SlideShare a Scribd company logo
1
Leveraging Graphs for Better AI
Alicia Frame
Senior Data Scientist, neo4j
alicia.frame@neo4j.com
Washington DC, May 2019
Leveraging Graphs for Better AI
Leveraging Graphs for Better AI
Leveraging Graphs for Better AI
Financial Services Drug Discovery Recommendations
Cybersecurity Predictive Maintenance
Customer Segmentation
Churn Prediction Search/MDM
Graph Data Science Applications
• Current data science models ignore network structure
• Graphs add highly predictive features to existing ML models
• Otherwise unattainable predictions based on relationships
Novel & More Accurate Predictions
with the Data You Already Have
Machine Learning Pipeline
“The idea is that graph networks are bigger than
any one machine-learning approach.
Graphs bring an ability to generalize about structure that the
individual neural nets don't have.”
"Where do the graphs
come from that
graph networks operate
over?”
Building a Graph ML Model
Data
Sources
Native Graph Platform Machine
Learning
Aggregate Disparate Data
and Cleanse
Build Predictive ModelsUnify Graphs and Engineer
Features
Parquet JSON
and more…
MLlib
and more…
Spark Graph Native Graph Platform Machine Learning
Example: Spark & Neo4j Workflow
Graph
Transactions
Graph
Analytics
Cypher 9 in Spark 3.0 to
create non-persistent
graphs
MLlib to Train Models
Native Graph Algorithms,
Processing, and Storage
Explore Graphs Build Graph Solutions
• Massively scalable
• Powerful data pipelining
• Robust ML Libraries
• Non-persistent, non-native graphs
• Persistent, dynamic graphs
• Graph native query and algorithm
performance
• Constantly growing list of graph
algorithms and embeddings
The Steps of Graph Data Science
Query Based
Knowledge Graph
Query Based
Feature
Engineering
Graph Algorithm
Feature
Engineering
Graph
Embeddings
Graph Neural
Networks
Enterprise Maturity
DataScienceComplexity
Knowledge
Graphs
Graph Feature
Engineering
Graph Native
Learning
Graph Persistence
Steps Forward in Graph Data Science
Query Based
Knowledge Graph
Query Based
Feature Engineering
Graph Algorithm
Feature Engineering
Graph Embeddings
Graph Neural
Networks
Enterprise Maturity
DataScienceComplexity
Query-Based Knowledge Graphs
Connecting the Dots
• Many connected data sources:
corporate data with cross-
relationships, external news,
and customized weighting
• Dashboards and tools
• Credit risk
• Investment risk
• Portfolio news
recommendations
Steps Forward in Graph Data Science
Query Based
Knowledge Graph
Graph Algorithm
Feature
Engineering
Graph
Embeddings
Graph Neural
Networks
Query Based
Feature
Engineering
Enterprise Maturity
DataScienceComplexity
HetioNet is a knowledge
graph integrating over 50
years of biomedical data
Leveraged to predict new
uses for drugs by using the
graph topology to create
features to predict new links
Query-Based Feature Engineering
Mining Data for Drug Discovery
HetioNet is a knowledge
graph integrating over 50
years of biomedical data
Leveraged to predict new
uses for drugs by using the
graph topology to create
features to predict new links
Query-Based Feature Engineering
Mining Data for Drug Discovery
HetioNet is a knowledge
graph integrating over 50
years of biomedical data
Leveraged to predict new
uses for drugs by using the
graph topology to create
features to predict new links
Query-Based Feature Engineering
Mining Data for Drug Discovery
Spark Graph Native Graph Platform Machine Learning
• Merge distributed data into
DataFrames
• Reshape your tables
into graphs
• Explore cypher queries
• Move to Neo4j to build
expert queries
• Persist your graph
Knowledge Graphs:
Getting Started Example with Spark
• Bring query based graph
features to ML pipeline
Graph
Transactions
Graph
Analytics
Steps Forward in Graph Data Science
Query Based
Feature
Engineering
Graph
Embeddings
Graph Neural
Networks
Query Based
Knowledge Graph
Graph Algorithm
Feature
Engineering
Enterprise Maturity
DataScienceComplexity
Feature Engineering is how we combine and process the data to
create new, more meaningful features, such as clustering or
connectivity metrics.
Graph Feature Engineering
Add More Descriptive Features:
- Influence
- Relationships
- Communities
27
Graph Feature Categories & Algorithms
Pathfinding
& Search
Finds the optimal paths or evaluates
route availability and quality
Centrality /
Importance
Determines the importance of
distinct nodes in the network
Community
Detection
Detects group clustering or
partition options
Heuristic
Link Prediction
Estimates the likelihood of nodes
forming a relationship
Evaluates how alike nodes
are
Similarity
Embeddings
Learned representations
of connectivity or topology
• Connected components to identify
disjointed graphs sharing identifiers
• PageRank to measure influence and
transaction volumes
• Louvain to identify communities that
frequently interact
• Jaccard to measure account similarity
based on relationships
28
Financial Crime: Detecting Fraud
Large financial institutions already have existing pipelines to
identify fraud via heuristics and models
Graph based features improve accuracy:
+48,000 U.S. Patents for
Graph Fraud / Anomaly Detection
in the last 10 years
Spark Graph Native Graph Platform Machine Learning
• Merge distributed data into
DataFrames
• Reshape your tables
into graphs
• Explore cypher queries and
simple algorithms
• Persist your graph
• Create rule based features
• Run native graph
algorithms and write to
graph or stream
Graph Feature Engineering:
Getting Started Example with Spark
• Bring graph features to ML
pipeline for training
Graph
Transactions
Graph
Analytics
31
Graph Algorithms in Neo4J
• Parallel Breadth First Search
• Parallel Depth First Search
• Shortest Path
• Single-Source Shortest Path
• All Pairs Shortest Path
• Minimum Spanning Tree
• A* Shortest Path
• Yen’s K Shortest Path
• K-Spanning Tree (MST)
• Random Walk
• Degree Centrality
• Closeness Centrality
• CC Variations: Harmonic, Dangalchev,
Wasserman & Faust
• Betweenness Centrality
• Approximate Betweenness Centrality
• PageRank
• Personalized PageRank
• ArticleRank
• Eigenvector Centrality
• Triangle Count
• Clustering Coefficients
• Connected Components (Union Find)
• Strongly Connected Components
• Label Propagation
• Louvain Modularity – 1 Step & Multi-Step
• Balanced Triad (identification)
• Euclidean Distance
• Cosine Similarity
• Jaccard Similarity
• Overlap Similarity
• Pearson Similarity
Pathfinding
& Search
Centrality /
Importance
Community
Detection
Similarity
neo4j.com/docs/
graph-algorithms/current/
Link
Prediction
• Adamic Adar
• Common Neighbors
• Preferential Attachment
• Resource Allocations
• Same Community
• Total Neighbors
Steps Forward in Graph Data Science
Query Based
Knowledge Graph
Graph Algorithm
Feature
Engineering
Graph Neural
Networks
Query Based
Feature
Engineering
Graph
Embeddings
Enterprise Maturity
DataScienceComplexity
Embedding transforms graphs into a vector, or set of vectors,
describing topology, connectivity, or attributes of nodes and edges
in the graph
33
Graph Embeddings
• Vertex embeddings: describe connectivity of each node
• Path embeddings: traversals across the graph
• Graph embeddings: encode an entire graph into a single vector
Explainable Reasoning over Knowledge Graphs for
Recommendation
34
Graph Embeddings - Recommendations
35
Graph Embeddings - Recommendations
Explainable Reasoning over Knowledge Graphs for
Recommendation
Spark Graph Native Graph Platform Machine Learning
• Merge distributed data into
DataFrames
• Reshape your tables
into graphs
• Explore cypher queries and
simple algorithms
• Move to Neo4j to build
expert queries
• Write to persist
• Stay tuned for DeepWalk
and DeepGL algorithms
Graph Feature Engineering:
Getting Started Example with Spark
• Bring graph features to ML
pipeline for training
Graph
Transactions
Graph
Analytics
Steps Forward in Graph Data Science
Query Based
Knowledge Graph
Graph Algorithm
Feature
EngineeringQuery Based
Feature
Engineering
Graph Neural
Networks
Graph
Embeddings
Enterprise Maturity
DataScienceComplexity
Deep Learning refers to training multi-layer neural networks using
gradient descent
39
Graph Native Learning
Graph Native Learning refers to deep learning models that take a
graph as an input, performs computations, and return a graph
40
Graph Native Learning
Battaglia et al, 2018
Example: electron path prediction
Bradshaw et al, 2019
41
Graph Native Learning
Given reactants and reagents, what will the
products be?
Given reactants and reagents, what will the
products be?
Example: electron path prediction
42
Graph Native Learning
Progressing in Graph Data Science
Query Based
Knowledge Graph
Query Based
Feature
Engineering
Graph Algorithm
Feature
Engineering
Graph
Embeddings
Graph Neural
Networks
Enterprise Maturity
DataScienceComplexity
Knowledge
Graphs
Graph Feature
Engineering
Graph Native Learning
Graph Persistence
Resources
Business
• neo4j.com/use-cases/
artificial-intelligence-analytics/
Data Scientists/Developers
• neo4j.com/sandbox
• neo4j.com/developer/
• community.neo4j.com
alicia.frame@neo4j.com
@aliciaframe1
neo4j.com/
graph-algorithms-book
47
EXTRA STUFF
Leveraging Graphs for Better AI
49
Example: electron path prediction Bradshaw et al, 2019
Graph Native Learning
Predicting Chemical Reactions
Example: electron path prediction Bradshaw et al, 2019
50
Graph Native Learning
Predicting Chemical Reactions
Given reactants and reagents, what will the products be?
Thomson Reuters Graph
51
• Data Fusion for Portfolio Managers
• Graph layers
Software
Financial
Services Telecom
Retail &
Consumer Goods
Media &
Entertainment Other Industries
Airbus
300 Enterprises & 10k’s Projects on Neo4j
Leveraging Graphs for Better AI
Query-Based Knowledge Graphs
Connecting the Dots
“Using Neo4j someone from our Orion
project found information from the Apollo
project that prevented an issue, saving well
over two years of work and one million
dollars of taxpayer funds.”
David Meza, Chief Knowledge Architect – NASA 2015
Ad

