SlideShare a Scribd company logo
Institute for Web Science & Technologies – WeST
Leveraging the Web of Data:
Managing, Analysing and Making
Use of Linked Open Data
Thomas Gottron
July 18th, 2014
IRSS
Thomas Gottron IRSS, Athens, 18.7.2014, 2Leveraging the Web of Data
Linked Open Data – Vision of a Web of Data
§  „Classic“ Web
w  Linked documents
§  Web of Data
w  Linked data entities
Thomas Gottron IRSS, Athens, 18.7.2014, 3Leveraging the Web of Data
§  „Classic“ Web
Linked Open Data – Vision of a Web of Data
§  Web of Data
ID
ID
Thomas Gottron IRSS, Athens, 18.7.2014, 4Leveraging the Web of Data
LOD – Base technologies
§  IDs: Dereferencable HTTP URIs
§  Data Format: RDF
§  No schema
§  Links to other data sources
foaf:Document
„Extracting schema ...“
fb:Computer_Scientist
dc:creator
http://dblp.l3s.de/.../NesterovAM98
http://dblp.l3s.de/.../Serge_Abiteboul
rdf:type
„Serge Abiteboul“
dc:title
rdf:type
foaf:name
http://www.bibsonomy.org/.../Serge+Abiteboul
rdfs:seeAlso
1 Statement = 1 Tripel
Subject Predicate Object
rdf:type = http://www.w3.org/1999/02/22-rdf-syntax-ns#type
foaf:Document = http://xmlns.com/foaf/0.1/Document
swrc:InProceedingsrdf:type
Thomas Gottron IRSS, Athens, 18.7.2014, 5Leveraging the Web of Data
LOD Cloud
… the Web of Linked Data consisting of
more than 30 Billion RDF triples from
hundreds of data sources …
Gerhard Weikum
SIGMOD Blog, 6.3.2013
http://wp.sigmod.org/
Where’s the Data in
the Big Data Wave?
Thomas Gottron IRSS, Athens, 18.7.2014, 6Leveraging the Web of Data
Some „Bubbles“ of the LOD Cloud
Thomas Gottron IRSS, Athens, 18.7.2014, 7Leveraging the Web of Data
Making Use of the Linked Data Cloud ...
Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/
LOD: a rich, huge, diverse, public and distributed knowledge base on the Web.
Pros Cons
rich
knowledge
base
diversepublic
huge
on the Web
diversedistributed
Find technical solutions to
overcome challenges
Thomas Gottron IRSS, Athens, 18.7.2014, 8Leveraging the Web of Data
Managing
k1
k2
k3
...
kn
d1,1 d1,2 d1,3 ...
d2,1 d2,2
d3,1 d3,2 d3,3 ...
dn,1 dn,2 dn,3 ...
Search
data
structure
Efficientstorage
andretrieval
MakingUseAnalysing
0.0
0.2
0.4
0.6
0.8
1.0
0 10 20 30 40 50 60 70 80
MicroAvg.F1
Week of Data Snapshot
RDF Type TS PS IPS ECS SchemEX
E1
rdf:type dc:creator
E2
Bad News ...dc:title
foaf:Document
swrc:InProceedings
rdf:type
Thomas Gottron IRSS, Athens, 18.7.2014, 9Leveraging the Web of Data
Managing
k1
k2
k3
...
kn
d1,1 d1,2 d1,3 ...
d2,1 d2,2
d3,1 d3,2 d3,3 ...
dn,1 dn,2 dn,3 ...
Search
data
structure
Efficientstorage
andretrieval
E1
rdf:type dc:creator
E2
Bad News ...dc:title
foaf:Document
swrc:InProceedings
rdf:type
Analysing
0.0
0.2
0.4
0.6
0.8
1.0
0 10 20 30 40 50 60 70 80
MicroAvg.F1
Week of Data Snapshot
RDF Type TS PS IPS ECS SchemEX
MakingUse
Thomas Gottron IRSS, Athens, 18.7.2014, 10Leveraging the Web of Data
Data Format
§  Linked Data as N-Quads:
triple – what is the information?
context URI – where does it come from?
s op
c
( )s op c
Thomas Gottron IRSS, Athens, 18.7.2014, 11Leveraging the Web of Data
Index Models
Thomas Gottron IRSS, Athens, 18.7.2014, 12Leveraging the Web of Data
(Abstract) Index Models
w  D : Data elements to be retrieved (payload)
w  K : Key elements to access the data (index elements)
w  σ : Selection function: How to get data for a key
k1
k2
k3
...
kn
d1,1 d1,2 d1,3 ...
d2,1 d2,2
d3,1 d3,2 d3,3 ...
dn,1 dn,2 dn,3 ...
DK σ
Searchdata
structure
Efficientstorage
andretrieval
℘( )
Data items / PayloadKeys
Thomas Gottron IRSS, Athens, 18.7.2014, 13Leveraging the Web of Data
Choices for Key Elements
Subject
s op c
Search
data
structure
s1 s2 sn
Context
Search
data
structure
c1 c2 cm
s op c
Literals
Search
data
structure
x y z
s litp c
Types
Search
data
structure
t1 t2 tk
s t
rdf:
type c
...
Alternative:
predicates or
objects
Thomas Gottron IRSS, Athens, 18.7.2014, 14Leveraging the Web of Data
Choices for the Payload
Full Caching
local
Web
s op c
Triples
local
Web
s op
Entities
local
Web
s
Data Sources
local
Web
c
...
Thomas Gottron IRSS, Athens, 18.7.2014, 15Leveraging the Web of Data
, ...
Concrete Example: Subject Based Index Model
west:Gottron
west:Staab
west:Schegi
...
tud:CGottron
(west:Gottron, rdf:type, foaf:Person)
(west:Gottron, foaf:knows, west:Staab)
...
(west:Staab, swrc:institution, west:WeST)
(west:Staab, foaf:name, „Steffen Staab“)
...
(west:Schegi, rdf:type, foaf:Person)
(west:Schegi, foaf:name, „Stefan Scheglmann“)
(tud:CGottron, swrc:institution, tud:KOM)
(tud:CGottron, foaf:knows, west:Gottron)
...
s o1p1s s o2p2
Thomas Gottron IRSS, Athens, 18.7.2014, 16Leveraging the Web of Data
Implemented Index Models
§  Triple based
§  Meta data
https://github.com/gottron/lod-index-models
s ops
s opp
s opo
s opterm
s opc
s opPLD
Thomas Gottron IRSS, Athens, 18.7.2014, 17Leveraging the Web of Data
Schema-level Indices
Thomas Gottron IRSS, Athens, 18.7.2014, 18Leveraging the Web of Data
Schema Information on the LOD Cloud
(No)
Schema?
Guidelines / best practices
Automatic tools Social effects
Emerging
Schema!
Induce from data
observations
Thomas Gottron IRSS, Athens, 18.7.2014, 19Leveraging the Web of Data
Examples for Schema Information
Property Set Type Set
{ }
...
x, ...p1 p3p2 { }
...
t1 t2 y, ...
rdf:type
y
rdf:type
t1
t2
x
p1
p2
p3
Thomas Gottron IRSS, Athens, 18.7.2014, 20Leveraging the Web of Data
Implemented Index Models
§  Triple based
§  Meta data
§  Schema-level
https://github.com/gottron/lod-index-models
s ops
s opp
s opo
s opterm
s opc
s opPLD
type s
SchemEX s
t
t st t
p
p sp p
p-1
p-1 op-1p-1
t
p sp t
Thomas Gottron IRSS, Athens, 18.7.2014, 21Leveraging the Web of Data
SchemEX
Thomas Gottron IRSS, Athens, 18.7.2014, 22Leveraging the Web of Data
Schema-based Access to the LOD cloud
?
foaf:Document
fb:Computer_Scientist
dc:creator
x
swrc:InProceedings
SELECT ?x
WHERE {
?x rdf:type foaf:Document .
?x rdf:type swrc:InProceedings .
?x dc:creator ?y .
?y rdf:type fb:Computer_Scientist
}
Thomas Gottron IRSS, Athens, 18.7.2014, 23Leveraging the Web of Data
Schema-based Access to the LOD cloud
Schema-
level Index
Where?
•  ACM
•  DBLP
SELECT ?x
WHERE {
?x rdf:type foaf:Document .
?x rdf:type swrc:InProceedings .
?x dc:creator ?y .
?y rdf:type fb:Computer_Scientist
}
Which schema
information?
Thomas Gottron IRSS, Athens, 18.7.2014, 24Leveraging the Web of Data
Typecluster
§  Entities with the same Set of types
t1 t2
C1 C2 Cm
tn...
...
TCj
Thomas Gottron IRSS, Athens, 18.7.2014, 25Leveraging the Web of Data
Typecluster: Example
foaf:Document swrc:InProceedings
DBLP ACM
tc2309
Thomas Gottron IRSS, Athens, 18.7.2014, 26Leveraging the Web of Data
Property Sets
§  Entities with the same Set of properties
p1 p2
C1 C2 Cm
pn...
...
PSi
Thomas Gottron IRSS, Athens, 18.7.2014, 27Leveraging the Web of Data
Bi-Simulation: Example
dc:creator
BBC DBLP
ps2608
Thomas Gottron IRSS, Athens, 18.7.2014, 28Leveraging the Web of Data
SchemEX: Combination TC and PS
§  Partition of TC based on PS with restrictions on the
destination TC (equivalence relation)
t1 t2 tn...
C1 C2 Cm
...
t45 t2 tn‘...
p1 pn‘‘...
EQC EQC
Cx
TCj TCk
EQCl
PSi
SchemaPayload
p2
PS
Thomas Gottron IRSS, Athens, 18.7.2014, 29Leveraging the Web of Data
SchemEX: Example
DBLP
...
tc2309 tc2101
eqc707
ps2608
foaf:Document swrc:InProceedings fb:Computer_Scientist
dc:creator
SELECT ?x
WHERE {
?x rdf:type foaf:Document .
?x rdf:type swrc:InProceedings .
?x dc:creator ?y .
?y rdf:type fb:Computer_Scientist
}
Thomas Gottron IRSS, Athens, 18.7.2014, 30Leveraging the Web of Data
Building Indices
Thomas Gottron IRSS, Athens, 18.7.2014, 31Leveraging the Web of Data
Building Indices: Operators
§  Combination of few simple operations
w  Aggregate, Join, Invert
§  Example: Property Set index
s1 o1p1 c1
s1 o1p2 c1
s2 o2p2 c1
s3 o3p1 c1
s3 o4p2 c1
s4 o1p3 c1
s1 p1 p2
s2 p2
s3 p1 p2
s4 p3
p1 p2 s1 s3
p2 s2
p3 s4
Aggregate Invert
Thomas Gottron IRSS, Athens, 18.7.2014, 32Leveraging the Web of Data
SchemEX: Computation
§  Precise computation: 3 Aggregates + Join + Invert
t1 t2 tn...
C1 C2 Cm
...
t45 t2 tn‘...
p1 pn‘‘...
EQC EQC
Cx
TCj TCk
EQCl
PSi
SchemaPayload
p2
PS
Better Approach?(Faster, more scalable)
Thomas Gottron IRSS, Athens, 18.7.2014, 33Leveraging the Web of Data
Stream-based Computation of SchemEX
§  LOD Crawler: Stream of N-Quads
… Q16, Q15, Q14, Q13, Q12, Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1
FiFo
4
3
2
1
1
6
2
3
4
5
t3
t2
t2
t1
t1 t2 tn...
C1 C2 Cm
...
t45 t2 tn‘...
p1 pn‘‘...
EQC EQC
Cx
TCj TCk
EQCl
PSi
SchemaPayload
p2
PS
Thomas Gottron IRSS, Athens, 18.7.2014, 34Leveraging the Web of Data
Quality of Approximated Index
§  Stream-based computation vs. precise computation
w  Data set of 11 Mio. tripel
Thomas Gottron IRSS, Athens, 18.7.2014, 35Leveraging the Web of Data
SchemEX: 1st place @ BTC 2011
§  SchemEX
w  Allows complex queries (Star, Chain)
w  Scalable computation
w  High quality
§  Index over BTC 2011 data
w  2.17 billion triple
w  Index: 55 million triple
§  Commodity hardware
w  VM: 1 Core, 4 GB RAM
w  Throughput: 39.500 triple / second
w  Computation of full index: 15h
Thomas Gottron IRSS, Athens, 18.7.2014, 36Leveraging the Web of Data
k1
k2
k3
...
kn
d1,1 d1,2 d1,3 ...
d2,1 d2,2
d3,1 d3,2 d3,3 ...
dn,1 dn,2 dn,3 ...
Search
data
structure
Efficientstorage
andretrieval
ManagingMakingUseAnalysing
0.0
0.2
0.4
0.6
0.8
1.0
0 10 20 30 40 50 60 70 80
MicroAvg.F1
Week of Data Snapshot
RDF Type TS PS IPS ECS SchemEX
E1
rdf:type dc:creator
E2
Bad News ...dc:title
foaf:Document
swrc:InProceedings
rdf:type
Thomas Gottron IRSS, Athens, 18.7.2014, 37Leveraging the Web of Data
Redundancy of
Schema Information
Thomas Gottron IRSS, Athens, 18.7.2014, 38Leveraging the Web of Data
Explicit and Implicit Schema Information on LOD
E1
rdf:type
Explicit
Assigning class types
Implicit
Modelling attributes
dc:creator
E2
Bad News ...dc:title
foaf:Document
swrc:InProceedings
rdf:type
Class Type
Entity
rdf:type Entity
Property
Entity 2
To which degree?
Thomas Gottron IRSS, Athens, 18.7.2014, 39Leveraging the Web of Data
e.g.
Probabilistic model of schema information
§  Joint Distribution P(T,R) over
w  Type sets: TS
w  Property sets: PS
§  P(T=t,R=r) : probability of resource to
have type set t and property set r
P(T,R)	
   r1	

 r2	

 r3	

 r4	

  	

 P(T)	
  
t1	

 14%	
   2%	
   5%	
   8%	
   29%	
  
t2	

 5%	
  15%	
   2%	
   3%	
   25%	
  
t3	

 7%	
   3%	
  30%	
   5%	
   45%	
  
 	

P(R)	
   26%	
  20%	
  37%	
  17%	
  foaf:Document
swrc:InProceedings
e.g.
dc:creator
dc:title
Marginal
Distributions
Marginal
Distributions
Thomas Gottron IRSS, Athens, 18.7.2014, 40Leveraging the Web of Data
Estimating probabilities
Data set Triples TS PS
Rest 22.3M 793 7,522
Datahub 910.1M 28,924 14,712
Dbpedia 198.1M 1,026,272 391,170
Freebase 101.2M 69,732 162,023
Timbl 204.8M 4,139 9,619
§  Todo (on large data sets)
w  Determine schema use
w  Aggregate counts
§  „Query“ schema-level index:
§  Data background: segments from BTC‘12
p(t,r) =
d ∈ σ t,r( )
N
Thomas Gottron IRSS, Athens, 18.7.2014, 41Leveraging the Web of Data
Redundancy
To which degree can one type of information (either types or
properties) explain the respective other?
§  Mutual Information
§  Normalized MI:
•  H(T) and H(R) : entropy of the marginal distributions.
I(T, R) = p t,r( )⋅log
p t,r( )
P T = t( )⋅ P R = r( )
"
#
$$
%
&
''
r∈PS
∑
t∈TS
∑
I0 (T, R) =
I T, R( )
min H T( ), H R( )( )
Thomas Gottron IRSS, Athens, 18.7.2014, 42Leveraging the Web of Data
Example: Normalized Mutual Information
P(T,R)	
   r1	

 r2	

 r3	

 r4	

  	

