The data science process seeks to transform and empower organizations by finding and exploiting market inefficiencies and potentially hidden opportunities, but this is often an expensive, tedious process. However, many steps can be automated to provide a streamlined experience for data scientists. Eduardo Arino de la Rubia explores the tools being created by the open source community to free data scientists from tedium, enabling them to work on the high-value aspects of insight creation and impact validation. The promise of the automated statistician is almost as old as statistics itself. From the creations of vast tables, which saved the labor of calculation, to modern tools which automatically mine datasets for correlations, there has been a considerable amount of advancement in this field. Eduardo compares and contrasts a number of open source tools, including TPOT and auto-sklearn for automated model generation and scikit-feature for feature generation and other aspects of the data science workflow, evaluates their results, and discusses their place in the modern data science workflow. Along the way, Eduardo outlines the pitfalls of automated data science and applications of the “no free lunch” theorem and dives into alternate approaches, such as end-to-end deep learning, which seek to leverage massive-scale computing and architectures to handle automatic generation of features and advanced models.