More Related Content

What's hot (20)

Graphs and Financial Services Analytics
Graphs and Financial Services AnalyticsGraphs and Financial Services Analytics
Graphs and Financial Services Analytics
Neo4j
 
Graph Data Science at Scale
Graph Data Science at ScaleGraph Data Science at Scale
Graph Data Science at Scale
Neo4j
 
Graph technology meetup slides
Graph technology meetup slidesGraph technology meetup slides
Graph technology meetup slides
Sean Mulvehill
 
The Future is Big Graphs: A Community View on Graph Processing Systems
The Future is Big Graphs: A Community View on Graph Processing SystemsThe Future is Big Graphs: A Community View on Graph Processing Systems
The Future is Big Graphs: A Community View on Graph Processing Systems
Neo4j
 
Graph Data Science with Neo4j: Nordics Webinar
Graph Data Science with Neo4j: Nordics WebinarGraph Data Science with Neo4j: Nordics Webinar
Graph Data Science with Neo4j: Nordics Webinar
Neo4j
 
AI, ML and Graph Algorithms: Real Life Use Cases with Neo4j
AI, ML and Graph Algorithms: Real Life Use Cases with Neo4jAI, ML and Graph Algorithms: Real Life Use Cases with Neo4j
AI, ML and Graph Algorithms: Real Life Use Cases with Neo4j
Ivan Zoratti
 