 P(T)	
  
t1	

 14%	
   2%	
   5%	
   8%	
   29%	
  
t2	

 5%	
  15%	
   2%	
   3%	
   25%	
  
t3	

 7%	
   3%	
  30%	
   5%	
   45%	
  
 	

P(R)	
   26%	
  20%	
  37%	
  17%	
  
I0 (T, R) = 0.239
P(T,R)	
   r1	

 r2	

 r3	

 r4	

  	

 P(T)	
  
t1	

 22%	
   1%	
   0%	
   1%	
   24%	
  
t2	

 1%	
  23%	
   1%	
   0%	
   26%	
  
t3	

 1%	
   0%	
  48%	
   1%	
   50%	
  
 	

P(R)	
   24%	
  24%	
  49%	
   2%	
  
I0 (T, R) = 0.766
Thomas Gottron IRSS, Athens, 18.7.2014, 43Leveraging the Web of Data
Normalized Mutual Information on BTC‘12
§  Tendencies:
w  Relatively high redundancy
w  Freebase: (weakly) pre-defined schema
w  Timbl: narrow domain (FOAF profiles)
w  DBpedia: de-centralized schema
Data set I0(T,R)
Rest 0.881
Datahub 0.747
Dbpedia 0.635
Freebase 0.860
Timbl 0.850
1
4
5
2
3
Thomas Gottron IRSS, Athens, 18.7.2014, 44Leveraging the Web of Data
Finding Alternative
Descriptions
Thomas Gottron IRSS, Athens, 18.7.2014, 45Leveraging the Web of Data
Searching for a Suitable Description
SELECT ?x
WHERE {
?x rdf:type foaf:Document
}
SELECT ?x
WHERE {
?x rdf:type foaf:Document .
?x rdf:type foaf:PersonalProfileDocument
}
SELECT ?x
WHERE {
?x rdf:type foaf:Document .
?x rdf:type sioc:Post .
}
Declarative
descriptions
Thomas Gottron IRSS, Athens, 18.7.2014, 46Leveraging the Web of Data
Operations on the Declarative Description
Entity
Set
C1
C2
C1
C2
C3
C1
C2
C1
C2
C1sub
C1sup
C2
C1
Add
Delete
Refine
Generalize
Thomas Gottron IRSS, Athens, 18.7.2014, 47Leveraging the Web of Data
Just (Small) Baby Steps ...
Thomas Gottron IRSS, Athens, 18.7.2014, 48Leveraging the Web of Data
Formal Concept Analysis
§  Constructs concepts and their hierarchy from data objects
§  Input (formal context)
w  Set O (the objects)
w  Set A (the attributes)
w  Relation I ⊆ O×A (which object has which attributes)
§  Derivation Operator
w  (Sub)Set of objects
w  (Sub)Set of attributes
Attributes common
to all objects in X
Objects which have
all attributes in Y
X ' := y ∈ A : x, y( ) ∈ I,∀x ∈ X{ }
Y ' := x ∈ O : x, y( ) ∈ I,∀y ∈ Y{ }
Thomas Gottron IRSS, Athens, 18.7.2014, 49Leveraging the Web of Data
Formal Concept Analysis
§  (X,Y) is a formal concept, if X'=Y and Y'=X
w  X is the extent
w  Y is the intent
w  Example: ({1,5,10},{a,c})
§  Partial order for formal concepts:
w  (X1,Y1) ≤ (X2,Y2) if X1 ⊂ X2
w  Equivalent to Y1 ⊃ Y2
w  Example: ({1,10},{a,b,c}) ≤ ({1,5,10},{a,b})
§  Defines a lattice structure on the concepts
Table 1. Example of two formal conte
Object a b c
1 ⇥ ⇥ ⇥
2 ⇥
3 ⇥
4 ⇥ ⇥
5 ⇥ ⇥
6 ⇥ ⇥
7 ⇥
8 ⇥ ⇥
9 ⇥ ⇥
10 ⇥ ⇥ ⇥
⌧
⇠⇡ ⇢;
qqqqqq
MMMMMM
⌧
⇠⇡ ⇢{a}
LLLLL
⌧
⇠⇡ ⇢{b}
rrrrr
LLLLL
⌧
⇠⇡ ⇢{c}
rrrrr
⌧
⇠⇡ ⇢{a, b}
LLLL
⌧
⇠⇡ ⇢{a, c}
⌧
⇠⇡ ⇢{b, c}
rrrr
⌧
⇠⇡ ⇢{a, b, c}
Thomas Gottron IRSS, Athens, 18.7.2014, 50Leveraging the Web of Data
Formal Concept Lattice (extent)
≤
Table 1. Example of two formal conte
Object a b c
1 ⇥ ⇥ ⇥
2 ⇥
3 ⇥
4 ⇥ ⇥
5 ⇥ ⇥
6 ⇥ ⇥
7 ⇥
8 ⇥ ⇥
9 ⇥ ⇥
10 ⇥ ⇥ ⇥
⌧
⇠⇡ ⇢;
qqqqqq
MMMMMM
⌧
⇠⇡ ⇢{a}
LLLLL
⌧
⇠⇡ ⇢{b}
rrrrr
LLLLL
⌧
⇠⇡ ⇢{c}
rrrrr
⌧
⇠⇡ ⇢{a, b}
LLLL
⌧
⇠⇡ ⇢{a, c}
⌧
⇠⇡ ⇢{b, c}
rrrr
⌧
⇠⇡ ⇢{a, b, c}
Thomas Gottron IRSS, Athens, 18.7.2014, 51Leveraging the Web of Data
Formal Concept Lattice (intent)
Top-Concept:
(O,Ø)
Bottom-Concept:
(Ø,A)
Table 1. Example of two formal conte
Object a b c
1 ⇥ ⇥ ⇥
2 ⇥
3 ⇥
4 ⇥ ⇥
5 ⇥ ⇥
6 ⇥ ⇥
7 ⇥
8 ⇥ ⇥
9 ⇥ ⇥
10 ⇥ ⇥ ⇥
⌧
⇠⇡ ⇢;
qqqqqq
MMMMMM
⌧
⇠⇡ ⇢{a}
LLLLL
⌧
⇠⇡ ⇢{b}
rrrrr
LLLLL
⌧
⇠⇡ ⇢{c}
rrrrr
⌧
⇠⇡ ⇢{a, b}
LLLL
⌧
⇠⇡ ⇢{a, c}
⌧
⇠⇡ ⇢{b, c}
rrrr
⌧
⇠⇡ ⇢{a, b, c}
9 ⇥ ⇥
10 ⇥ ⇥ ⇥
9 ⇥ ⇥
10 ⇥ ⇥
⌧
⇠⇡ ⇢;
qqqqqq
MMMMMM
⌧
⇠⇡ ⇢;
ppppppp
⌧
⇠⇡ ⇢{a}
LLLLL
⌧
⇠⇡ ⇢{b}
rrrrr
LLLLL
⌧
⇠⇡ ⇢{c}
rrrrr
⌧
⇠⇡ ⇢{x}
⌧
⇠⇡ ⇢{y}
qqqqq MMMM
⌧
⇠⇡ ⇢{a, b}
LLLL
⌧
⇠⇡ ⇢{a, c}
⌧
⇠⇡ ⇢{b, c}
rrrr
⌧
⇠⇡ ⇢{x, y}
MMMM
qqq
⌧
⇠⇡ ⇢{a, b, c}
⌧
⇠⇡ ⇢{x, y, z}
Formal concept lattice structures based on the relations in Ta
d by their intent—which provides a better overview.
Thomas Gottron IRSS, Athens, 18.7.2014, 52Leveraging the Web of Data
Navigating the Lattice
Remove constraints
Extend object set
Add constraints
Reduce object set
Nice formalization, but ...
9 ⇥ ⇥
10 ⇥ ⇥ ⇥
9 ⇥ ⇥
10 ⇥ ⇥
⌧
⇠⇡ ⇢;
qqqqqq
MMMMMM
⌧
⇠⇡ ⇢;
ppppppp
⌧
⇠⇡ ⇢{a}
LLLLL
⌧
⇠⇡ ⇢{b}
rrrrr
LLLLL
⌧
⇠⇡ ⇢{c}
rrrrr
⌧
⇠⇡ ⇢{x}
⌧
⇠⇡ ⇢{y}
qqqqq MMMM
⌧
⇠⇡ ⇢{a, b}
LLLL
⌧
⇠⇡ ⇢{a, c}
⌧
⇠⇡ ⇢{b, c}
rrrr
⌧
⇠⇡ ⇢{x, y}
MMMM
qqq
⌧
⇠⇡ ⇢{a, b, c}
⌧
⇠⇡ ⇢{x, y, z}
Formal concept lattice structures based on the relations in Ta
d by their intent—which provides a better overview.
Thomas Gottron IRSS, Athens, 18.7.2014, 53Leveraging the Web of Data
… still Baby Steps
Thomas Gottron IRSS, Athens, 18.7.2014, 54Leveraging the Web of Data
Parallel Lattices
§  Availability of several attribute sets
w  Facet dimensions
w  „Natural“ subdivision
w  Different descriptions of the same data
Thomas Gottron IRSS, Athens, 18.7.2014, 55Leveraging the Web of Data
Parallel Lattices
Thomas Gottron IRSS, Athens, 18.7.2014, 56Leveraging the Web of Data
General Idea for Mapping
Entity
Set
C1
C2
C3
C4
C5
Approx.
Entity
Set
derive
derive
approximate
description alternative
description
Thomas Gottron IRSS, Athens, 18.7.2014, 57Leveraging the Web of Data
Implementing Mappings
§  Minimal Extension
w  Top-Down
Maximal Reduction
Bottom-Up
{b,c}' = {1,4,6,9,10}
Alternative description for {b,c}
1
1,9
10
2,8 3,5,7
Precision? Recall?
Thomas Gottron IRSS, Athens, 18.7.2014, 58Leveraging the Web of Data
Observations
§  On LOD: Mapping type sets onto property sets
w  Evaluation on 20 data sets (subset of BTC‘12)
§  Quality of approximations
w  max-red:
•  High recall: mainly > 0.8
•  Better for smaller concepts
w  min-ext:
•  Good precision: mainly > 0.5
•  Better for larger concepts
rss:Item
sioc:MicroblogPost
foaf:maker
sioc:has_discussion
dcterms:date
Thomas Gottron IRSS, Athens, 18.7.2014, 59Leveraging the Web of Data
Evolution of Linked Data
Thomas Gottron IRSS, Athens, 18.7.2014, 60Leveraging the Web of Data
Evolution of LOD
2007
2008
2009
2010
2011
Thomas Gottron IRSS, Athens, 18.7.2014, 61Leveraging the Web of Data
Evolution of LOD
Time
Volume
Triples provided by data sources
Insertion, deletion,
modification
Thomas Gottron IRSS, Athens, 18.7.2014, 62Leveraging the Web of Data
Effects on Indices: Decline in accuracy
0.0
0.2
0.4
0.6
0.8
1.0
0 10 20 30 40 50 60 70 80
MicroAvg.F1
Week of Data Snapshot
RDF Type TS PS IPS ECS SchemEX
Thomas Gottron IRSS, Athens, 18.7.2014, 63Leveraging the Web of Data
Updates of Indices and Caches
Which sources to
prioritise in an
update?
Thomas Gottron IRSS, Athens, 18.7.2014, 64Leveraging the Web of Data
Change Metrics
§  Comparison of two RDF data sets (e.g. from different
points in time)
w  Xi : Set of triple statements
w  Numeric expression for „distance“
§  Example:
X1
X2
Δ 0,∞[ )
ΔJaccard X1, X2( )=1−
X1 ∩ X2
X1 ∪ X2
Suitable to measuredynamics???
Thomas Gottron IRSS, Athens, 18.7.2014, 65Leveraging the Web of Data
Toy example: Changes Analysis of LOD
1st snapshot
GerdInstitute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Thomas Gottron IRSS, Athens, 18.7.2014, 66Leveraging the Web of Data
Toy example: Changes Analysis of LOD
1st snapshot
GerdInstitute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
2nd snapshot
Institute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
Paluno
Thomas Gottron IRSS, Athens, 18.7.2014, 67Leveraging the Web of Data
Toy example: Changes Analysis of LOD
Changes detected between 1st and 2nd snapshot
1.  Deleted: <InstituteWEST hasMember Gerd>
2.  New: <InstitutePaluno hasMember Gerd >
1st snapshot
GerdInstitute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
2nd snapshot
Institute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
Paluno
Thomas Gottron IRSS, Athens, 18.7.2014, 68Leveraging the Web of Data
Toy example: Changes Analysis of LOD
1st snapshot
GerdInstitute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
2nd snapshot
Institute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
Paluno
3rd snapshot
Institute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Thomas Gottron IRSS, Athens, 18.7.2014, 69Leveraging the Web of Data
Toy example: Changes Analysis of LOD
1st snapshot 2nd snapshot 3rd snapshot
GerdInstitute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
Paluno
Changes detected between 2nd and 3rd snapshot
1.  New: <InstituteWEST hasMember Gerd>
2.  Deleted: <InstitutePaluno hasMember Gerd >
Thomas Gottron IRSS, Athens, 18.7.2014, 70Leveraging the Web of Data
Toy example: Changes Analysis of LOD
1st snapshot 2nd snapshot 3rd snapshot
GerdInstitute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
ZBW
Institute
WeST
Thomas
Gerd
Ansgar
Renata
Institute
Paluno
Changes detected between 1st and 3rd snapshot
None!?!
Change metrics
capture differences
We want to
measure
dynamics!
Thomas Gottron IRSS, Athens, 18.7.2014, 71Leveraging the Web of Data
Measuring Dynamics: Requirements
§  Dynamics function Θ
w  quantify the evolution of a dataset X over a period of time
Θti
tj
(X) = Θ(Xtj
)−Θ(Xti
) ≥ 0
Θ
Dynamics as
amount of
evolution
Timeti
tj
X
Thomas Gottron IRSS, Athens, 18.7.2014, 72Leveraging the Web of Data
Constructing a Dynamics Function
§  Function Θ difficult to define directly
§  Indirect definition over a change rate function c(Xt)
Θ(Xtj
)−Θ(Xti
) = c Xt( )
ti
tj
∫ dt
Time
Θ
c
ti
tj
X
Thomas Gottron IRSS, Athens, 18.7.2014, 73Leveraging the Web of Data
Change Rate Function
§  Also c(Xt) not explicitely known!
§  But can be approximated!
w  Given snapshots of the data in small time intervals:
w  The change rate can be approximated via change metrics:
Δ Xti
, Xti−1
( )
ti −ti−1
ti−1→ti
$ →$$ c Xti
( )=
d
dt
Θ(Xti
)
Xt1
, Xt2
, Xt3
,!, Xtn
Thomas Gottron IRSS, Athens, 18.7.2014, 74Leveraging the Web of Data
Dynamics Framework
§  Approximating c(Xt) as step function
Timeti
tj
Θ
c
Θt1
tn
(X) = Δ Xti
, Xti−1
( )
i=2
n
∑ Choice of Δ:
Flexible use of
different notions
of change!
X
Thomas Gottron IRSS, Athens, 18.7.2014, 75Leveraging the Web of Data
Introduction of Decay
§  So far:
w  Impact of evolution independent of moment in time
w  Desirable: Focus on certain periods of time
•  e.g. recent past
§  Solution:
w  Decay function f to assign weights to moments in time
Time
c
ti tj
f
f ⋅c
Thomas Gottron IRSS, Athens, 18.7.2014, 76Leveraging the Web of Data
Implementing a Decay Function
§  Exponential decay function:
§  Incoporated in the framework:
§  When using the step function approximation of c(Xt) :
f t( )= e−λt
Θ(Xtj
)−Θ(Xti
) = e
−λ tj −t( )
⋅c Xt( )
ti
tj
∫ dt
Θt1
tn
(X) = e
−λ tn−ti( )
⋅Δ Xti
, Xti−1
( )
i=2
n
∑
Thomas Gottron IRSS, Athens, 18.7.2014, 77Leveraging the Web of Data
Tabelle1
2012-05-06
2012-06-03
2012-07-01
2012-07-29
2012-08-26
2012-09-23
2012-10-21
2012-11-18
2012-12-16
2013-01-13
2013-02-24
2013-03-24
2013-04-22
2013-05-19
2013-06-16
2013-07-14
2013-08-11
2013-09-08
2013-10-06
2013-11-03
0
0,2
0,4
0,6
0,8
1
Change Rate Function of Seleted Data Sources
Tabelle1
2012-05-06
2012-05-27
2012-06-17
2012-07-08
2012-07-29
2012-08-19
2012-09-09
2012-09-30
2012-10-21
2012-11-11
2012-12-02
2012-12-23
2013-01-13
2013-02-19
2013-03-10
2013-03-31
2013-04-22
2013-05-12
2013-06-04
2013-06-23
2013-07-14
2013-08-04
2013-08-25
2013-09-15
2013-10-06
2013-10-27
2013-11-17
0
0,2
0,4
0,6
0,8
1
Θ = 55.71 , Θdecay = 23.42
dbpedia.org
Tabelle1
2012-05-06
2012-06-03
2012-07-01
2012-07-29
2012-08-26
2012-09-23
2012-10-21
2012-11-18
2012-12-16
2013-01-13
2013-02-24
2013-03-24
2013-04-22
2013-05-19
2013-06-16
2013-07-14
2013-08-11
2013-09-08
2013-10-06
