPath NY AI Series: Session 4: UiPath AutoPilot for Developers using Studio Web
UiPath NY AI Series: Session 4: UiPath AutoPilot for Developers using Studio WebUiPath NY AI Series: Session 4: UiPath AutoPilot for Developers using Studio Web
UiPath NY AI Series: Session 4: UiPath AutoPilot for Developers using Studio Web
DianaGray10
 
SAP Automation with UiPath: SAP Test Automation - Part 5 of 8
SAP Automation with UiPath: SAP Test Automation - Part 5 of 8SAP Automation with UiPath: SAP Test Automation - Part 5 of 8
SAP Automation with UiPath: SAP Test Automation - Part 5 of 8
DianaGray10
 
UiPath Agentic automation with Autopilot for everyone + new features/releases
UiPath Agentic  automation with Autopilot for everyone + new features/releasesUiPath Agentic  automation with Autopilot for everyone + new features/releases
UiPath Agentic automation with Autopilot for everyone + new features/releases
DianaGray10
 
UiPath NY AI Series: Session 3: UiPath Autopilot for Everyone with Clipboard AI
UiPath NY AI Series: Session 3:  UiPath Autopilot for Everyone with Clipboard AIUiPath NY AI Series: Session 3:  UiPath Autopilot for Everyone with Clipboard AI
UiPath NY AI Series: Session 3: UiPath Autopilot for Everyone with Clipboard AI
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 8
UiPath Automation Developer Associate Training Series 2025 - Session 8UiPath Automation Developer Associate Training Series 2025 - Session 8
UiPath Automation Developer Associate Training Series 2025 - Session 8
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 7
UiPath Automation Developer Associate Training Series 2025 - Session 7UiPath Automation Developer Associate Training Series 2025 - Session 7
UiPath Automation Developer Associate Training Series 2025 - Session 7
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 6
UiPath Automation Developer Associate Training Series 2025 - Session 6UiPath Automation Developer Associate Training Series 2025 - Session 6
UiPath Automation Developer Associate Training Series 2025 - Session 6
DianaGray10
 
UiPath NY AI Series: Session 2: UiPath Generative AI Capabilities
UiPath NY AI Series: Session 2: UiPath Generative AI CapabilitiesUiPath NY AI Series: Session 2: UiPath Generative AI Capabilities
UiPath NY AI Series: Session 2: UiPath Generative AI Capabilities
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 5
UiPath Automation Developer Associate Training Series 2025 - Session 5UiPath Automation Developer Associate Training Series 2025 - Session 5
UiPath Automation Developer Associate Training Series 2025 - Session 5
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 4
UiPath Automation Developer Associate Training Series 2025 - Session 4UiPath Automation Developer Associate Training Series 2025 - Session 4
UiPath Automation Developer Associate Training Series 2025 - Session 4
DianaGray10
 
UiPath NY AI Series: Session 1: Introduction to Agentic AI with UiPath
UiPath NY AI Series: Session 1: Introduction to Agentic AI with UiPathUiPath NY AI Series: Session 1: Introduction to Agentic AI with UiPath
UiPath NY AI Series: Session 1: Introduction to Agentic AI with UiPath
DianaGray10
 
UiPath Automation Developer Associate Training Series 2025 - Session 3
UiPath Automation Developer Associate Training Series 2025 - Session 3UiPath Automation Developer Associate Training Series 2025 - Session 3
UiPath Automation Developer Associate Training Series 2025 - Session 3
DianaGray10
 
Future-Proof Your Career with AI Options
Future-Proof Your  Career with AI OptionsFuture-Proof Your  Career with AI Options
Future-Proof Your Career with AI Options
DianaGray10
 
UiPath Document Understanding - Generative AI and Active learning capabilities
UiPath Document Understanding - Generative AI and Active learning capabilitiesUiPath Document Understanding - Generative AI and Active learning capabilities
UiPath Document Understanding - Generative AI and Active learning capabilities
DianaGray10
 
Ad

Recently uploaded (20)

Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 

Leveraging Generative AI & Best practices

  • 1. Leveraging Generative AI Ashling Partners | Solutions Engineering | Alp Uguray, 4x UiPath MVP
  • 2. 2 Senior Solutions Engineer at Ashling Partners 4x UiPath MVP Award Host & Creator at Masters of Automation Podcast (https://themasters.ai) Alp Uguray Introductions
  • 3. Innovation Ambition Matrix HOW TO WIN WHERE TO PLAY TRANSFORMATIONAL Large market opportunity identified but very different from what we are doing today. ADJACENT Not doing today, but plugs right into what we are doing today CORE Already doing it today Develop New Products & Assets Add incremental Products & Assets Use Existing Products & Assets Serve existing Markets & Customers Enter Adjacent Markets Serve Adjacent Customers Create New Market Target New Customers
  • 4. 4
  • 5. 5 Good ones (Utopic Use) • Leverages AI versus. Manual execution productivity gains • Augmentation in task execution as HITL suggestions and recommendations Not so good ones (Most likely) • Job Displacement / Re-write • Digital Misuse • Digital Divide • Vulnerability increase with cyberattacks Worst ones (Cautious view) • Data Privacy • Fake Content and IP Law • Failure of Regulations • LLMs dominate the communication lines - Don’t know who you speak and widespread adoption of personalized Face, Voice and Text Importance of Scenario Planning Driven by productivity gains and improved Customer and Employee Experiences, Conversational AI dominance depends on a few different outcomes based on its adoption
  • 6. 6 Focus on realistic applications that can complement existing business capabilities. • Prioritize applications based on ease of implementation and risk level, gradually moving towards more complex and valuable ones. An example of a key application is using generative AI for knowledge management, which can provide immediate value across various business functions Do not have a perfectionist attitude towards the development of AI applications, which could trap you in the proof-of-concept phase without ever delivering value. • An iterative product development approach where applications are developed to solve specific customer or employee problems and are then continuously adjusted based on feedback until they're ready to be scaled. This ensures that the efforts have purpose and contribute towards transforming the industry standards​ The importance of ensuring that AI adoption doesn't compromise the organization's data and intellectual property security, customer data security, brand credibility, and legal protections. • Collaboration between leaders from operations, technology and data teams, and the legal department to create guardrails that empower the organization without hindering it. Some Guiding Principles in Adoption
  • 7. What’s prompt engineering? Prompt engineering is the ‘art’ of optimizing natural language for a LLM. Effective prompts provide the relevant context and detail to a LLM, therefore improving the accuracy and relevance of the response. The quality of prompts directly affects the output of the model. Effective prompts help the model understand your request and generate appropriate responses, in complex or ambiguous scenarios. Tips / Tricks – • Zero-shot Learning: never seen your data, but makes inferences based on understanding • CoT (chain-of-thought) reasoning, ‘break it down, step-by-step’ • Providing relevant context, ‘I am’ or ‘you are’ • First, do ‘xyz’, then do ‘xyz’, finally…
  • 8. 8 Zero-shot learning This is a problem set up in machine learning where the model is asked to classify data accurately it has never seen before during training. In other words, the model is expected to infer classes that were not part of its training data. The model typically leverages high- level abstractions and understandings learned from the training data to make accurate predictions on the unseen classes. Zero-shot learning is especially important in settings where it is costly or time-consuming to collect large labeled datasets for every possible class. Few-shot learning Few-shot learning refers to the concept where a machine learning model is able to generalize well from a small number of examples – often just one or two, hence the term "one-shot" or "two-shot" learning. In a traditional machine learning context, models are often trained on large amounts of data, but in few-shot learning, the idea is to design models that can extract useful information from a small number of examples and make accurate predictions. This is similar to how humans can often learn concepts from just a few examples. Shot Learnings
  • 9. Some considerations Data privacy and security: • Avoid using real customer data or any personally identifiable information (PII). • Use anonymized or synthetic data sets whenever possible. • Ensure data storage and transfer follow best practices and comply with relevant regulations, such as GDPR or HIPAA. “Hallucinations” - ChatGPT can make stuff up. • Be aware of potential biases in data sets and algorithms, which could lead to unfair or discriminatory outcomes. • Use techniques such as data pre-processing or algorithmic adjustments to minimize the impact of biases. Responsible use of AI: • Ensure that your solution aligns with ethical principles and responsible AI guidelines. • Avoid applications that could be harmful, discriminatory, or promote misinformation.
  • 11. 11 RLHF Reinforcement learning from human feedback further aligns models. (Diagram from OpenAI ChatGPT announcement.)
  • 12. 12 Prompting with the “format trick” “Use this format:” is all you need. © 2 0 2 3 S c a l e I n c .
  • 13. 13 Specifying tasks using code prompts Prompting through partial code. © 2 0 2 3 S c a l e I n c .
  • 14. 14 Specifying tasks using code prompts Prompting with imaginary variables. © 2 0 2 3 S c a l e I n c .
  • 15. 15 Using an external interpreter to overcome model limitations in conversational Q&A. “You are GPT-3” © 2 0 2 3 S c a l e I n c .
  • 16. 16 Chain-of-thought prompting Figure 1 from Jason Wei et al. (2022). © 2 0 2 3 S c a l e I n c .
  • 17. 17 Zero-shot chain-of-thought Figure 1 from Takeshi Kojima et al. (2022). © 2 0 2 3 S c a l e I n c .
  • 18. 18 Zero-shot chain-of-thought Figure 2 from Takeshi Kojima et al. (2022). © 2 0 2 3 S c a l e I n c .
  • 19. 19 Zero-shot chain-of-thought Figure 2 from Takeshi Kojima et al. (2022). © 2 0 2 3 S c a l e I n c .
  • 20. 20 Self-consistency and consensus Figure 1 from Xuezhi Wang et al. (2022). © 2 0 2 3 S c a l e I n c .