Relationships Matter: Using Connected Data for Better Machine Learning
Relationships Matter: Using Connected Data for Better Machine LearningRelationships Matter: Using Connected Data for Better Machine Learning
Relationships Matter: Using Connected Data for Better Machine Learning
Neo4j
 
What Is GDS and Neo4j’s GDS Library
What Is GDS and Neo4j’s GDS LibraryWhat Is GDS and Neo4j’s GDS Library
What Is GDS and Neo4j’s GDS Library
Neo4j
 
3. Relationships Matter: Using Connected Data for Better Machine Learning
3. Relationships Matter: Using Connected Data for Better Machine Learning3. Relationships Matter: Using Connected Data for Better Machine Learning
3. Relationships Matter: Using Connected Data for Better Machine Learning
Neo4j
 
Neo4j Graph Data Science Training - June 9 & 10 - Slides #6 Graph Algorithms
Neo4j Graph Data Science Training - June 9 & 10 - Slides #6 Graph AlgorithmsNeo4j Graph Data Science Training - June 9 & 10 - Slides #6 Graph Algorithms
Neo4j Graph Data Science Training - June 9 & 10 - Slides #6 Graph Algorithms
Neo4j
 
How do You Graph
How do You GraphHow do You Graph
How do You Graph
Ben Krug
 
Graph Data Science: The Secret to Accelerating Innovation with AI/ML
Graph Data Science: The Secret to Accelerating Innovation with AI/MLGraph Data Science: The Secret to Accelerating Innovation with AI/ML
Graph Data Science: The Secret to Accelerating Innovation with AI/ML
Neo4j
 
GraphTour London 2020 - Graphs for AI, Amy Hodler
GraphTour London 2020  - Graphs for AI, Amy HodlerGraphTour London 2020  - Graphs for AI, Amy Hodler
GraphTour London 2020 - Graphs for AI, Amy Hodler
Neo4j
 
Neo4j – The Fastest Path to Scalable Real-Time Analytics
Neo4j – The Fastest Path to Scalable Real-Time AnalyticsNeo4j – The Fastest Path to Scalable Real-Time Analytics
Neo4j – The Fastest Path to Scalable Real-Time Analytics
Neo4j
 
Introduction to Neo4j
Introduction to Neo4jIntroduction to Neo4j
Introduction to Neo4j
Neo4j
 
GraphTour - Neo4j Platform Overview
GraphTour - Neo4j Platform OverviewGraphTour - Neo4j Platform Overview
GraphTour - Neo4j Platform Overview
Neo4j
 
Introduction to Neo4j
Introduction to Neo4jIntroduction to Neo4j
Introduction to Neo4j
Neo4j
 
Making connections matter: 2 use cases on graphs & analytics solutions
Making connections matter: 2 use cases on graphs & analytics solutionsMaking connections matter: 2 use cases on graphs & analytics solutions
Making connections matter: 2 use cases on graphs & analytics solutions
Neo4j
 
Real World Guide to Building Your Knowledge Graph
Real World Guide to Building Your Knowledge GraphReal World Guide to Building Your Knowledge Graph
Real World Guide to Building Your Knowledge Graph
Neo4j
 
GraphTour 2020 - Customer Journey with Neo4j Services
GraphTour 2020 - Customer Journey with Neo4j ServicesGraphTour 2020 - Customer Journey with Neo4j Services
GraphTour 2020 - Customer Journey with Neo4j Services
Neo4j
 
Graphs and Financial Services Analytics
Graphs and Financial Services AnalyticsGraphs and Financial Services Analytics
Graphs and Financial Services Analytics
Neo4j
 
Graph Data Science at Scale
Graph Data Science at ScaleGraph Data Science at Scale
Graph Data Science at Scale
Neo4j
 
Graph technology meetup slides
Graph technology meetup slidesGraph technology meetup slides
Graph technology meetup slides
Sean Mulvehill
 
The Future is Big Graphs: A Community View on Graph Processing Systems
The Future is Big Graphs: A Community View on Graph Processing SystemsThe Future is Big Graphs: A Community View on Graph Processing Systems
The Future is Big Graphs: A Community View on Graph Processing Systems
Neo4j
 
Graph Data Science with Neo4j: Nordics Webinar
Graph Data Science with Neo4j: Nordics WebinarGraph Data Science with Neo4j: Nordics Webinar
Graph Data Science with Neo4j: Nordics Webinar
Neo4j
 
AI, ML and Graph Algorithms: Real Life Use Cases with Neo4j
AI, ML and Graph Algorithms: Real Life Use Cases with Neo4jAI, ML and Graph Algorithms: Real Life Use Cases with Neo4j
AI, ML and Graph Algorithms: Real Life Use Cases with Neo4j
Ivan Zoratti
 
Relationships Matter: Using Connected Data for Better Machine Learning
Relationships Matter: Using Connected Data for Better Machine LearningRelationships Matter: Using Connected Data for Better Machine Learning
Relationships Matter: Using Connected Data for Better Machine Learning
Neo4j
 
What Is GDS and Neo4j’s GDS Library
What Is GDS and Neo4j’s GDS LibraryWhat Is GDS and Neo4j’s GDS Library
What Is GDS and Neo4j’s GDS Library
Neo4j
 
3. Relationships Matter: Using Connected Data for Better Machine Learning
3. Relationships Matter: Using Connected Data for Better Machine Learning3. Relationships Matter: Using Connected Data for Better Machine Learning
3. Relationships Matter: Using Connected Data for Better Machine Learning
Neo4j
 
Neo4j Graph Data Science Training - June 9 & 10 - Slides #6 Graph Algorithms
Neo4j Graph Data Science Training - June 9 & 10 - Slides #6 Graph AlgorithmsNeo4j Graph Data Science Training - June 9 & 10 - Slides #6 Graph Algorithms
Neo4j Graph Data Science Training - June 9 & 10 - Slides #6 Graph Algorithms
Neo4j
 