2013-11-03
0
0,2
0,4
0,6
0,8
1
Θ = 58.45 , Θdecay = 18.48
identi.ca
Θ = 51.75 , Θdecay = 25.03
linkedct.org
Tabelle1
2012-05-06
2012-06-03
2012-07-01
2012-07-29
2012-08-26
2012-09-23
2012-10-21
2012-11-18
2012-12-16
2013-01-13
2013-02-24
2013-03-24
2013-04-22
2013-05-19
2013-06-16
2013-07-14
2013-08-11
2013-09-08
2013-10-06
2013-11-03
0
0,2
0,4
0,6
0,8
1
Θ = 20.90 , Θdecay = 8.33
dbtune.org
Thomas Gottron IRSS, Athens, 18.7.2014, 78Leveraging the Web of Data
k1
k2
k3
...
kn
d1,1 d1,2 d1,3 ...
d2,1 d2,2
d3,1 d3,2 d3,3 ...
dn,1 dn,2 dn,3 ...
Search
data
structure
Efficientstorage
andretrieval
Managing
E1
rdf:type dc:creator
E2
Bad News ...dc:title
foaf:Document
swrc:InProceedings
rdf:type
Analysing
0.0
0.2
0.4
0.6
0.8
1.0
0 10 20 30 40 50 60 70 80
MicroAvg.F1
Week of Data Snapshot
RDF Type TS PS IPS ECS SchemEX
MakingUse
Thomas Gottron IRSS, Athens, 18.7.2014, 79Leveraging the Web of Data
Schema-level
Search on LOD
Thomas Gottron IRSS, Athens, 18.7.2014, 80Leveraging the Web of Data
Schema-based Access to the LOD cloud
Schema-
level Index
Where?
•  ACM
•  DBLP
SELECT ?x
WHERE {
?x rdf:type foaf:Document .
?x rdf:type swrc:InProceedings .
?x dc:creator ?y .
?y rdf:type fb:Computer_Scientist
}
Thomas Gottron IRSS, Athens, 18.7.2014, 81Leveraging the Web of Data
LODatio: Schema-level Search of LOD
Thomas Gottron IRSS, Athens, 18.7.2014, 82Leveraging the Web of Data
LODatio: Query transformation
Thomas Gottron IRSS, Athens, 18.7.2014, 83Leveraging the Web of Data
LODatio: Query transformation
foaf:Document
fb:Computer_Scientist
dc:creator
x
swrc:InProceedings
DBLP
...
tc2309 tc2101
eqc707
ps2608
foaf:Document swrc:InProceedings fb:Computer_Scientist
dc:creator
SELECT ?x
WHERE {
?x rdf:type foaf:Document .
?x rdf:type swrc:InProceedings .
?x dc:creator ?y .
?y rdf:type fb:Computer_Scientist
}
SELECT ?c
WHERE {
?eqc schemex:hasDataset ?c .
?tc_A schemex:hasSubset ?eqc .
?tc_A schemex:hasClass foaf:Document .
?tc_A schemex:hasClass swrc:InProceedings .
?bs void:subjectsTarget ?eqc .
?bs void:objectsTarget ?tc_B .
?bs void:property dc:creator .
?tc_B schemex:hasClass fb:Computer_Scientist
}
Thomas Gottron IRSS, Athens, 18.7.2014, 84Leveraging the Web of Data
LODatio: Retrieval Results
Thomas Gottron IRSS, Athens, 18.7.2014, 85Leveraging the Web of Data
LODatio: Retrieval Results
C1
EQCl
C1
EQCl
DS23
URI 1
URI 2
URI 3
Entity count
Example entities
Thomas Gottron IRSS, Athens, 18.7.2014, 86Leveraging the Web of Data
LODatio: User Support
Thomas Gottron IRSS, Athens, 18.7.2014, 87Leveraging the Web of Data
LODatio: User Support
§  Currently implemented:
w  Moderate reductions /
extensions
§  Next release:
w  Include alternative
description based on
parallel lattices
further properties
further types
DBLP
...
tc2309 tc2101
eqc707
ps2608
foaf:Document swrc:InProceedings fb:Computer_Scientist
dc:creator
DS23
Thomas Gottron IRSS, Athens, 18.7.2014, 88Leveraging the Web of Data
LODatio: next steps
Keyword search
Better
recommendations
Other payload
entities
Visual exploration
Related
datasources
Coverage
Thomas Gottron IRSS, Athens, 18.7.2014, 89Leveraging the Web of Data
Focused Exploration
(work in progress)
Thomas Gottron IRSS, Athens, 18.7.2014, 90Leveraging the Web of Data
Use Case: Social Media Coverage of Events
Thomas Gottron IRSS, Athens, 18.7.2014, 91Leveraging the Web of Data
LinkedGeoData
OSM
owl:sameAs
???
Other locations?
Thomas Gottron IRSS, Athens, 18.7.2014, 92Leveraging the Web of Data
Extending LinkedGeoData
Seed Exploration Overlay
Thomas Gottron IRSS, Athens, 18.7.2014, 93Leveraging the Web of Data
Task of Focused Exploration (use case: locations)
§  Prioritise/select object URIs for exploration
umbel:Village
s
-1.404
50.897
wgs84:long
wgs84:lat
dbponto:isPartOf
dbponto:wikiPageExternalLink
dbponto:governmentType
dbpprop:settlementType
dbpprop:subdivisionName
o1
dbpprop:postalCode
dcterms:subject
o4
o5
o6
o7
o8
o10
o9
o11
o2
o3
xxx
yyy
wgs84:long
wgs84:lat
Thomas Gottron IRSS, Athens, 18.7.2014, 94Leveraging the Web of Data
Exploration based on Schema Semantics
§  Exploit rdfs:range definitions of predicates
§  Follow edges which lead to locations with higher priority
dbponto:twinCity dbpedia:City
rdfs:range
dbpedia:Place
rdfs:subClassOf
Thomas Gottron IRSS, Athens, 18.7.2014, 95Leveraging the Web of Data
Supervised Machine Learning
§  Use incoming predicates as features
w  Learn predicates typically leading to locations
§  Train a classifier (e.g. Naive Bayes)
o
xxx
yyy
wgs84:long
wgs84:lat
p2
p3
o‘
p4
p6
Thomas Gottron IRSS, Athens, 18.7.2014, 96Leveraging the Web of Data
IR Inspired Approaches
§  Model discriminativeness of predicates
w  Inspired by tf-idf
§  Property relevance frequency (prf):
•  Normalised version (prr)
§  Inverse property frequency
§  Rank by combine measure: prf-ipf
prf = c(p, L)
ipf = log
c(∗,∗)
c(p,∗)
"
#
$
%
&
'
Thomas Gottron IRSS, Athens, 18.7.2014, 97Leveraging the Web of Data
Performance
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
ROC
random
Schema Semantics
NB (all predicates)
NB (present predicates)
prf-ipf
prr-ipf
0.95
0.975
1
0 0.025 0.05
Thomas Gottron IRSS, Athens, 18.7.2014, 98Leveraging the Web of Data
Performance
. Average performance of approaches († indicates significant improvem
nce level ⇢ = 0.01)
Method Recall Precision F1 Accuracy AUC
Schema Scemantics 0.1188 0.8119 0.2073 0.7262 0.5552
NB (all predicates) 0.9906 0.9491 † 0.9694 † 0.9812 0.9970
NB (observed predicates) 0.9943 0.9436 0.9683 0.9804 0.9968
prf-ipf 0.8512 † 0.9754 0.9091 0.9487 0.9958
prr-ipf † 0.9973 0.9240 0.9592 0.9745 0.9769
mance in bold. Furthermore, we marked the results where we had a signific
ent over the second best method at confidence level of ⇢ = 0.01. The agg
basically confirm the observations made above. In general, when conside
es F1, Accuracy and AUC, the Naive Bayes classifier making use of al
Thomas Gottron IRSS, Athens, 18.7.2014, 99Leveraging the Web of Data
E1
rdf:type dc:creator
E2
Bad News ...dc:title
foaf:Document
swrc:InProceedings
rdf:type
Analysing
0.0
0.2
0.4
0.6
0.8
1.0
0 10 20 30 40 50 60 70 80
MicroAvg.F1
Week of Data Snapshot
RDF Type TS PS IPS ECS SchemEX
MakingUse
k1
k2
k3
...
kn
d1,1 d1,2 d1,3 ...
d2,1 d2,2
d3,1 d3,2 d3,3 ...
dn,1 dn,2 dn,3 ...
Search
data
structure
Efficientstorage
andretrieval
Managing
Thomas Gottron IRSS, Athens, 18.7.2014, 100Leveraging the Web of Data
Summary
Pros Cons
rich
knowledge
base
diversepublic
huge
on the Web
diversedistributed
k1
k2
k3
...
kn
d1,1 d1,2 d1,3 ...
d2,1 d2,2
d3,1 d3,2 d3,3 ...
dn,1 dn,2 dn,3 ...
Technical solutions to
some of the problems
Thomas Gottron IRSS, Athens, 18.7.2014, 101Leveraging the Web of Data
Summary
Pros Cons
rich
knowledge
base
diversepublic
huge
on the Web
diversedistributed
k1
k2
k3
...
kn
d1,1 d1,2 d1,3 ...
d2,1 d2,2
d3,1 d3,2 d3,3 ...
dn,1 dn,2 dn,3 ...
Thomas Gottron IRSS, Athens, 18.7.2014, 102Leveraging the Web of Data
Thank you!
Contact:
Thomas Gottron
WeST – Institute for Web Science and Technologies
Universität Koblenz-Landau
gottron@uni-koblenz.de
Thomas Gottron IRSS, Athens, 18.7.2014, 103Leveraging the Web of Data
References
1.  M. Konrath, T. Gottron, and A. Scherp, “Schemex – web-scale indexed schema extraction of linked open
data,” in Semantic Web Challenge, Submission to the Billion Triple Track, 2011.
2.  M. Konrath, T. Gottron, S. Staab, and A. Scherp, “Schemex—efficient construction of a data catalogue
by stream-based indexing of linked data,” Journal of Web Semantics, 2012.
3.  T. Gottron, M. Knauf, S. Scheglmann, and A. Scherp, “Explicit and implicit schema information on the
linked open data cloud: Joined forces or antagonists?,” Tech. Rep. 06/2012, Institut WeST, Universität
Koblenz-Landau, 2012.
4.  T. Gottron and R. Pickhardt, “A detailed analysis of the quality of stream-based schema construction on
linked open data,” in CSWS’12: Proceedings of the Chinese Semantic Web Symposium, 2012.
5.  T. Gottron, A. Scherp, B. Krayer, and A. Peters, “Get the google feeling: Supporting users in finding
relevant sources of linked open data at web-scale,” in Semantic Web Challenge, Submission to the
Billion Triple Track, 2012.
6.  T. Gottron, A. Scherp, B. Krayer, and A. Peters, “LODatio: Using a Schema-Based Index to Support
Users in Finding Relevant Sources of Linked Data,” in K-CAP’13: Proceedings of the Conference on
Knowledge Capture, 2013.
7.  T. Gottron, M. Knauf, S. Scheglmann, and A. Scherp, “A Systematic Investigation of Explicit and Implicit
Schema Information on the Linked Open Data Cloud,” in ESWC’13: Proceedings of the 10th Extended
Semantic Web Conference, 2013.
8.  J. Schaible, T. Gottron, S. Scheglmann, and A. Scherp, “LOVER: Support for Modeling Data Using
Linked Open Vocabularies,” in LWDM’13: 3rd International Workshop on Linked Web Data Management,
2013.
9.  R. Dividino, A. Scherp, G. Gröner, and T. Gottron, “Change-a-LOD: Does the Schema on the Linked
Data Cloud Change or Not?,” in COLD’13: International Workshop on Consuming Linked Data, 2013.
Thomas Gottron IRSS, Athens, 18.7.2014, 104Leveraging the Web of Data
References
10.  T. Gottron, M. Knauf, and A. Scherp, “Analysis of schema structures in the linked open data graph based
on unique subject uris, pay-level domains, and vocabulary usage,” Distributed and Parallel Databases,
pp. 1–39, 2014.
11.  T. Gottron and C. Gottron, “Perplexity of index models over evolving linked data,” in ESWC’14:
Proceedings of the Extended Semantic Web Conference, 2014.
12.  T. Gottron, A. Scherp, and S. Scheglmann, “Providing alternative declarative descriptions for entity sets
using parallel concept lattices,” in ESWC’14: Proceedings of the Extended Semantic Web Conference,
2014.
13.  Carothers, G.: Rdf 1.1 n-quads. W3C Recommendation (Feb 2014), http://www.w3. org/TR/2014/REC-n-
quads-20140225/, (accessed 14 March 2014)
14.  Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked data dynamics. In:
The Se- mantic Web: Semantics and Big Data, Lecture Notes in Computer Science, vol. 7882, pp. 213–
227. Springer Berlin Heidelberg (2013)
15.  T. Gottron, “Of Sampling and Smoothing: Approximating Distributions over Linked Open Data,” in
PROFILES’14: Proceedings of the Workshop on Dataset ProfiIling and Federated Search for Linked
Data, 2014.
16.  R. Dividino, T. Gottron, A. Scherp, and G. Gröner, “From Changes to Dynamics: Dynamics Analysis of
Linked Open Data Sources,” in PROFILES’14: Proceedings of the Workshop on Dataset ProfiIling and
Federated Search for Linked Data, 2014.
17.  R. Dividino, A. Kramer, and T. Gottron, “An Investigation of HTTP Header Information for Detecting
Changes of Linked Open Data Sources,” in ESWC’14: Proceedings of the Extended Semantic Web
Conference, 2014.
Thomas Gottron IRSS, Athens, 18.7.2014, 105Leveraging the Web of Data
Sources
•  Photograph of three of Nevins Memorial Library's earliest librarians. Wikimedia Commons collection,
http://commons.wikimedia.org/wiki/File:Nevins_Library_First_Librarians.jpg
•  Wide-angle view of the ALMA correlator, This Wikipedia and Wikimedia Commons image is from the
European Southern Observatory (ESO) and is freely available at http://commons.wikimedia.org/wiki/
File:Wide-angle_view_of_the_ALMA_correlator.jpg under Creative Commons Attribution 3.0
Unportedlicense.
•  Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/, This
work is available under a CC-BY-SA license.