How do You Graph
How do You GraphHow do You Graph
How do You Graph
Ben Krug
 
Graph Data Science: The Secret to Accelerating Innovation with AI/ML
Graph Data Science: The Secret to Accelerating Innovation with AI/MLGraph Data Science: The Secret to Accelerating Innovation with AI/ML
Graph Data Science: The Secret to Accelerating Innovation with AI/ML
Neo4j
 
GraphTour London 2020 - Graphs for AI, Amy Hodler
GraphTour London 2020  - Graphs for AI, Amy HodlerGraphTour London 2020  - Graphs for AI, Amy Hodler
GraphTour London 2020 - Graphs for AI, Amy Hodler
Neo4j
 
Neo4j – The Fastest Path to Scalable Real-Time Analytics
Neo4j – The Fastest Path to Scalable Real-Time AnalyticsNeo4j – The Fastest Path to Scalable Real-Time Analytics
Neo4j – The Fastest Path to Scalable Real-Time Analytics
Neo4j
 
Introduction to Neo4j
Introduction to Neo4jIntroduction to Neo4j
Introduction to Neo4j
Neo4j
 
GraphTour - Neo4j Platform Overview
GraphTour - Neo4j Platform OverviewGraphTour - Neo4j Platform Overview
GraphTour - Neo4j Platform Overview
Neo4j
 
Introduction to Neo4j
Introduction to Neo4jIntroduction to Neo4j
Introduction to Neo4j
Neo4j
 
Making connections matter: 2 use cases on graphs & analytics solutions
Making connections matter: 2 use cases on graphs & analytics solutionsMaking connections matter: 2 use cases on graphs & analytics solutions
Making connections matter: 2 use cases on graphs & analytics solutions
Neo4j
 
Real World Guide to Building Your Knowledge Graph
Real World Guide to Building Your Knowledge GraphReal World Guide to Building Your Knowledge Graph
Real World Guide to Building Your Knowledge Graph
Neo4j
 
GraphTour 2020 - Customer Journey with Neo4j Services
GraphTour 2020 - Customer Journey with Neo4j ServicesGraphTour 2020 - Customer Journey with Neo4j Services
GraphTour 2020 - Customer Journey with Neo4j Services
Neo4j
 

Similar to Leveraging Graphs for Better AI (20)

Leveraging Graphs for Better AI
Leveraging Graphs for Better AILeveraging Graphs for Better AI
Leveraging Graphs for Better AI
Neo4j
 
How Graphs Enhance AI
How Graphs Enhance AIHow Graphs Enhance AI
How Graphs Enhance AI
Neo4j
 
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4jTransforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Fred Madrid
 
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4jTransforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Databricks
 
The Analytics Frontier of the Hadoop Eco-System
The Analytics Frontier of the Hadoop Eco-SystemThe Analytics Frontier of the Hadoop Eco-System
The Analytics Frontier of the Hadoop Eco-System
inside-BigData.com
 
How Graphs are Changing AI
How Graphs are Changing AIHow Graphs are Changing AI
How Graphs are Changing AI
Neo4j
 
Improve ml predictions using graph algorithms (webinar july 23_19).pptx
Improve ml predictions using graph algorithms (webinar july 23_19).pptxImprove ml predictions using graph algorithms (webinar july 23_19).pptx
Improve ml predictions using graph algorithms (webinar july 23_19).pptx
Neo4j
 
Neo4j GraphTalk Düsseldorf - Building intelligent solutions with Graphs
Neo4j GraphTalk Düsseldorf - Building intelligent solutions with GraphsNeo4j GraphTalk Düsseldorf - Building intelligent solutions with Graphs
Neo4j GraphTalk Düsseldorf - Building intelligent solutions with Graphs
Neo4j
 
Azure Databricks for Data Scientists
Azure Databricks for Data ScientistsAzure Databricks for Data Scientists
Azure Databricks for Data Scientists
Richard Garris
 
Ted Willke, Senior Principal Engineer & GM, Datacenter Group, Intel at MLconf SF
Ted Willke, Senior Principal Engineer & GM, Datacenter Group, Intel at MLconf SFTed Willke, Senior Principal Engineer & GM, Datacenter Group, Intel at MLconf SF
Ted Willke, Senior Principal Engineer & GM, Datacenter Group, Intel at MLconf SF
MLconf
 
GraphFrames: DataFrame-based graphs for Apache® Spark™
GraphFrames: DataFrame-based graphs for Apache® Spark™GraphFrames: DataFrame-based graphs for Apache® Spark™
GraphFrames: DataFrame-based graphs for Apache® Spark™
Databricks
 
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j
 
Morpheus - SQL and Cypher in Apache Spark
Morpheus - SQL and Cypher in Apache SparkMorpheus - SQL and Cypher in Apache Spark
Morpheus - SQL and Cypher in Apache Spark
Henning Kropp
 
Morpheus SQL and Cypher® in Apache® Spark - Big Data Meetup Munich
Morpheus SQL and Cypher® in Apache® Spark - Big Data Meetup MunichMorpheus SQL and Cypher® in Apache® Spark - Big Data Meetup Munich
Morpheus SQL and Cypher® in Apache® Spark - Big Data Meetup Munich
Martin Junghanns
 
Nodes2020 | Graph of enterprise_metadata | NEO4J Conference
Nodes2020 | Graph of enterprise_metadata | NEO4J ConferenceNodes2020 | Graph of enterprise_metadata | NEO4J Conference
Nodes2020 | Graph of enterprise_metadata | NEO4J Conference
Deepak Chandramouli
 
Joseph Bradley, Software Engineer, Databricks Inc. at MLconf SEA - 5/01/15
Joseph Bradley, Software Engineer, Databricks Inc. at MLconf SEA - 5/01/15Joseph Bradley, Software Engineer, Databricks Inc. at MLconf SEA - 5/01/15
Joseph Bradley, Software Engineer, Databricks Inc. at MLconf SEA - 5/01/15
MLconf
 
Roadmap for Enterprise Graph Strategy
Roadmap for Enterprise Graph StrategyRoadmap for Enterprise Graph Strategy
Roadmap for Enterprise Graph Strategy
Neo4j
 
Improve ML Predictions using Connected Feature Extraction
Improve ML Predictions using Connected Feature ExtractionImprove ML Predictions using Connected Feature Extraction
Improve ML Predictions using Connected Feature Extraction
Databricks
 
Knowledge Graphs - Journey to the Connected Enterprise - Data Strategy and An...
Knowledge Graphs - Journey to the Connected Enterprise - Data Strategy and An...Knowledge Graphs - Journey to the Connected Enterprise - Data Strategy and An...
Knowledge Graphs - Journey to the Connected Enterprise - Data Strategy and An...
Benjamin Nussbaum
 
Components of Data Science coding masters.pdf
Components of Data Science coding masters.pdfComponents of Data Science coding masters.pdf
Components of Data Science coding masters.pdf
codingmaster021
 
Leveraging Graphs for Better AI
Leveraging Graphs for Better AILeveraging Graphs for Better AI
Leveraging Graphs for Better AI
Neo4j
 
How Graphs Enhance AI
How Graphs Enhance AIHow Graphs Enhance AI
How Graphs Enhance AI
Neo4j
 
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4jTransforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Fred Madrid
 
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4jTransforming AI with Graphs: Real World Examples using Spark and Neo4j
Transforming AI with Graphs: Real World Examples using Spark and Neo4j
Databricks
 
The Analytics Frontier of the Hadoop Eco-System
The Analytics Frontier of the Hadoop Eco-SystemThe Analytics Frontier of the Hadoop Eco-System
The Analytics Frontier of the Hadoop Eco-System
inside-BigData.com
 
How Graphs are Changing AI
How Graphs are Changing AIHow Graphs are Changing AI
How Graphs are Changing AI
Neo4j
 
Improve ml predictions using graph algorithms (webinar july 23_19).pptx
Improve ml predictions using graph algorithms (webinar july 23_19).pptxImprove ml predictions using graph algorithms (webinar july 23_19).pptx
Improve ml predictions using graph algorithms (webinar july 23_19).pptx
Neo4j
 
Neo4j GraphTalk Düsseldorf - Building intelligent solutions with Graphs
Neo4j GraphTalk Düsseldorf - Building intelligent solutions with GraphsNeo4j GraphTalk Düsseldorf - Building intelligent solutions with Graphs
Neo4j GraphTalk Düsseldorf - Building intelligent solutions with Graphs
Neo4j
 
Azure Databricks for Data Scientists
Azure Databricks for Data ScientistsAzure Databricks for Data Scientists
Azure Databricks for Data Scientists
Richard Garris
 
Ted Willke, Senior Principal Engineer & GM, Datacenter Group, Intel at MLconf SF
Ted Willke, Senior Principal Engineer & GM, Datacenter Group, Intel at MLconf SFTed Willke, Senior Principal Engineer & GM, Datacenter Group, Intel at MLconf SF
Ted Willke, Senior Principal Engineer & GM, Datacenter Group, Intel at MLconf SF
MLconf
 
GraphFrames: DataFrame-based graphs for Apache® Spark™
GraphFrames: DataFrame-based graphs for Apache® Spark™GraphFrames: DataFrame-based graphs for Apache® Spark™
GraphFrames: DataFrame-based graphs for Apache® Spark™
Databricks
 
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j GraphSummit London - The Path To Success With Graph Database and Data S...
Neo4j
 
Morpheus - SQL and Cypher in Apache Spark
Morpheus - SQL and Cypher in Apache SparkMorpheus - SQL and Cypher in Apache Spark
Morpheus - SQL and Cypher in Apache Spark
Henning Kropp
 
Morpheus SQL and Cypher® in Apache® Spark - Big Data Meetup Munich
Morpheus SQL and Cypher® in Apache® Spark - Big Data Meetup MunichMorpheus SQL and Cypher® in Apache® Spark - Big Data Meetup Munich
Morpheus SQL and Cypher® in Apache® Spark - Big Data Meetup Munich
Martin Junghanns
 
Nodes2020 | Graph of enterprise_metadata | NEO4J Conference
Nodes2020 | Graph of enterprise_metadata | NEO4J ConferenceNodes2020 | Graph of enterprise_metadata | NEO4J Conference
Nodes2020 | Graph of enterprise_metadata | NEO4J Conference
Deepak Chandramouli
 
Joseph Bradley, Software Engineer, Databricks Inc. at MLconf SEA - 5/01/15
Joseph Bradley, Software Engineer, Databricks Inc. at MLconf SEA - 5/01/15Joseph Bradley, Software Engineer, Databricks Inc. at MLconf SEA - 5/01/15
Joseph Bradley, Software Engineer, Databricks Inc. at MLconf SEA - 5/01/15
MLconf
 
Roadmap for Enterprise Graph Strategy
Roadmap for Enterprise Graph StrategyRoadmap for Enterprise Graph Strategy
Roadmap for Enterprise Graph Strategy
Neo4j
 
Improve ML Predictions using Connected Feature Extraction
Improve ML Predictions using Connected Feature ExtractionImprove ML Predictions using Connected Feature Extraction
Improve ML Predictions using Connected Feature Extraction
Databricks
 
Knowledge Graphs - Journey to the Connected Enterprise - Data Strategy and An...
Knowledge Graphs - Journey to the Connected Enterprise - Data Strategy and An...Knowledge Graphs - Journey to the Connected Enterprise - Data Strategy and An...
Knowledge Graphs - Journey to the Connected Enterprise - Data Strategy and An...
Benjamin Nussbaum
 