More Related Content

What's hot (14)

Real-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and DruidReal-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and Druid
Jan Graßegger
 
Java 9 Security Enhancements in Practice
Java 9 Security Enhancements in PracticeJava 9 Security Enhancements in Practice
Java 9 Security Enhancements in Practice
Martin Toshev
 
Open Land Use Map and Smart Points of Interest
Open Land Use Map and Smart Points of InterestOpen Land Use Map and Smart Points of Interest
Open Land Use Map and Smart Points of Interest
plan4all
 
Real-time Data Analytics mit Elasticsearch
Real-time Data Analytics mit ElasticsearchReal-time Data Analytics mit Elasticsearch
Real-time Data Analytics mit Elasticsearch
inovex GmbH
 
Knowledge Graph for Cybersecurity: An Introduction By Kabul Kurniawan
Knowledge Graph for Cybersecurity: An Introduction By  Kabul KurniawanKnowledge Graph for Cybersecurity: An Introduction By  Kabul Kurniawan
Knowledge Graph for Cybersecurity: An Introduction By Kabul Kurniawan
Kabul Kurniawan
 
Introduction to JSON & Ajax
Introduction to JSON & AjaxIntroduction to JSON & Ajax
Introduction to JSON & Ajax
Seble Nigussie
 
Data science at the command line
Data science at the command lineData science at the command line
Data science at the command line
Sharat Chikkerur
 
Berlin buzzwords 2013 - Faceting analyzed fields with some sprinkles of proba...
Berlin buzzwords 2013 - Faceting analyzed fields with some sprinkles of proba...Berlin buzzwords 2013 - Faceting analyzed fields with some sprinkles of proba...
Berlin buzzwords 2013 - Faceting analyzed fields with some sprinkles of proba...
Boaz Leskes
 
SequoiaDB Distributed Relational Database
SequoiaDB Distributed Relational DatabaseSequoiaDB Distributed Relational Database
SequoiaDB Distributed Relational Database
wangzhonnew
 
druid.io
druid.iodruid.io
druid.io
Jéferson Machado
 
2014.09.04 federated ground segments - toulouse
2014.09.04   federated ground segments - toulouse2014.09.04   federated ground segments - toulouse
2014.09.04 federated ground segments - toulouse
Gasperi Jerome
 
Grades nda 2018 - gremlinator demo talk - harsh thakkar
Grades nda 2018 - gremlinator demo talk - harsh thakkarGrades nda 2018 - gremlinator demo talk - harsh thakkar
Grades nda 2018 - gremlinator demo talk - harsh thakkar
Harsh Thakkar
 
Dangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEO
Dangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEODangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEO
Dangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEO
Altinity Ltd
 
Bucket your partitions wisely - Cassandra summit 2016
Bucket your partitions wisely - Cassandra summit 2016Bucket your partitions wisely - Cassandra summit 2016
Bucket your partitions wisely - Cassandra summit 2016
Markus Höfer
 
Real-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and DruidReal-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and Druid
Jan Graßegger
 
Java 9 Security Enhancements in Practice
Java 9 Security Enhancements in PracticeJava 9 Security Enhancements in Practice
Java 9 Security Enhancements in Practice
Martin Toshev
 
Open Land Use Map and Smart Points of Interest
Open Land Use Map and Smart Points of InterestOpen Land Use Map and Smart Points of Interest
Open Land Use Map and Smart Points of Interest
plan4all
 
Real-time Data Analytics mit Elasticsearch
Real-time Data Analytics mit ElasticsearchReal-time Data Analytics mit Elasticsearch
Real-time Data Analytics mit Elasticsearch
inovex GmbH
 
Knowledge Graph for Cybersecurity: An Introduction By Kabul Kurniawan
Knowledge Graph for Cybersecurity: An Introduction By  Kabul KurniawanKnowledge Graph for Cybersecurity: An Introduction By  Kabul Kurniawan
Knowledge Graph for Cybersecurity: An Introduction By Kabul Kurniawan
Kabul Kurniawan
 
Introduction to JSON & Ajax
Introduction to JSON & AjaxIntroduction to JSON & Ajax
Introduction to JSON & Ajax
Seble Nigussie
 
Data science at the command line
Data science at the command lineData science at the command line
Data science at the command line
Sharat Chikkerur
 
Berlin buzzwords 2013 - Faceting analyzed fields with some sprinkles of proba...
Berlin buzzwords 2013 - Faceting analyzed fields with some sprinkles of proba...Berlin buzzwords 2013 - Faceting analyzed fields with some sprinkles of proba...
Berlin buzzwords 2013 - Faceting analyzed fields with some sprinkles of proba...
Boaz Leskes
 
SequoiaDB Distributed Relational Database
SequoiaDB Distributed Relational DatabaseSequoiaDB Distributed Relational Database
SequoiaDB Distributed Relational Database
wangzhonnew
 
2014.09.04 federated ground segments - toulouse
2014.09.04   federated ground segments - toulouse2014.09.04   federated ground segments - toulouse
2014.09.04 federated ground segments - toulouse
Gasperi Jerome
 
Grades nda 2018 - gremlinator demo talk - harsh thakkar
Grades nda 2018 - gremlinator demo talk - harsh thakkarGrades nda 2018 - gremlinator demo talk - harsh thakkar
Grades nda 2018 - gremlinator demo talk - harsh thakkar
Harsh Thakkar
 
Dangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEO
Dangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEODangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEO
Dangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEO
Altinity Ltd
 
Bucket your partitions wisely - Cassandra summit 2016
Bucket your partitions wisely - Cassandra summit 2016Bucket your partitions wisely - Cassandra summit 2016
Bucket your partitions wisely - Cassandra summit 2016
Markus Höfer
 

Viewers also liked (20)

Analysing Online Social Network Data with Biclustering and Triclustering
Analysing Online Social Network Data with Biclustering and TriclusteringAnalysing Online Social Network Data with Biclustering and Triclustering
Analysing Online Social Network Data with Biclustering and Triclustering
Alexander Semeonov
 
Performance analysis of Data Mining algorithms in Weka
Performance analysis of Data Mining algorithms in WekaPerformance analysis of Data Mining algorithms in Weka
Performance analysis of Data Mining algorithms in Weka
IOSR Journals
 
Smart Data Server for Smart Shops
Smart Data Server for Smart ShopsSmart Data Server for Smart Shops
Smart Data Server for Smart Shops
IOSR Journals
 
Media genre
Media genreMedia genre
Media genre
Temibaybee
 
Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) In a Small Po...
Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) In a Small Po...Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) In a Small Po...
Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) In a Small Po...
IOSR Journals
 
Threshold Secure B2B Model
Threshold Secure B2B ModelThreshold Secure B2B Model
Threshold Secure B2B Model
IOSR Journals
 
test
testtest
test
Edyta Jordan
 
G0434045
G0434045G0434045
G0434045
IOSR Journals
 
An Experimental Result of Conditional Shortest Path Routing In Delay Toleran...
An Experimental Result of Conditional Shortest Path Routing In  Delay Toleran...An Experimental Result of Conditional Shortest Path Routing In  Delay Toleran...
An Experimental Result of Conditional Shortest Path Routing In Delay Toleran...
IOSR Journals
 
Презентация Томашпольского района - Проект приграничного сотрудничества Украи...
Презентация Томашпольского района - Проект приграничного сотрудничества Украи...Презентация Томашпольского района - Проект приграничного сотрудничества Украи...
Презентация Томашпольского района - Проект приграничного сотрудничества Украи...
Anastasia Lanina
 
Ndta mentor protege program 2-2-15
Ndta mentor protege program 2-2-15Ndta mentor protege program 2-2-15
Ndta mentor protege program 2-2-15
watersb
 
De-virtualizing virtual Function Calls using various Type Analysis Technique...
De-virtualizing virtual Function Calls using various Type  Analysis Technique...De-virtualizing virtual Function Calls using various Type  Analysis Technique...
De-virtualizing virtual Function Calls using various Type Analysis Technique...
IOSR Journals
 
Diapos staditik
Diapos staditikDiapos staditik
Diapos staditik
llopezy
 
Why U.S. Bank Lost Its Case against Ibanez on a Foreclosed Property
Why U.S. Bank Lost Its Case against Ibanez on a Foreclosed Property Why U.S. Bank Lost Its Case against Ibanez on a Foreclosed Property
Why U.S. Bank Lost Its Case against Ibanez on a Foreclosed Property
David Zak Lawyer
 
Security in MANET based on PKI using fuzzy function
Security in MANET based on PKI using fuzzy functionSecurity in MANET based on PKI using fuzzy function
Security in MANET based on PKI using fuzzy function
IOSR Journals
 
Secure Network Discovery for Risk-Aware Framework in Manet
Secure Network Discovery for Risk-Aware Framework in ManetSecure Network Discovery for Risk-Aware Framework in Manet
Secure Network Discovery for Risk-Aware Framework in Manet
IOSR Journals
 
Présentation de la formation à l'édition en France
Présentation de la formation à l'édition en FrancePrésentation de la formation à l'édition en France
Présentation de la formation à l'édition en France
Asfored
 
Optimization of Mining Association Rule from XML Documents
Optimization of Mining Association Rule from XML DocumentsOptimization of Mining Association Rule from XML Documents
Optimization of Mining Association Rule from XML Documents
IOSR Journals
 
OSN: Privacy Preserving Policies
OSN: Privacy Preserving PoliciesOSN: Privacy Preserving Policies
OSN: Privacy Preserving Policies
IOSR Journals
 
Privacy and Security in Online Examination Systems
Privacy and Security in Online Examination SystemsPrivacy and Security in Online Examination Systems
Privacy and Security in Online Examination Systems
IOSR Journals
 
Analysing Online Social Network Data with Biclustering and Triclustering
Analysing Online Social Network Data with Biclustering and TriclusteringAnalysing Online Social Network Data with Biclustering and Triclustering
Analysing Online Social Network Data with Biclustering and Triclustering
Alexander Semeonov
 
Performance analysis of Data Mining algorithms in Weka
Performance analysis of Data Mining algorithms in WekaPerformance analysis of Data Mining algorithms in Weka
Performance analysis of Data Mining algorithms in Weka
IOSR Journals
 
Smart Data Server for Smart Shops
Smart Data Server for Smart ShopsSmart Data Server for Smart Shops
Smart Data Server for Smart Shops
IOSR Journals
 
Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) In a Small Po...
Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) In a Small Po...Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) In a Small Po...
Incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) In a Small Po...
IOSR Journals
 
Threshold Secure B2B Model
Threshold Secure B2B ModelThreshold Secure B2B Model
Threshold Secure B2B Model
IOSR Journals
 
An Experimental Result of Conditional Shortest Path Routing In Delay Toleran...
An Experimental Result of Conditional Shortest Path Routing In  Delay Toleran...An Experimental Result of Conditional Shortest Path Routing In  Delay Toleran...
An Experimental Result of Conditional Shortest Path Routing In Delay Toleran...
IOSR Journals
 
Презентация Томашпольского района - Проект приграничного сотрудничества Украи...
Презентация Томашпольского района - Проект приграничного сотрудничества Украи...Презентация Томашпольского района - Проект приграничного сотрудничества Украи...
Презентация Томашпольского района - Проект приграничного сотрудничества Украи...
Anastasia Lanina
 
Ndta mentor protege program 2-2-15
Ndta mentor protege program 2-2-15Ndta mentor protege program 2-2-15
Ndta mentor protege program 2-2-15
watersb
 
De-virtualizing virtual Function Calls using various Type Analysis Technique...
De-virtualizing virtual Function Calls using various Type  Analysis Technique...De-virtualizing virtual Function Calls using various Type  Analysis Technique...
De-virtualizing virtual Function Calls using various Type Analysis Technique...
IOSR Journals
 
Diapos staditik
Diapos staditikDiapos staditik
Diapos staditik
llopezy
 
Why U.S. Bank Lost Its Case against Ibanez on a Foreclosed Property
Why U.S. Bank Lost Its Case against Ibanez on a Foreclosed Property Why U.S. Bank Lost Its Case against Ibanez on a Foreclosed Property
Why U.S. Bank Lost Its Case against Ibanez on a Foreclosed Property
David Zak Lawyer
 
Security in MANET based on PKI using fuzzy function
Security in MANET based on PKI using fuzzy functionSecurity in MANET based on PKI using fuzzy function
Security in MANET based on PKI using fuzzy function
IOSR Journals
 
Secure Network Discovery for Risk-Aware Framework in Manet
Secure Network Discovery for Risk-Aware Framework in ManetSecure Network Discovery for Risk-Aware Framework in Manet
Secure Network Discovery for Risk-Aware Framework in Manet
IOSR Journals
 
Présentation de la formation à l'édition en France
Présentation de la formation à l'édition en FrancePrésentation de la formation à l'édition en France
Présentation de la formation à l'édition en France
Asfored
 
Optimization of Mining Association Rule from XML Documents
Optimization of Mining Association Rule from XML DocumentsOptimization of Mining Association Rule from XML Documents
Optimization of Mining Association Rule from XML Documents
IOSR Journals
 