Components of Data Science coding masters.pdf
Components of Data Science coding masters.pdfComponents of Data Science coding masters.pdf
Components of Data Science coding masters.pdf
codingmaster021
 
Ad

More from Neo4j (20)

Graphs & GraphRAG - Essential Ingredients for GenAI
Graphs & GraphRAG - Essential Ingredients for GenAIGraphs & GraphRAG - Essential Ingredients for GenAI
Graphs & GraphRAG - Essential Ingredients for GenAI
Neo4j
 
Neo4j Knowledge for Customer Experience.pptx
Neo4j Knowledge for Customer Experience.pptxNeo4j Knowledge for Customer Experience.pptx
Neo4j Knowledge for Customer Experience.pptx
Neo4j
 
GraphTalk New Zealand - The Art of The Possible.pptx
GraphTalk New Zealand - The Art of The Possible.pptxGraphTalk New Zealand - The Art of The Possible.pptx
GraphTalk New Zealand - The Art of The Possible.pptx
Neo4j
 
Neo4j: The Art of the Possible with Graph
Neo4j: The Art of the Possible with GraphNeo4j: The Art of the Possible with Graph
Neo4j: The Art of the Possible with Graph
Neo4j
 
Smarter Knowledge Graphs For Public Sector
Smarter Knowledge Graphs For Public  SectorSmarter Knowledge Graphs For Public  Sector
Smarter Knowledge Graphs For Public Sector
Neo4j
 
GraphRAG and Knowledge Graphs Exploring AI's Future
GraphRAG and Knowledge Graphs Exploring AI's FutureGraphRAG and Knowledge Graphs Exploring AI's Future
GraphRAG and Knowledge Graphs Exploring AI's Future
Neo4j
 
Matinée GenAI & GraphRAG Paris - Décembre 24
Matinée GenAI & GraphRAG Paris - Décembre 24Matinée GenAI & GraphRAG Paris - Décembre 24
Matinée GenAI & GraphRAG Paris - Décembre 24
Neo4j
 
ANZ Presentation: GraphSummit Melbourne 2024
ANZ Presentation: GraphSummit Melbourne 2024ANZ Presentation: GraphSummit Melbourne 2024
ANZ Presentation: GraphSummit Melbourne 2024
Neo4j
 
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Neo4j
 
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Neo4j
 
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Neo4j
 
Démonstration Digital Twin Building Wire Management
Démonstration Digital Twin Building Wire ManagementDémonstration Digital Twin Building Wire Management
Démonstration Digital Twin Building Wire Management
Neo4j
 
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Neo4j
 
Démonstration Supply Chain - GraphTalk Paris
Démonstration Supply Chain - GraphTalk ParisDémonstration Supply Chain - GraphTalk Paris
Démonstration Supply Chain - GraphTalk Paris
Neo4j
 
The Art of Possible - GraphTalk Paris Opening Session
The Art of Possible - GraphTalk Paris Opening SessionThe Art of Possible - GraphTalk Paris Opening Session
The Art of Possible - GraphTalk Paris Opening Session
Neo4j
 
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
How Siemens bolstered supply chain resilience with graph-powered AI insights ...How Siemens bolstered supply chain resilience with graph-powered AI insights ...
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
Neo4j
 
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Neo4j
 
Neo4j Graph Data Modelling Session - GraphTalk
Neo4j Graph Data Modelling Session - GraphTalkNeo4j Graph Data Modelling Session - GraphTalk
Neo4j Graph Data Modelling Session - GraphTalk
Neo4j
 
Neo4j: The Art of Possible with Graph Technology
Neo4j: The Art of Possible with Graph TechnologyNeo4j: The Art of Possible with Graph Technology
Neo4j: The Art of Possible with Graph Technology
Neo4j
 
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life SciencesAstra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Neo4j
 
Graphs & GraphRAG - Essential Ingredients for GenAI
Graphs & GraphRAG - Essential Ingredients for GenAIGraphs & GraphRAG - Essential Ingredients for GenAI
Graphs & GraphRAG - Essential Ingredients for GenAI
Neo4j
 
Neo4j Knowledge for Customer Experience.pptx
Neo4j Knowledge for Customer Experience.pptxNeo4j Knowledge for Customer Experience.pptx
Neo4j Knowledge for Customer Experience.pptx
Neo4j
 
GraphTalk New Zealand - The Art of The Possible.pptx
GraphTalk New Zealand - The Art of The Possible.pptxGraphTalk New Zealand - The Art of The Possible.pptx
GraphTalk New Zealand - The Art of The Possible.pptx
Neo4j
 
Neo4j: The Art of the Possible with Graph
Neo4j: The Art of the Possible with GraphNeo4j: The Art of the Possible with Graph
Neo4j: The Art of the Possible with Graph
Neo4j
 
Smarter Knowledge Graphs For Public Sector
Smarter Knowledge Graphs For Public  SectorSmarter Knowledge Graphs For Public  Sector
Smarter Knowledge Graphs For Public Sector
Neo4j
 
GraphRAG and Knowledge Graphs Exploring AI's Future
GraphRAG and Knowledge Graphs Exploring AI's FutureGraphRAG and Knowledge Graphs Exploring AI's Future
GraphRAG and Knowledge Graphs Exploring AI's Future
Neo4j
 
Matinée GenAI & GraphRAG Paris - Décembre 24
Matinée GenAI & GraphRAG Paris - Décembre 24Matinée GenAI & GraphRAG Paris - Décembre 24
Matinée GenAI & GraphRAG Paris - Décembre 24
Neo4j
 
ANZ Presentation: GraphSummit Melbourne 2024
ANZ Presentation: GraphSummit Melbourne 2024ANZ Presentation: GraphSummit Melbourne 2024
ANZ Presentation: GraphSummit Melbourne 2024
Neo4j
 
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Neo4j
 
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Neo4j
 
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Neo4j
 
Démonstration Digital Twin Building Wire Management
Démonstration Digital Twin Building Wire ManagementDémonstration Digital Twin Building Wire Management
Démonstration Digital Twin Building Wire Management
Neo4j
 