OSN: Privacy Preserving Policies
OSN: Privacy Preserving PoliciesOSN: Privacy Preserving Policies
OSN: Privacy Preserving Policies
IOSR Journals
 
Privacy and Security in Online Examination Systems
Privacy and Security in Online Examination SystemsPrivacy and Security in Online Examination Systems
Privacy and Security in Online Examination Systems
IOSR Journals
 

Similar to Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open Data (20)

Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Flink Forward
 
Open Analytics Environment
Open Analytics EnvironmentOpen Analytics Environment
Open Analytics Environment
Ian Foster
 
SC7 Webinar 4 04/05/2017 NCSR Demokritos Presentation "Event Detection"
SC7 Webinar 4 04/05/2017 NCSR Demokritos Presentation "Event Detection"SC7 Webinar 4 04/05/2017 NCSR Demokritos Presentation "Event Detection"
SC7 Webinar 4 04/05/2017 NCSR Demokritos Presentation "Event Detection"
BigData_Europe
 
Opportunities for X-Ray science in future computing architectures
Opportunities for X-Ray science in future computing architecturesOpportunities for X-Ray science in future computing architectures
Opportunities for X-Ray science in future computing architectures
Ian Foster
 
Querying the Web of Data
Querying the Web of DataQuerying the Web of Data
Querying the Web of Data
Rinke Hoekstra
 
Odp
OdpOdp
Odp
Mark McNasby
 
Fire-fighting java big data problems
Fire-fighting java big data problemsFire-fighting java big data problems
Fire-fighting java big data problems
grepalex
 
ESWC SS 2013 - Tuesday Keynote Steffen Staab: Programming the Semantic Web
ESWC SS 2013 - Tuesday Keynote Steffen Staab: Programming the Semantic WebESWC SS 2013 - Tuesday Keynote Steffen Staab: Programming the Semantic Web
ESWC SS 2013 - Tuesday Keynote Steffen Staab: Programming the Semantic Web
eswcsummerschool
 
Staab programming thesemanticweb
Staab programming thesemanticwebStaab programming thesemanticweb
Staab programming thesemanticweb
Aneta Tu
 
Tutorial ESWC2011 Building Semantic Sensor Web - 04 - Querying_semantic_strea...
Tutorial ESWC2011 Building Semantic Sensor Web - 04 - Querying_semantic_strea...Tutorial ESWC2011 Building Semantic Sensor Web - 04 - Querying_semantic_strea...
Tutorial ESWC2011 Building Semantic Sensor Web - 04 - Querying_semantic_strea...
Jean-Paul Calbimonte
 
Linked open data sandwich
Linked open data sandwichLinked open data sandwich
Linked open data sandwich
Thimo Thoeye
 
Programming the Semantic Web
Programming the Semantic WebProgramming the Semantic Web
Programming the Semantic Web
Steffen Staab
 
Triplewave: a step towards RDF Stream Processing on the Web
Triplewave: a step towards RDF Stream Processing on the WebTriplewave: a step towards RDF Stream Processing on the Web
Triplewave: a step towards RDF Stream Processing on the Web
Daniele Dell'Aglio
 
Predictive Maintenance at the Dutch Railways with Ivo Everts
Predictive Maintenance at the Dutch Railways with Ivo EvertsPredictive Maintenance at the Dutch Railways with Ivo Everts
Predictive Maintenance at the Dutch Railways with Ivo Everts
Databricks
 
Afterwork big data et data viz - du lac à votre écran
Afterwork big data et data viz - du lac à votre écranAfterwork big data et data viz - du lac à votre écran
Afterwork big data et data viz - du lac à votre écran
Joseph Glorieux
 
Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump ...
Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump ...Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump ...
Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump ...
Igor Korkin
 
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Databricks
 
Managing your black friday logs - Code Europe
Managing your black friday logs - Code EuropeManaging your black friday logs - Code Europe
Managing your black friday logs - Code Europe
David Pilato
 
Big Data Seervices in Danaos Use Case
Big Data Seervices in Danaos Use CaseBig Data Seervices in Danaos Use Case
Big Data Seervices in Danaos Use Case
Big Data Value Association
 
Creating Open Data with Open Source (beta2)
Creating Open Data with Open Source (beta2)Creating Open Data with Open Source (beta2)
Creating Open Data with Open Source (beta2)
Sammy Fung
 
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Flink Forward
 
Open Analytics Environment
Open Analytics EnvironmentOpen Analytics Environment
Open Analytics Environment
Ian Foster
 
SC7 Webinar 4 04/05/2017 NCSR Demokritos Presentation "Event Detection"
SC7 Webinar 4 04/05/2017 NCSR Demokritos Presentation "Event Detection"SC7 Webinar 4 04/05/2017 NCSR Demokritos Presentation "Event Detection"
SC7 Webinar 4 04/05/2017 NCSR Demokritos Presentation "Event Detection"
BigData_Europe
 
Opportunities for X-Ray science in future computing architectures
Opportunities for X-Ray science in future computing architecturesOpportunities for X-Ray science in future computing architectures
Opportunities for X-Ray science in future computing architectures
Ian Foster
 
Querying the Web of Data
Querying the Web of DataQuerying the Web of Data
Querying the Web of Data
Rinke Hoekstra
 
Fire-fighting java big data problems
Fire-fighting java big data problemsFire-fighting java big data problems
Fire-fighting java big data problems
grepalex
 
ESWC SS 2013 - Tuesday Keynote Steffen Staab: Programming the Semantic Web
ESWC SS 2013 - Tuesday Keynote Steffen Staab: Programming the Semantic WebESWC SS 2013 - Tuesday Keynote Steffen Staab: Programming the Semantic Web
ESWC SS 2013 - Tuesday Keynote Steffen Staab: Programming the Semantic Web
eswcsummerschool
 
Staab programming thesemanticweb
Staab programming thesemanticwebStaab programming thesemanticweb
Staab programming thesemanticweb
Aneta Tu
 
Tutorial ESWC2011 Building Semantic Sensor Web - 04 - Querying_semantic_strea...
Tutorial ESWC2011 Building Semantic Sensor Web - 04 - Querying_semantic_strea...Tutorial ESWC2011 Building Semantic Sensor Web - 04 - Querying_semantic_strea...
Tutorial ESWC2011 Building Semantic Sensor Web - 04 - Querying_semantic_strea...
Jean-Paul Calbimonte
 
Linked open data sandwich
Linked open data sandwichLinked open data sandwich
Linked open data sandwich
Thimo Thoeye
 
Programming the Semantic Web
Programming the Semantic WebProgramming the Semantic Web
Programming the Semantic Web
Steffen Staab
 
Triplewave: a step towards RDF Stream Processing on the Web
Triplewave: a step towards RDF Stream Processing on the WebTriplewave: a step towards RDF Stream Processing on the Web
Triplewave: a step towards RDF Stream Processing on the Web
Daniele Dell'Aglio
 
Predictive Maintenance at the Dutch Railways with Ivo Everts
Predictive Maintenance at the Dutch Railways with Ivo EvertsPredictive Maintenance at the Dutch Railways with Ivo Everts
Predictive Maintenance at the Dutch Railways with Ivo Everts
Databricks
 
Afterwork big data et data viz - du lac à votre écran
Afterwork big data et data viz - du lac à votre écranAfterwork big data et data viz - du lac à votre écran
Afterwork big data et data viz - du lac à votre écran
Joseph Glorieux
 
Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump ...
Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump ...Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump ...
Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump ...
Igor Korkin
 
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Deep Dive into Stateful Stream Processing in Structured Streaming with Tathag...
Databricks
 
Managing your black friday logs - Code Europe
Managing your black friday logs - Code EuropeManaging your black friday logs - Code Europe
Managing your black friday logs - Code Europe
David Pilato
 
Creating Open Data with Open Source (beta2)
Creating Open Data with Open Source (beta2)Creating Open Data with Open Source (beta2)
Creating Open Data with Open Source (beta2)
Sammy Fung
 

More from Thomas Gottron (9)

Focused Exploration of Geospatial Context on Linked Open Data
Focused Exploration of Geospatial Context on Linked Open DataFocused Exploration of Geospatial Context on Linked Open Data
Focused Exploration of Geospatial Context on Linked Open Data
Thomas Gottron
 
Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data
Thomas Gottron
 
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
Thomas Gottron
 
Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open DataOf Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Thomas Gottron
 
 Challenges in Managing Online Business Communities
 Challenges in Managing Online Business Communities Challenges in Managing Online Business Communities
 Challenges in Managing Online Business Communities
Thomas Gottron
 
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
Thomas Gottron
 
Challenging Retrieval Scenarios: Social Media and Linked Open Data
Challenging Retrieval Scenarios: Social Media and Linked Open DataChallenging Retrieval Scenarios: Social Media and Linked Open Data
Challenging Retrieval Scenarios: Social Media and Linked Open Data
Thomas Gottron
 
Get the Google Feeling! Supporting Users in Finding Relevant Sources
Get the Google Feeling! Supporting Users in Finding Relevant SourcesGet the Google Feeling! Supporting Users in Finding Relevant Sources
Get the Google Feeling! Supporting Users in Finding Relevant Sources
Thomas Gottron
 
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Thomas Gottron
 
Focused Exploration of Geospatial Context on Linked Open Data
Focused Exploration of Geospatial Context on Linked Open DataFocused Exploration of Geospatial Context on Linked Open Data
Focused Exploration of Geospatial Context on Linked Open Data
Thomas Gottron
 
Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data Perplexity of Index Models over Evolving Linked Data
Perplexity of Index Models over Evolving Linked Data
Thomas Gottron
 
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources
Thomas Gottron
 
Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open DataOf Sampling and Smoothing: Approximating Distributions over Linked Open Data
Of Sampling and Smoothing: Approximating Distributions over Linked Open Data
Thomas Gottron
 
 Challenges in Managing Online Business Communities
 Challenges in Managing Online Business Communities Challenges in Managing Online Business Communities
 Challenges in Managing Online Business Communities
Thomas Gottron
 
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
Thomas Gottron
 
Challenging Retrieval Scenarios: Social Media and Linked Open Data
Challenging Retrieval Scenarios: Social Media and Linked Open DataChallenging Retrieval Scenarios: Social Media and Linked Open Data
Challenging Retrieval Scenarios: Social Media and Linked Open Data
Thomas Gottron
 
Get the Google Feeling! Supporting Users in Finding Relevant Sources
Get the Google Feeling! Supporting Users in Finding Relevant SourcesGet the Google Feeling! Supporting Users in Finding Relevant Sources
Get the Google Feeling! Supporting Users in Finding Relevant Sources
Thomas Gottron
 
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Finding Good URLs: Aligning Entities in Knowledge Bases with Public Web Docum...
Thomas Gottron
 

Recently uploaded (20)

biochemistry amino acid from chemistry to life machinery
biochemistry amino acid from chemistry to life machinerybiochemistry amino acid from chemistry to life machinery
biochemistry amino acid from chemistry to life machinery
chaitanyaa4444
 
Concise Notes on tree and graph data structure
Concise Notes on tree and graph data structureConcise Notes on tree and graph data structure
Concise Notes on tree and graph data structure
YekoyeTigabu2
 
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
Sérgio Sacani
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
Polymerase Chain Reaction (PCR).Poer Pint
Polymerase Chain Reaction (PCR).Poer PintPolymerase Chain Reaction (PCR).Poer Pint
Polymerase Chain Reaction (PCR).Poer Pint
Dr Showkat Ahmad Wani
 
Effect of nutrition in Entomophagous Insectson
Effect of nutrition in Entomophagous InsectsonEffect of nutrition in Entomophagous Insectson
Effect of nutrition in Entomophagous Insectson
JabaskumarKshetri
 
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Ali Raei
 
Skin function_protective_absorptive_Presentatation.pptx
Skin function_protective_absorptive_Presentatation.pptxSkin function_protective_absorptive_Presentatation.pptx
Skin function_protective_absorptive_Presentatation.pptx
muralinath2
 
Skmuscle_properties_muscletone_muscletype.pptx
Skmuscle_properties_muscletone_muscletype.pptxSkmuscle_properties_muscletone_muscletype.pptx
Skmuscle_properties_muscletone_muscletype.pptx
muralinath2
 
2025 Insilicogen Company English Brochure
2025 Insilicogen Company English Brochure2025 Insilicogen Company English Brochure
2025 Insilicogen Company English Brochure
Insilico Gen
 
06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx
LanaQadumii
 
whole ANATOMY OF EYE with eye ball .pptx
whole ANATOMY OF EYE with eye ball .pptxwhole ANATOMY OF EYE with eye ball .pptx
whole ANATOMY OF EYE with eye ball .pptx
simranjangra13
 
Influenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptxInfluenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptx
diyapadhiyar
 
Hardy_Weinbergs_law_and[1]. A simple Explanation
Hardy_Weinbergs_law_and[1]. A simple ExplanationHardy_Weinbergs_law_and[1]. A simple Explanation
Hardy_Weinbergs_law_and[1]. A simple Explanation
Dr Showkat Ahmad Wani
 
Gel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptxGel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Gender Bias and Empathy in Robots: Insights into Robotic Service Failures
Gender Bias and Empathy in Robots:  Insights into Robotic Service FailuresGender Bias and Empathy in Robots:  Insights into Robotic Service Failures
Gender Bias and Empathy in Robots: Insights into Robotic Service Failures
Selcen Ozturkcan
 
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Yasasi Abeysinghe
 
Adamson, Walter L. - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Adamson, Walter L.  - Avant-Garde Florence. From Modernism to Fascism [ocr] [...Adamson, Walter L.  - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Adamson, Walter L. - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Francisco Sandoval Martínez
 
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxVERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
hipachi8
 
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary RecommendationsLipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Sarumathi Murugesan
 
biochemistry amino acid from chemistry to life machinery
biochemistry amino acid from chemistry to life machinerybiochemistry amino acid from chemistry to life machinery
biochemistry amino acid from chemistry to life machinery
chaitanyaa4444
 
Concise Notes on tree and graph data structure
Concise Notes on tree and graph data structureConcise Notes on tree and graph data structure
Concise Notes on tree and graph data structure
YekoyeTigabu2
 
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
Sérgio Sacani
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
Polymerase Chain Reaction (PCR).Poer Pint
Polymerase Chain Reaction (PCR).Poer PintPolymerase Chain Reaction (PCR).Poer Pint
Polymerase Chain Reaction (PCR).Poer Pint
Dr Showkat Ahmad Wani
 
Effect of nutrition in Entomophagous Insectson
Effect of nutrition in Entomophagous InsectsonEffect of nutrition in Entomophagous Insectson
Effect of nutrition in Entomophagous Insectson
JabaskumarKshetri
 
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Ali Raei
 
Skin function_protective_absorptive_Presentatation.pptx
Skin function_protective_absorptive_Presentatation.pptxSkin function_protective_absorptive_Presentatation.pptx
Skin function_protective_absorptive_Presentatation.pptx
muralinath2
 
Skmuscle_properties_muscletone_muscletype.pptx
Skmuscle_properties_muscletone_muscletype.pptxSkmuscle_properties_muscletone_muscletype.pptx
Skmuscle_properties_muscletone_muscletype.pptx
muralinath2
 
2025 Insilicogen Company English Brochure
2025 Insilicogen Company English Brochure2025 Insilicogen Company English Brochure
2025 Insilicogen Company English Brochure
Insilico Gen
 
06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx
LanaQadumii
 
whole ANATOMY OF EYE with eye ball .pptx
whole ANATOMY OF EYE with eye ball .pptxwhole ANATOMY OF EYE with eye ball .pptx
whole ANATOMY OF EYE with eye ball .pptx
simranjangra13
 
Influenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptxInfluenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptx
diyapadhiyar
 
Hardy_Weinbergs_law_and[1]. A simple Explanation
Hardy_Weinbergs_law_and[1]. A simple ExplanationHardy_Weinbergs_law_and[1]. A simple Explanation
Hardy_Weinbergs_law_and[1]. A simple Explanation
Dr Showkat Ahmad Wani
 
Gel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptxGel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Gender Bias and Empathy in Robots: Insights into Robotic Service Failures
Gender Bias and Empathy in Robots:  Insights into Robotic Service FailuresGender Bias and Empathy in Robots:  Insights into Robotic Service Failures
Gender Bias and Empathy in Robots: Insights into Robotic Service Failures
Selcen Ozturkcan
 
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Yasasi Abeysinghe
 
Adamson, Walter L. - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Adamson, Walter L.  - Avant-Garde Florence. From Modernism to Fascism [ocr] [...Adamson, Walter L.  - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Adamson, Walter L. - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Francisco Sandoval Martínez
 
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxVERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
hipachi8
 
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary RecommendationsLipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Sarumathi Murugesan
 

Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open Data

  • 1. Institute for Web Science & Technologies – WeST Leveraging the Web of Data: Managing, Analysing and Making Use of Linked Open Data Thomas Gottron July 18th, 2014 IRSS
  • 2. Thomas Gottron IRSS, Athens, 18.7.2014, 2Leveraging the Web of Data Linked Open Data – Vision of a Web of Data §  „Classic“ Web w  Linked documents §  Web of Data w  Linked data entities
  • 3. Thomas Gottron IRSS, Athens, 18.7.2014, 3Leveraging the Web of Data §  „Classic“ Web Linked Open Data – Vision of a Web of Data §  Web of Data ID ID
  • 4. Thomas Gottron IRSS, Athens, 18.7.2014, 4Leveraging the Web of Data LOD – Base technologies §  IDs: Dereferencable HTTP URIs §  Data Format: RDF §  No schema §  Links to other data sources foaf:Document „Extracting schema ...“ fb:Computer_Scientist dc:creator http://dblp.l3s.de/.../NesterovAM98 http://dblp.l3s.de/.../Serge_Abiteboul rdf:type „Serge Abiteboul“ dc:title rdf:type foaf:name http://www.bibsonomy.org/.../Serge+Abiteboul rdfs:seeAlso 1 Statement = 1 Tripel Subject Predicate Object rdf:type = http://www.w3.org/1999/02/22-rdf-syntax-ns#type foaf:Document = http://xmlns.com/foaf/0.1/Document swrc:InProceedingsrdf:type
  • 5. Thomas Gottron IRSS, Athens, 18.7.2014, 5Leveraging the Web of Data LOD Cloud … the Web of Linked Data consisting of more than 30 Billion RDF triples from hundreds of data sources … Gerhard Weikum SIGMOD Blog, 6.3.2013 http://wp.sigmod.org/ Where’s the Data in the Big Data Wave?
  • 6. Thomas Gottron IRSS, Athens, 18.7.2014, 6Leveraging the Web of Data Some „Bubbles“ of the LOD Cloud
  • 7. Thomas Gottron IRSS, Athens, 18.7.2014, 7Leveraging the Web of Data Making Use of the Linked Data Cloud ... Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/ LOD: a rich, huge, diverse, public and distributed knowledge base on the Web. Pros Cons rich knowledge base diversepublic huge on the Web diversedistributed Find technical solutions to overcome challenges
  • 8. Thomas Gottron IRSS, Athens, 18.7.2014, 8Leveraging the Web of Data Managing k1 k2 k3 ... kn d1,1 d1,2 d1,3 ... d2,1 d2,2 d3,1 d3,2 d3,3 ... dn,1 dn,2 dn,3 ... Search data structure Efficientstorage andretrieval MakingUseAnalysing 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 70 80 MicroAvg.F1 Week of Data Snapshot RDF Type TS PS IPS ECS SchemEX E1 rdf:type dc:creator E2 Bad News ...dc:title foaf:Document swrc:InProceedings rdf:type
  • 9. Thomas Gottron IRSS, Athens, 18.7.2014, 9Leveraging the Web of Data Managing k1 k2 k3 ... kn d1,1 d1,2 d1,3 ... d2,1 d2,2 d3,1 d3,2 d3,3 ... dn,1 dn,2 dn,3 ... Search data structure Efficientstorage andretrieval E1 rdf:type dc:creator E2 Bad News ...dc:title foaf:Document swrc:InProceedings rdf:type Analysing 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 70 80 MicroAvg.F1 Week of Data Snapshot RDF Type TS PS IPS ECS SchemEX MakingUse
  • 10. Thomas Gottron IRSS, Athens, 18.7.2014, 10Leveraging the Web of Data Data Format §  Linked Data as N-Quads: triple – what is the information? context URI – where does it come from? s op c ( )s op c
  • 11. Thomas Gottron IRSS, Athens, 18.7.2014, 11Leveraging the Web of Data Index Models
  • 12. Thomas Gottron IRSS, Athens, 18.7.2014, 12Leveraging the Web of Data (Abstract) Index Models w  D : Data elements to be retrieved (payload) w  K : Key elements to access the data (index elements) w  σ : Selection function: How to get data for a key k1 k2 k3 ... kn d1,1 d1,2 d1,3 ... d2,1 d2,2 d3,1 d3,2 d3,3 ... dn,1 dn,2 dn,3 ... DK σ Searchdata structure Efficientstorage andretrieval ℘( ) Data items / PayloadKeys
  • 13. Thomas Gottron IRSS, Athens, 18.7.2014, 13Leveraging the Web of Data Choices for Key Elements Subject s op c Search data structure s1 s2 sn Context Search data structure c1 c2 cm s op c Literals Search data structure x y z s litp c Types Search data structure t1 t2 tk s t rdf: type c ... Alternative: predicates or objects
  • 14. Thomas Gottron IRSS, Athens, 18.7.2014, 14Leveraging the Web of Data Choices for the Payload Full Caching local Web s op c Triples local Web s op Entities local Web s Data Sources local Web c ...
  • 15. Thomas Gottron IRSS, Athens, 18.7.2014, 15Leveraging the Web of Data , ... Concrete Example: Subject Based Index Model west:Gottron west:Staab west:Schegi ... tud:CGottron (west:Gottron, rdf:type, foaf:Person) (west:Gottron, foaf:knows, west:Staab) ... (west:Staab, swrc:institution, west:WeST) (west:Staab, foaf:name, „Steffen Staab“) ... (west:Schegi, rdf:type, foaf:Person) (west:Schegi, foaf:name, „Stefan Scheglmann“) (tud:CGottron, swrc:institution, tud:KOM) (tud:CGottron, foaf:knows, west:Gottron) ... s o1p1s s o2p2
  • 16. Thomas Gottron IRSS, Athens, 18.7.2014, 16Leveraging the Web of Data Implemented Index Models §  Triple based §  Meta data https://github.com/gottron/lod-index-models s ops s opp s opo s opterm s opc s opPLD
  • 17. Thomas Gottron IRSS, Athens, 18.7.2014, 17Leveraging the Web of Data Schema-level Indices
  • 18. Thomas Gottron IRSS, Athens, 18.7.2014, 18Leveraging the Web of Data Schema Information on the LOD Cloud (No) Schema? Guidelines / best practices Automatic tools Social effects Emerging Schema! Induce from data observations
  • 19. Thomas Gottron IRSS, Athens, 18.7.2014, 19Leveraging the Web of Data Examples for Schema Information Property Set Type Set { } ... x, ...p1 p3p2 { } ... t1 t2 y, ... rdf:type y rdf:type t1 t2 x p1 p2 p3
  • 20. Thomas Gottron IRSS, Athens, 18.7.2014, 20Leveraging the Web of Data Implemented Index Models §  Triple based §  Meta data §  Schema-level https://github.com/gottron/lod-index-models s ops s opp s opo s opterm s opc s opPLD type s SchemEX s t t st t p p sp p p-1 p-1 op-1p-1 t p sp t
  • 21. Thomas Gottron IRSS, Athens, 18.7.2014, 21Leveraging the Web of Data SchemEX
  • 22. Thomas Gottron IRSS, Athens, 18.7.2014, 22Leveraging the Web of Data Schema-based Access to the LOD cloud ? foaf:Document fb:Computer_Scientist dc:creator x swrc:InProceedings SELECT ?x WHERE { ?x rdf:type foaf:Document . ?x rdf:type swrc:InProceedings . ?x dc:creator ?y . ?y rdf:type fb:Computer_Scientist }
  • 23. Thomas Gottron IRSS, Athens, 18.7.2014, 23Leveraging the Web of Data Schema-based Access to the LOD cloud Schema- level Index Where? •  ACM •  DBLP SELECT ?x WHERE { ?x rdf:type foaf:Document . ?x rdf:type swrc:InProceedings . ?x dc:creator ?y . ?y rdf:type fb:Computer_Scientist } Which schema information?
  • 24. Thomas Gottron IRSS, Athens, 18.7.2014, 24Leveraging the Web of Data Typecluster §  Entities with the same Set of types t1 t2 C1 C2 Cm tn... ... TCj
  • 25. Thomas Gottron IRSS, Athens, 18.7.2014, 25Leveraging the Web of Data Typecluster: Example foaf:Document swrc:InProceedings DBLP ACM tc2309
  • 26. Thomas Gottron IRSS, Athens, 18.7.2014, 26Leveraging the Web of Data Property Sets §  Entities with the same Set of properties p1 p2 C1 C2 Cm pn... ... PSi
  • 27. Thomas Gottron IRSS, Athens, 18.7.2014, 27Leveraging the Web of Data Bi-Simulation: Example dc:creator BBC DBLP ps2608
  • 28. Thomas Gottron IRSS, Athens, 18.7.2014, 28Leveraging the Web of Data SchemEX: Combination TC and PS §  Partition of TC based on PS with restrictions on the destination TC (equivalence relation) t1 t2 tn... C1 C2 Cm ... t45 t2 tn‘... p1 pn‘‘... EQC EQC Cx TCj TCk EQCl PSi SchemaPayload p2 PS
  • 29. Thomas Gottron IRSS, Athens, 18.7.2014, 29Leveraging the Web of Data SchemEX: Example DBLP ... tc2309 tc2101 eqc707 ps2608 foaf:Document swrc:InProceedings fb:Computer_Scientist dc:creator SELECT ?x WHERE { ?x rdf:type foaf:Document . ?x rdf:type swrc:InProceedings . ?x dc:creator ?y . ?y rdf:type fb:Computer_Scientist }
  • 30. Thomas Gottron IRSS, Athens, 18.7.2014, 30Leveraging the Web of Data Building Indices
  • 31. Thomas Gottron IRSS, Athens, 18.7.2014, 31Leveraging the Web of Data Building Indices: Operators §  Combination of few simple operations w  Aggregate, Join, Invert §  Example: Property Set index s1 o1p1 c1 s1 o1p2 c1 s2 o2p2 c1 s3 o3p1 c1 s3 o4p2 c1 s4 o1p3 c1 s1 p1 p2 s2 p2 s3 p1 p2 s4 p3 p1 p2 s1 s3 p2 s2 p3 s4 Aggregate Invert
  • 32. Thomas Gottron IRSS, Athens, 18.7.2014, 32Leveraging the Web of Data SchemEX: Computation §  Precise computation: 3 Aggregates + Join + Invert t1 t2 tn... C1 C2 Cm ... t45 t2 tn‘... p1 pn‘‘... EQC EQC Cx TCj TCk EQCl PSi SchemaPayload p2 PS Better Approach?(Faster, more scalable)
  • 33. Thomas Gottron IRSS, Athens, 18.7.2014, 33Leveraging the Web of Data Stream-based Computation of SchemEX §  LOD Crawler: Stream of N-Quads … Q16, Q15, Q14, Q13, Q12, Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1 FiFo 4 3 2 1 1 6 2 3 4 5 t3 t2 t2 t1 t1 t2 tn... C1 C2 Cm ... t45 t2 tn‘... p1 pn‘‘... EQC EQC Cx TCj TCk EQCl PSi SchemaPayload p2 PS
  • 34. Thomas Gottron IRSS, Athens, 18.7.2014, 34Leveraging the Web of Data Quality of Approximated Index §  Stream-based computation vs. precise computation w  Data set of 11 Mio. tripel
  • 35. Thomas Gottron IRSS, Athens, 18.7.2014, 35Leveraging the Web of Data SchemEX: 1st place @ BTC 2011 §  SchemEX w  Allows complex queries (Star, Chain) w  Scalable computation w  High quality §  Index over BTC 2011 data w  2.17 billion triple w  Index: 55 million triple §  Commodity hardware w  VM: 1 Core, 4 GB RAM w  Throughput: 39.500 triple / second w  Computation of full index: 15h
  • 36. Thomas Gottron IRSS, Athens, 18.7.2014, 36Leveraging the Web of Data k1 k2 k3 ... kn d1,1 d1,2 d1,3 ... d2,1 d2,2 d3,1 d3,2 d3,3 ... dn,1 dn,2 dn,3 ... Search data structure Efficientstorage andretrieval ManagingMakingUseAnalysing 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 70 80 MicroAvg.F1 Week of Data Snapshot RDF Type TS PS IPS ECS SchemEX E1 rdf:type dc:creator E2 Bad News ...dc:title foaf:Document swrc:InProceedings rdf:type
  • 37. Thomas Gottron IRSS, Athens, 18.7.2014, 37Leveraging the Web of Data Redundancy of Schema Information
  • 38. Thomas Gottron IRSS, Athens, 18.7.2014, 38Leveraging the Web of Data Explicit and Implicit Schema Information on LOD E1 rdf:type Explicit Assigning class types Implicit Modelling attributes dc:creator E2 Bad News ...dc:title foaf:Document swrc:InProceedings rdf:type Class Type Entity rdf:type Entity Property Entity 2 To which degree?
  • 39. Thomas Gottron IRSS, Athens, 18.7.2014, 39Leveraging the Web of Data e.g. Probabilistic model of schema information §  Joint Distribution P(T,R) over w  Type sets: TS w  Property sets: PS §  P(T=t,R=r) : probability of resource to have type set t and property set r P(T,R)   r1 r2 r3 r4   P(T)   t1 14%   2%   5%   8%   29%   t2 5%  15%   2%   3%   25%   t3 7%   3%  30%   5%   45%     P(R)   26%  20%  37%  17%  foaf:Document swrc:InProceedings e.g. dc:creator dc:title Marginal Distributions Marginal Distributions
  • 40. Thomas Gottron IRSS, Athens, 18.7.2014, 40Leveraging the Web of Data Estimating probabilities Data set Triples TS PS Rest 22.3M 793 7,522 Datahub 910.1M 28,924 14,712 Dbpedia 198.1M 1,026,272 391,170 Freebase 101.2M 69,732 162,023 Timbl 204.8M 4,139 9,619 §  Todo (on large data sets) w  Determine schema use w  Aggregate counts §  „Query“ schema-level index: §  Data background: segments from BTC‘12 p(t,r) = d ∈ σ t,r( ) N
  • 41. Thomas Gottron IRSS, Athens, 18.7.2014, 41Leveraging the Web of Data Redundancy To which degree can one type of information (either types or properties) explain the respective other? §  Mutual Information §  Normalized MI: •  H(T) and H(R) : entropy of the marginal distributions. I(T, R) = p t,r( )⋅log p t,r( ) P T = t( )⋅ P R = r( ) " # $$ % & '' r∈PS ∑ t∈TS ∑ I0 (T, R) = I T, R( ) min H T( ), H R( )( )
  • 42. Thomas Gottron IRSS, Athens, 18.7.2014, 42Leveraging the Web of Data Example: Normalized Mutual Information P(T,R)   r1 r2 r3 r4   P(T)   t1 14%   2%   5%   8%   29%   t2 5%  15%   2%   3%   25%   t3 7%   3%  30%   5%   45%     P(R)   26%  20%  37%  17%   I0 (T, R) = 0.239 P(T,R)   r1 r2 r3 r4   P(T)   t1 22%   1%   0%   1%   24%   t2 1%  23%   1%   0%   26%   t3 1%   0%  48%   1%   50%     P(R)   24%  24%  49%   2%   I0 (T, R) = 0.766
  • 43. Thomas Gottron IRSS, Athens, 18.7.2014, 43Leveraging the Web of Data Normalized Mutual Information on BTC‘12 §  Tendencies: w  Relatively high redundancy w  Freebase: (weakly) pre-defined schema w  Timbl: narrow domain (FOAF profiles) w  DBpedia: de-centralized schema Data set I0(T,R) Rest 0.881 Datahub 0.747 Dbpedia 0.635 Freebase 0.860 Timbl 0.850 1 4 5 2 3
  • 44. Thomas Gottron IRSS, Athens, 18.7.2014, 44Leveraging the Web of Data Finding Alternative Descriptions
  • 45. Thomas Gottron IRSS, Athens, 18.7.2014, 45Leveraging the Web of Data Searching for a Suitable Description SELECT ?x WHERE { ?x rdf:type foaf:Document } SELECT ?x WHERE { ?x rdf:type foaf:Document . ?x rdf:type foaf:PersonalProfileDocument } SELECT ?x WHERE { ?x rdf:type foaf:Document . ?x rdf:type sioc:Post . } Declarative descriptions
  • 46. Thomas Gottron IRSS, Athens, 18.7.2014, 46Leveraging the Web of Data Operations on the Declarative Description Entity Set C1 C2 C1 C2 C3 C1 C2 C1 C2 C1sub C1sup C2 C1 Add Delete Refine Generalize
  • 47. Thomas Gottron IRSS, Athens, 18.7.2014, 47Leveraging the Web of Data Just (Small) Baby Steps ...
  • 48. Thomas Gottron IRSS, Athens, 18.7.2014, 48Leveraging the Web of Data Formal Concept Analysis §  Constructs concepts and their hierarchy from data objects §  Input (formal context) w  Set O (the objects) w  Set A (the attributes) w  Relation I ⊆ O×A (which object has which attributes) §  Derivation Operator w  (Sub)Set of objects w  (Sub)Set of attributes Attributes common to all objects in X Objects which have all attributes in Y X ' := y ∈ A : x, y( ) ∈ I,∀x ∈ X{ } Y ' := x ∈ O : x, y( ) ∈ I,∀y ∈ Y{ }
  • 49. Thomas Gottron IRSS, Athens, 18.7.2014, 49Leveraging the Web of Data Formal Concept Analysis §  (X,Y) is a formal concept, if X'=Y and Y'=X w  X is the extent w  Y is the intent w  Example: ({1,5,10},{a,c}) §  Partial order for formal concepts: w  (X1,Y1) ≤ (X2,Y2) if X1 ⊂ X2 w  Equivalent to Y1 ⊃ Y2 w  Example: ({1,10},{a,b,c}) ≤ ({1,5,10},{a,b}) §  Defines a lattice structure on the concepts Table 1. Example of two formal conte Object a b c 1 ⇥ ⇥ ⇥ 2 ⇥ 3 ⇥ 4 ⇥ ⇥ 5 ⇥ ⇥ 6 ⇥ ⇥ 7 ⇥ 8 ⇥ ⇥ 9 ⇥ ⇥ 10 ⇥ ⇥ ⇥ ⌧ ⇠⇡ ⇢; qqqqqq MMMMMM ⌧ ⇠⇡ ⇢{a} LLLLL ⌧ ⇠⇡ ⇢{b} rrrrr LLLLL ⌧ ⇠⇡ ⇢{c} rrrrr ⌧ ⇠⇡ ⇢{a, b} LLLL ⌧ ⇠⇡ ⇢{a, c} ⌧ ⇠⇡ ⇢{b, c} rrrr ⌧ ⇠⇡ ⇢{a, b, c}
  • 50. Thomas Gottron IRSS, Athens, 18.7.2014, 50Leveraging the Web of Data Formal Concept Lattice (extent) ≤ Table 1. Example of two formal conte Object a b c 1 ⇥ ⇥ ⇥ 2 ⇥ 3 ⇥ 4 ⇥ ⇥ 5 ⇥ ⇥ 6 ⇥ ⇥ 7 ⇥ 8 ⇥ ⇥ 9 ⇥ ⇥ 10 ⇥ ⇥ ⇥ ⌧ ⇠⇡ ⇢; qqqqqq MMMMMM ⌧ ⇠⇡ ⇢{a} LLLLL ⌧ ⇠⇡ ⇢{b} rrrrr LLLLL ⌧ ⇠⇡ ⇢{c} rrrrr ⌧ ⇠⇡ ⇢{a, b} LLLL ⌧ ⇠⇡ ⇢{a, c} ⌧ ⇠⇡ ⇢{b, c} rrrr ⌧ ⇠⇡ ⇢{a, b, c}
  • 51. Thomas Gottron IRSS, Athens, 18.7.2014, 51Leveraging the Web of Data Formal Concept Lattice (intent) Top-Concept: (O,Ø) Bottom-Concept: (Ø,A) Table 1. Example of two formal conte Object a b c 1 ⇥ ⇥ ⇥ 2 ⇥ 3 ⇥ 4 ⇥ ⇥ 5 ⇥ ⇥ 6 ⇥ ⇥ 7 ⇥ 8 ⇥ ⇥ 9 ⇥ ⇥ 10 ⇥ ⇥ ⇥ ⌧ ⇠⇡ ⇢; qqqqqq MMMMMM ⌧ ⇠⇡ ⇢{a} LLLLL ⌧ ⇠⇡ ⇢{b} rrrrr LLLLL ⌧ ⇠⇡ ⇢{c} rrrrr ⌧ ⇠⇡ ⇢{a, b} LLLL ⌧ ⇠⇡ ⇢{a, c} ⌧ ⇠⇡ ⇢{b, c} rrrr ⌧ ⇠⇡ ⇢{a, b, c} 9 ⇥ ⇥ 10 ⇥ ⇥ ⇥ 9 ⇥ ⇥ 10 ⇥ ⇥ ⌧ ⇠⇡ ⇢; qqqqqq MMMMMM ⌧ ⇠⇡ ⇢; ppppppp ⌧ ⇠⇡ ⇢{a} LLLLL ⌧ ⇠⇡ ⇢{b} rrrrr LLLLL ⌧ ⇠⇡ ⇢{c} rrrrr ⌧ ⇠⇡ ⇢{x} ⌧ ⇠⇡ ⇢{y} qqqqq MMMM ⌧ ⇠⇡ ⇢{a, b} LLLL ⌧ ⇠⇡ ⇢{a, c} ⌧ ⇠⇡ ⇢{b, c} rrrr ⌧ ⇠⇡ ⇢{x, y} MMMM qqq ⌧ ⇠⇡ ⇢{a, b, c} ⌧ ⇠⇡ ⇢{x, y, z} Formal concept lattice structures based on the relations in Ta d by their intent—which provides a better overview.
  • 52. Thomas Gottron IRSS, Athens, 18.7.2014, 52Leveraging the Web of Data Navigating the Lattice Remove constraints Extend object set Add constraints Reduce object set Nice formalization, but ... 9 ⇥ ⇥ 10 ⇥ ⇥ ⇥ 9 ⇥ ⇥ 10 ⇥ ⇥ ⌧ ⇠⇡ ⇢; qqqqqq MMMMMM ⌧ ⇠⇡ ⇢; ppppppp ⌧ ⇠⇡ ⇢{a} LLLLL ⌧ ⇠⇡ ⇢{b} rrrrr LLLLL ⌧ ⇠⇡ ⇢{c} rrrrr ⌧ ⇠⇡ ⇢{x} ⌧ ⇠⇡ ⇢{y} qqqqq MMMM ⌧ ⇠⇡ ⇢{a, b} LLLL ⌧ ⇠⇡ ⇢{a, c} ⌧ ⇠⇡ ⇢{b, c} rrrr ⌧ ⇠⇡ ⇢{x, y} MMMM qqq ⌧ ⇠⇡ ⇢{a, b, c} ⌧ ⇠⇡ ⇢{x, y, z} Formal concept lattice structures based on the relations in Ta d by their intent—which provides a better overview.
  • 53. Thomas Gottron IRSS, Athens, 18.7.2014, 53Leveraging the Web of Data … still Baby Steps
  • 54. Thomas Gottron IRSS, Athens, 18.7.2014, 54Leveraging the Web of Data Parallel Lattices §  Availability of several attribute sets w  Facet dimensions w  „Natural“ subdivision w  Different descriptions of the same data