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Neo4j
 
Démonstration Supply Chain - GraphTalk Paris
Démonstration Supply Chain - GraphTalk ParisDémonstration Supply Chain - GraphTalk Paris
Démonstration Supply Chain - GraphTalk Paris
Neo4j
 
The Art of Possible - GraphTalk Paris Opening Session
The Art of Possible - GraphTalk Paris Opening SessionThe Art of Possible - GraphTalk Paris Opening Session
The Art of Possible - GraphTalk Paris Opening Session
Neo4j
 
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
How Siemens bolstered supply chain resilience with graph-powered AI insights ...How Siemens bolstered supply chain resilience with graph-powered AI insights ...
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
Neo4j
 
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Neo4j
 
Neo4j Graph Data Modelling Session - GraphTalk
Neo4j Graph Data Modelling Session - GraphTalkNeo4j Graph Data Modelling Session - GraphTalk
Neo4j Graph Data Modelling Session - GraphTalk
Neo4j
 
Neo4j: The Art of Possible with Graph Technology
Neo4j: The Art of Possible with Graph TechnologyNeo4j: The Art of Possible with Graph Technology
Neo4j: The Art of Possible with Graph Technology
Neo4j
 
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life SciencesAstra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Neo4j
 
Ad

Recently uploaded (20)

Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Andre Hora
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AI
Scaling GraphRAG:  Efficient Knowledge Retrieval for Enterprise AIScaling GraphRAG:  Efficient Knowledge Retrieval for Enterprise AI
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AI
danshalev
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025
kashifyounis067
 
Maxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINKMaxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINK
younisnoman75
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
Egor Kaleynik
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Andre Hora
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AI
Scaling GraphRAG:  Efficient Knowledge Retrieval for Enterprise AIScaling GraphRAG:  Efficient Knowledge Retrieval for Enterprise AI
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AI
danshalev
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025
kashifyounis067
 
Maxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINKMaxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINK
younisnoman75
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
Egor Kaleynik
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 

Leveraging Graphs for Better AI

  • 1. 1 Leveraging Graphs for Better AI Alicia Frame Senior Data Scientist, neo4j [email protected] Washington DC, May 2019
  • 5. Financial Services Drug Discovery Recommendations Cybersecurity Predictive Maintenance Customer Segmentation Churn Prediction Search/MDM Graph Data Science Applications
  • 6. • Current data science models ignore network structure • Graphs add highly predictive features to existing ML models • Otherwise unattainable predictions based on relationships Novel & More Accurate Predictions with the Data You Already Have Machine Learning Pipeline
  • 7. “The idea is that graph networks are bigger than any one machine-learning approach. Graphs bring an ability to generalize about structure that the individual neural nets don't have.” "Where do the graphs come from that graph networks operate over?”
  • 8. Building a Graph ML Model Data Sources Native Graph Platform Machine Learning Aggregate Disparate Data and Cleanse Build Predictive ModelsUnify Graphs and Engineer Features Parquet JSON and more… MLlib and more…
  • 9. Spark Graph Native Graph Platform Machine Learning Example: Spark & Neo4j Workflow Graph Transactions Graph Analytics Cypher 9 in Spark 3.0 to create non-persistent graphs MLlib to Train Models Native Graph Algorithms, Processing, and Storage
  • 10. Explore Graphs Build Graph Solutions • Massively scalable • Powerful data pipelining • Robust ML Libraries • Non-persistent, non-native graphs • Persistent, dynamic graphs • Graph native query and algorithm performance • Constantly growing list of graph algorithms and embeddings
  • 11. The Steps of Graph Data Science Query Based Knowledge Graph Query Based Feature Engineering Graph Algorithm Feature Engineering Graph Embeddings Graph Neural Networks Enterprise Maturity DataScienceComplexity Knowledge Graphs Graph Feature Engineering Graph Native Learning Graph Persistence
  • 12. Steps Forward in Graph Data Science Query Based Knowledge Graph Query Based Feature Engineering Graph Algorithm Feature Engineering Graph Embeddings Graph Neural Networks Enterprise Maturity DataScienceComplexity
  • 13. Query-Based Knowledge Graphs Connecting the Dots • Many connected data sources: corporate data with cross- relationships, external news, and customized weighting • Dashboards and tools • Credit risk • Investment risk • Portfolio news recommendations
  • 14. Steps Forward in Graph Data Science Query Based Knowledge Graph Graph Algorithm Feature Engineering Graph Embeddings Graph Neural Networks Query Based Feature Engineering Enterprise Maturity DataScienceComplexity
  • 15. HetioNet is a knowledge graph integrating over 50 years of biomedical data Leveraged to predict new uses for drugs by using the graph topology to create features to predict new links Query-Based Feature Engineering Mining Data for Drug Discovery
  • 16. HetioNet is a knowledge graph integrating over 50 years of biomedical data Leveraged to predict new uses for drugs by using the graph topology to create features to predict new links Query-Based Feature Engineering Mining Data for Drug Discovery
  • 17. HetioNet is a knowledge graph integrating over 50 years of biomedical data Leveraged to predict new uses for drugs by using the graph topology to create features to predict new links Query-Based Feature Engineering Mining Data for Drug Discovery
  • 18. Spark Graph Native Graph Platform Machine Learning • Merge distributed data into DataFrames • Reshape your tables into graphs • Explore cypher queries • Move to Neo4j to build expert queries • Persist your graph Knowledge Graphs: Getting Started Example with Spark • Bring query based graph features to ML pipeline Graph Transactions Graph Analytics
  • 19. Steps Forward in Graph Data Science Query Based Feature Engineering Graph Embeddings Graph Neural Networks Query Based Knowledge Graph Graph Algorithm Feature Engineering Enterprise Maturity DataScienceComplexity
  • 20. Feature Engineering is how we combine and process the data to create new, more meaningful features, such as clustering or connectivity metrics. Graph Feature Engineering Add More Descriptive Features: - Influence - Relationships - Communities
  • 21. 27 Graph Feature Categories & Algorithms Pathfinding & Search Finds the optimal paths or evaluates route availability and quality Centrality / Importance Determines the importance of distinct nodes in the network Community Detection Detects group clustering or partition options Heuristic Link Prediction Estimates the likelihood of nodes forming a relationship Evaluates how alike nodes are Similarity Embeddings Learned representations of connectivity or topology
  • 22. • Connected components to identify disjointed graphs sharing identifiers • PageRank to measure influence and transaction volumes • Louvain to identify communities that frequently interact • Jaccard to measure account similarity based on relationships 28 Financial Crime: Detecting Fraud Large financial institutions already have existing pipelines to identify fraud via heuristics and models Graph based features improve accuracy:
  • 23. +48,000 U.S. Patents for Graph Fraud / Anomaly Detection in the last 10 years
  • 24. Spark Graph Native Graph Platform Machine Learning • Merge distributed data into DataFrames • Reshape your tables into graphs • Explore cypher queries and simple algorithms • Persist your graph • Create rule based features • Run native graph algorithms and write to graph or stream Graph Feature Engineering: Getting Started Example with Spark • Bring graph features to ML pipeline for training Graph Transactions Graph Analytics
  • 25. 31 Graph Algorithms in Neo4J • Parallel Breadth First Search • Parallel Depth First Search • Shortest Path • Single-Source Shortest Path • All Pairs Shortest Path • Minimum Spanning Tree • A* Shortest Path • Yen’s K Shortest Path • K-Spanning Tree (MST) • Random Walk • Degree Centrality • Closeness Centrality • CC Variations: Harmonic, Dangalchev, Wasserman & Faust • Betweenness Centrality • Approximate Betweenness Centrality • PageRank • Personalized PageRank • ArticleRank • Eigenvector Centrality • Triangle Count • Clustering Coefficients • Connected Components (Union Find) • Strongly Connected Components • Label Propagation • Louvain Modularity – 1 Step & Multi-Step • Balanced Triad (identification) • Euclidean Distance • Cosine Similarity • Jaccard Similarity • Overlap Similarity • Pearson Similarity Pathfinding & Search Centrality / Importance Community Detection Similarity neo4j.com/docs/ graph-algorithms/current/ Link Prediction • Adamic Adar • Common Neighbors • Preferential Attachment • Resource Allocations • Same Community • Total Neighbors
  • 26. Steps Forward in Graph Data Science Query Based Knowledge Graph Graph Algorithm Feature Engineering Graph Neural Networks Query Based Feature Engineering Graph Embeddings Enterprise Maturity DataScienceComplexity
  • 27. Embedding transforms graphs into a vector, or set of vectors, describing topology, connectivity, or attributes of nodes and edges in the graph 33 Graph Embeddings • Vertex embeddings: describe connectivity of each node • Path embeddings: traversals across the graph • Graph embeddings: encode an entire graph into a single vector
  • 28. Explainable Reasoning over Knowledge Graphs for Recommendation 34 Graph Embeddings - Recommendations
  • 29. 35 Graph Embeddings - Recommendations Explainable Reasoning over Knowledge Graphs for Recommendation
  • 30. Spark Graph Native Graph Platform Machine Learning • Merge distributed data into DataFrames • Reshape your tables into graphs • Explore cypher queries and simple algorithms • Move to Neo4j to build expert queries • Write to persist • Stay tuned for DeepWalk and DeepGL algorithms Graph Feature Engineering: Getting Started Example with Spark • Bring graph features to ML pipeline for training Graph Transactions Graph Analytics
  • 31. Steps Forward in Graph Data Science Query Based Knowledge Graph Graph Algorithm Feature EngineeringQuery Based Feature Engineering Graph Neural Networks Graph Embeddings Enterprise Maturity DataScienceComplexity
  • 32. Deep Learning refers to training multi-layer neural networks using gradient descent 39 Graph Native Learning
  • 33. Graph Native Learning refers to deep learning models that take a graph as an input, performs computations, and return a graph 40 Graph Native Learning Battaglia et al, 2018
  • 34. Example: electron path prediction Bradshaw et al, 2019 41 Graph Native Learning Given reactants and reagents, what will the products be? Given reactants and reagents, what will the products be?
  • 35. Example: electron path prediction 42 Graph Native Learning
  • 36. Progressing in Graph Data Science Query Based Knowledge Graph Query Based Feature Engineering Graph Algorithm Feature Engineering Graph Embeddings Graph Neural Networks Enterprise Maturity DataScienceComplexity Knowledge Graphs Graph Feature Engineering Graph Native Learning Graph Persistence
  • 37. Resources Business • neo4j.com/use-cases/ artificial-intelligence-analytics/ Data Scientists/Developers • neo4j.com/sandbox • neo4j.com/developer/ • community.neo4j.com [email protected] @aliciaframe1 neo4j.com/ graph-algorithms-book
  • 40. 49 Example: electron path prediction Bradshaw et al, 2019 Graph Native Learning Predicting Chemical Reactions
  • 41. Example: electron path prediction Bradshaw et al, 2019 50 Graph Native Learning Predicting Chemical Reactions Given reactants and reagents, what will the products be?
  • 42. Thomson Reuters Graph 51 • Data Fusion for Portfolio Managers • Graph layers
  • 43. Software Financial Services Telecom Retail & Consumer Goods Media & Entertainment Other Industries Airbus 300 Enterprises & 10k’s Projects on Neo4j
  • 45. Query-Based Knowledge Graphs Connecting the Dots “Using Neo4j someone from our Orion project found information from the Apollo project that prevented an issue, saving well over two years of work and one million dollars of taxpayer funds.” David Meza, Chief Knowledge Architect – NASA 2015