  • 55. Thomas Gottron IRSS, Athens, 18.7.2014, 55Leveraging the Web of Data Parallel Lattices
  • 56. Thomas Gottron IRSS, Athens, 18.7.2014, 56Leveraging the Web of Data General Idea for Mapping Entity Set C1 C2 C3 C4 C5 Approx. Entity Set derive derive approximate description alternative description
  • 57. Thomas Gottron IRSS, Athens, 18.7.2014, 57Leveraging the Web of Data Implementing Mappings §  Minimal Extension w  Top-Down Maximal Reduction Bottom-Up {b,c}' = {1,4,6,9,10} Alternative description for {b,c} 1 1,9 10 2,8 3,5,7 Precision? Recall?
  • 58. Thomas Gottron IRSS, Athens, 18.7.2014, 58Leveraging the Web of Data Observations §  On LOD: Mapping type sets onto property sets w  Evaluation on 20 data sets (subset of BTC‘12) §  Quality of approximations w  max-red: •  High recall: mainly > 0.8 •  Better for smaller concepts w  min-ext: •  Good precision: mainly > 0.5 •  Better for larger concepts rss:Item sioc:MicroblogPost foaf:maker sioc:has_discussion dcterms:date
  • 59. Thomas Gottron IRSS, Athens, 18.7.2014, 59Leveraging the Web of Data Evolution of Linked Data
  • 60. Thomas Gottron IRSS, Athens, 18.7.2014, 60Leveraging the Web of Data Evolution of LOD 2007 2008 2009 2010 2011
  • 61. Thomas Gottron IRSS, Athens, 18.7.2014, 61Leveraging the Web of Data Evolution of LOD Time Volume Triples provided by data sources Insertion, deletion, modification
  • 62. Thomas Gottron IRSS, Athens, 18.7.2014, 62Leveraging the Web of Data Effects on Indices: Decline in accuracy 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 70 80 MicroAvg.F1 Week of Data Snapshot RDF Type TS PS IPS ECS SchemEX
  • 63. Thomas Gottron IRSS, Athens, 18.7.2014, 63Leveraging the Web of Data Updates of Indices and Caches Which sources to prioritise in an update?
  • 64. Thomas Gottron IRSS, Athens, 18.7.2014, 64Leveraging the Web of Data Change Metrics §  Comparison of two RDF data sets (e.g. from different points in time) w  Xi : Set of triple statements w  Numeric expression for „distance“ §  Example: X1 X2 Δ 0,∞[ ) ΔJaccard X1, X2( )=1− X1 ∩ X2 X1 ∪ X2 Suitable to measuredynamics???
  • 65. Thomas Gottron IRSS, Athens, 18.7.2014, 65Leveraging the Web of Data Toy example: Changes Analysis of LOD 1st snapshot GerdInstitute ZBW Institute WeST Thomas Gerd Ansgar Renata
  • 66. Thomas Gottron IRSS, Athens, 18.7.2014, 66Leveraging the Web of Data Toy example: Changes Analysis of LOD 1st snapshot GerdInstitute ZBW Institute WeST Thomas Gerd Ansgar Renata 2nd snapshot Institute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute Paluno
  • 67. Thomas Gottron IRSS, Athens, 18.7.2014, 67Leveraging the Web of Data Toy example: Changes Analysis of LOD Changes detected between 1st and 2nd snapshot 1.  Deleted: <InstituteWEST hasMember Gerd> 2.  New: <InstitutePaluno hasMember Gerd > 1st snapshot GerdInstitute ZBW Institute WeST Thomas Gerd Ansgar Renata 2nd snapshot Institute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute Paluno
  • 68. Thomas Gottron IRSS, Athens, 18.7.2014, 68Leveraging the Web of Data Toy example: Changes Analysis of LOD 1st snapshot GerdInstitute ZBW Institute WeST Thomas Gerd Ansgar Renata 2nd snapshot Institute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute Paluno 3rd snapshot Institute ZBW Institute WeST Thomas Gerd Ansgar Renata
  • 69. Thomas Gottron IRSS, Athens, 18.7.2014, 69Leveraging the Web of Data Toy example: Changes Analysis of LOD 1st snapshot 2nd snapshot 3rd snapshot GerdInstitute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute Paluno Changes detected between 2nd and 3rd snapshot 1.  New: <InstituteWEST hasMember Gerd> 2.  Deleted: <InstitutePaluno hasMember Gerd >
  • 70. Thomas Gottron IRSS, Athens, 18.7.2014, 70Leveraging the Web of Data Toy example: Changes Analysis of LOD 1st snapshot 2nd snapshot 3rd snapshot GerdInstitute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute ZBW Institute WeST Thomas Gerd Ansgar Renata Institute Paluno Changes detected between 1st and 3rd snapshot None!?! Change metrics capture differences We want to measure dynamics!
  • 71. Thomas Gottron IRSS, Athens, 18.7.2014, 71Leveraging the Web of Data Measuring Dynamics: Requirements §  Dynamics function Θ w  quantify the evolution of a dataset X over a period of time Θti tj (X) = Θ(Xtj )−Θ(Xti ) ≥ 0 Θ Dynamics as amount of evolution Timeti tj X
  • 72. Thomas Gottron IRSS, Athens, 18.7.2014, 72Leveraging the Web of Data Constructing a Dynamics Function §  Function Θ difficult to define directly §  Indirect definition over a change rate function c(Xt) Θ(Xtj )−Θ(Xti ) = c Xt( ) ti tj ∫ dt Time Θ c ti tj X
  • 73. Thomas Gottron IRSS, Athens, 18.7.2014, 73Leveraging the Web of Data Change Rate Function §  Also c(Xt) not explicitely known! §  But can be approximated! w  Given snapshots of the data in small time intervals: w  The change rate can be approximated via change metrics: Δ Xti , Xti−1 ( ) ti −ti−1 ti−1→ti $ →$$ c Xti ( )= d dt Θ(Xti ) Xt1 , Xt2 , Xt3 ,!, Xtn
  • 74. Thomas Gottron IRSS, Athens, 18.7.2014, 74Leveraging the Web of Data Dynamics Framework §  Approximating c(Xt) as step function Timeti tj Θ c Θt1 tn (X) = Δ Xti , Xti−1 ( ) i=2 n ∑ Choice of Δ: Flexible use of different notions of change! X
  • 75. Thomas Gottron IRSS, Athens, 18.7.2014, 75Leveraging the Web of Data Introduction of Decay §  So far: w  Impact of evolution independent of moment in time w  Desirable: Focus on certain periods of time •  e.g. recent past §  Solution: w  Decay function f to assign weights to moments in time Time c ti tj f f ⋅c
  • 76. Thomas Gottron IRSS, Athens, 18.7.2014, 76Leveraging the Web of Data Implementing a Decay Function §  Exponential decay function: §  Incoporated in the framework: §  When using the step function approximation of c(Xt) : f t( )= e−λt Θ(Xtj )−Θ(Xti ) = e −λ tj −t( ) ⋅c Xt( ) ti tj ∫ dt Θt1 tn (X) = e −λ tn−ti( ) ⋅Δ Xti , Xti−1 ( ) i=2 n ∑
  • 77. Thomas Gottron IRSS, Athens, 18.7.2014, 77Leveraging the Web of Data Tabelle1 2012-05-06 2012-06-03 2012-07-01 2012-07-29 2012-08-26 2012-09-23 2012-10-21 2012-11-18 2012-12-16 2013-01-13 2013-02-24 2013-03-24 2013-04-22 2013-05-19 2013-06-16 2013-07-14 2013-08-11 2013-09-08 2013-10-06 2013-11-03 0 0,2 0,4 0,6 0,8 1 Change Rate Function of Seleted Data Sources Tabelle1 2012-05-06 2012-05-27 2012-06-17 2012-07-08 2012-07-29 2012-08-19 2012-09-09 2012-09-30 2012-10-21 2012-11-11 2012-12-02 2012-12-23 2013-01-13 2013-02-19 2013-03-10 2013-03-31 2013-04-22 2013-05-12 2013-06-04 2013-06-23 2013-07-14 2013-08-04 2013-08-25 2013-09-15 2013-10-06 2013-10-27 2013-11-17 0 0,2 0,4 0,6 0,8 1 Θ = 55.71 , Θdecay = 23.42 dbpedia.org Tabelle1 2012-05-06 2012-06-03 2012-07-01 2012-07-29 2012-08-26 2012-09-23 2012-10-21 2012-11-18 2012-12-16 2013-01-13 2013-02-24 2013-03-24 2013-04-22 2013-05-19 2013-06-16 2013-07-14 2013-08-11 2013-09-08 2013-10-06 2013-11-03 0 0,2 0,4 0,6 0,8 1 Θ = 58.45 , Θdecay = 18.48 identi.ca Θ = 51.75 , Θdecay = 25.03 linkedct.org Tabelle1 2012-05-06 2012-06-03 2012-07-01 2012-07-29 2012-08-26 2012-09-23 2012-10-21 2012-11-18 2012-12-16 2013-01-13 2013-02-24 2013-03-24 2013-04-22 2013-05-19 2013-06-16 2013-07-14 2013-08-11 2013-09-08 2013-10-06 2013-11-03 0 0,2 0,4 0,6 0,8 1 Θ = 20.90 , Θdecay = 8.33 dbtune.org
  • 78. Thomas Gottron IRSS, Athens, 18.7.2014, 78Leveraging the Web of Data k1 k2 k3 ... kn d1,1 d1,2 d1,3 ... d2,1 d2,2 d3,1 d3,2 d3,3 ... dn,1 dn,2 dn,3 ... Search data structure Efficientstorage andretrieval Managing E1 rdf:type dc:creator E2 Bad News ...dc:title foaf:Document swrc:InProceedings rdf:type Analysing 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 70 80 MicroAvg.F1 Week of Data Snapshot RDF Type TS PS IPS ECS SchemEX MakingUse
  • 79. Thomas Gottron IRSS, Athens, 18.7.2014, 79Leveraging the Web of Data Schema-level Search on LOD
  • 80. Thomas Gottron IRSS, Athens, 18.7.2014, 80Leveraging the Web of Data Schema-based Access to the LOD cloud Schema- level Index Where? •  ACM •  DBLP SELECT ?x WHERE { ?x rdf:type foaf:Document . ?x rdf:type swrc:InProceedings . ?x dc:creator ?y . ?y rdf:type fb:Computer_Scientist }
  • 81. Thomas Gottron IRSS, Athens, 18.7.2014, 81Leveraging the Web of Data LODatio: Schema-level Search of LOD
  • 82. Thomas Gottron IRSS, Athens, 18.7.2014, 82Leveraging the Web of Data LODatio: Query transformation
  • 83. Thomas Gottron IRSS, Athens, 18.7.2014, 83Leveraging the Web of Data LODatio: Query transformation foaf:Document fb:Computer_Scientist dc:creator x swrc:InProceedings DBLP ... tc2309 tc2101 eqc707 ps2608 foaf:Document swrc:InProceedings fb:Computer_Scientist dc:creator SELECT ?x WHERE { ?x rdf:type foaf:Document . ?x rdf:type swrc:InProceedings . ?x dc:creator ?y . ?y rdf:type fb:Computer_Scientist } SELECT ?c WHERE { ?eqc schemex:hasDataset ?c . ?tc_A schemex:hasSubset ?eqc . ?tc_A schemex:hasClass foaf:Document . ?tc_A schemex:hasClass swrc:InProceedings . ?bs void:subjectsTarget ?eqc . ?bs void:objectsTarget ?tc_B . ?bs void:property dc:creator . ?tc_B schemex:hasClass fb:Computer_Scientist }
  • 84. Thomas Gottron IRSS, Athens, 18.7.2014, 84Leveraging the Web of Data LODatio: Retrieval Results
  • 85. Thomas Gottron IRSS, Athens, 18.7.2014, 85Leveraging the Web of Data LODatio: Retrieval Results C1 EQCl C1 EQCl DS23 URI 1 URI 2 URI 3 Entity count Example entities
  • 86. Thomas Gottron IRSS, Athens, 18.7.2014, 86Leveraging the Web of Data LODatio: User Support
  • 87. Thomas Gottron IRSS, Athens, 18.7.2014, 87Leveraging the Web of Data LODatio: User Support §  Currently implemented: w  Moderate reductions / extensions §  Next release: w  Include alternative description based on parallel lattices further properties further types DBLP ... tc2309 tc2101 eqc707 ps2608 foaf:Document swrc:InProceedings fb:Computer_Scientist dc:creator DS23
  • 88. Thomas Gottron IRSS, Athens, 18.7.2014, 88Leveraging the Web of Data LODatio: next steps Keyword search Better recommendations Other payload entities Visual exploration Related datasources Coverage
  • 89. Thomas Gottron IRSS, Athens, 18.7.2014, 89Leveraging the Web of Data Focused Exploration (work in progress)
  • 90. Thomas Gottron IRSS, Athens, 18.7.2014, 90Leveraging the Web of Data Use Case: Social Media Coverage of Events
  • 91. Thomas Gottron IRSS, Athens, 18.7.2014, 91Leveraging the Web of Data LinkedGeoData OSM owl:sameAs ??? Other locations?
  • 92. Thomas Gottron IRSS, Athens, 18.7.2014, 92Leveraging the Web of Data Extending LinkedGeoData Seed Exploration Overlay
  • 93. Thomas Gottron IRSS, Athens, 18.7.2014, 93Leveraging the Web of Data Task of Focused Exploration (use case: locations) §  Prioritise/select object URIs for exploration umbel:Village s -1.404 50.897 wgs84:long wgs84:lat dbponto:isPartOf dbponto:wikiPageExternalLink dbponto:governmentType dbpprop:settlementType dbpprop:subdivisionName o1 dbpprop:postalCode dcterms:subject o4 o5 o6 o7 o8 o10 o9 o11 o2 o3 xxx yyy wgs84:long wgs84:lat
  • 94. Thomas Gottron IRSS, Athens, 18.7.2014, 94Leveraging the Web of Data Exploration based on Schema Semantics §  Exploit rdfs:range definitions of predicates §  Follow edges which lead to locations with higher priority dbponto:twinCity dbpedia:City rdfs:range dbpedia:Place rdfs:subClassOf
  • 95. Thomas Gottron IRSS, Athens, 18.7.2014, 95Leveraging the Web of Data Supervised Machine Learning §  Use incoming predicates as features w  Learn predicates typically leading to locations §  Train a classifier (e.g. Naive Bayes) o xxx yyy wgs84:long wgs84:lat p2 p3 o‘ p4 p6
  • 96. Thomas Gottron IRSS, Athens, 18.7.2014, 96Leveraging the Web of Data IR Inspired Approaches §  Model discriminativeness of predicates w  Inspired by tf-idf §  Property relevance frequency (prf): •  Normalised version (prr) §  Inverse property frequency §  Rank by combine measure: prf-ipf prf = c(p, L) ipf = log c(∗,∗) c(p,∗) " # $ % & '
  • 97. Thomas Gottron IRSS, Athens, 18.7.2014, 97Leveraging the Web of Data Performance 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ROC random Schema Semantics NB (all predicates) NB (present predicates) prf-ipf prr-ipf 0.95 0.975 1 0 0.025 0.05
  • 98. Thomas Gottron IRSS, Athens, 18.7.2014, 98Leveraging the Web of Data Performance . Average performance of approaches († indicates significant improvem nce level ⇢ = 0.01) Method Recall Precision F1 Accuracy AUC Schema Scemantics 0.1188 0.8119 0.2073 0.7262 0.5552 NB (all predicates) 0.9906 0.9491 † 0.9694 † 0.9812 0.9970 NB (observed predicates) 0.9943 0.9436 0.9683 0.9804 0.9968 prf-ipf 0.8512 † 0.9754 0.9091 0.9487 0.9958 prr-ipf † 0.9973 0.9240 0.9592 0.9745 0.9769 mance in bold. Furthermore, we marked the results where we had a signific ent over the second best method at confidence level of ⇢ = 0.01. The agg basically confirm the observations made above. In general, when conside es F1, Accuracy and AUC, the Naive Bayes classifier making use of al
  • 99. Thomas Gottron IRSS, Athens, 18.7.2014, 99Leveraging the Web of Data E1 rdf:type dc:creator E2 Bad News ...dc:title foaf:Document swrc:InProceedings rdf:type Analysing 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 70 80 MicroAvg.F1 Week of Data Snapshot RDF Type TS PS IPS ECS SchemEX MakingUse k1 k2 k3 ... kn d1,1 d1,2 d1,3 ... d2,1 d2,2 d3,1 d3,2 d3,3 ... dn,1 dn,2 dn,3 ... Search data structure Efficientstorage andretrieval Managing
  • 100. Thomas Gottron IRSS, Athens, 18.7.2014, 100Leveraging the Web of Data Summary Pros Cons rich knowledge base diversepublic huge on the Web diversedistributed k1 k2 k3 ... kn d1,1 d1,2 d1,3 ... d2,1 d2,2 d3,1 d3,2 d3,3 ... dn,1 dn,2 dn,3 ... Technical solutions to some of the problems
  • 101. Thomas Gottron IRSS, Athens, 18.7.2014, 101Leveraging the Web of Data Summary Pros Cons rich knowledge base diversepublic huge on the Web diversedistributed k1 k2 k3 ... kn d1,1 d1,2 d1,3 ... d2,1 d2,2 d3,1 d3,2 d3,3 ... dn,1 dn,2 dn,3 ...
  • 102. Thomas Gottron IRSS, Athens, 18.7.2014, 102Leveraging the Web of Data Thank you! Contact: Thomas Gottron WeST – Institute for Web Science and Technologies Universität Koblenz-Landau [email protected]
  • 103. Thomas Gottron IRSS, Athens, 18.7.2014, 103Leveraging the Web of Data References 1.  M. Konrath, T. Gottron, and A. Scherp, “Schemex – web-scale indexed schema extraction of linked open data,” in Semantic Web Challenge, Submission to the Billion Triple Track, 2011. 2.  M. Konrath, T. Gottron, S. Staab, and A. Scherp, “Schemex—efficient construction of a data catalogue by stream-based indexing of linked data,” Journal of Web Semantics, 2012. 3.  T. Gottron, M. Knauf, S. Scheglmann, and A. Scherp, “Explicit and implicit schema information on the linked open data cloud: Joined forces or antagonists?,” Tech. Rep. 06/2012, Institut WeST, Universität Koblenz-Landau, 2012. 4.  T. Gottron and R. Pickhardt, “A detailed analysis of the quality of stream-based schema construction on linked open data,” in CSWS’12: Proceedings of the Chinese Semantic Web Symposium, 2012. 5.  T. Gottron, A. Scherp, B. Krayer, and A. Peters, “Get the google feeling: Supporting users in finding relevant sources of linked open data at web-scale,” in Semantic Web Challenge, Submission to the Billion Triple Track, 2012. 6.  T. Gottron, A. Scherp, B. Krayer, and A. Peters, “LODatio: Using a Schema-Based Index to Support Users in Finding Relevant Sources of Linked Data,” in K-CAP’13: Proceedings of the Conference on Knowledge Capture, 2013. 7.  T. Gottron, M. Knauf, S. Scheglmann, and A. Scherp, “A Systematic Investigation of Explicit and Implicit Schema Information on the Linked Open Data Cloud,” in ESWC’13: Proceedings of the 10th Extended Semantic Web Conference, 2013. 8.  J. Schaible, T. Gottron, S. Scheglmann, and A. Scherp, “LOVER: Support for Modeling Data Using Linked Open Vocabularies,” in LWDM’13: 3rd International Workshop on Linked Web Data Management, 2013. 9.  R. Dividino, A. Scherp, G. Gröner, and T. Gottron, “Change-a-LOD: Does the Schema on the Linked Data Cloud Change or Not?,” in COLD’13: International Workshop on Consuming Linked Data, 2013.
  • 104. Thomas Gottron IRSS, Athens, 18.7.2014, 104Leveraging the Web of Data References 10.  T. Gottron, M. Knauf, and A. Scherp, “Analysis of schema structures in the linked open data graph based on unique subject uris, pay-level domains, and vocabulary usage,” Distributed and Parallel Databases, pp. 1–39, 2014. 11.  T. Gottron and C. Gottron, “Perplexity of index models over evolving linked data,” in ESWC’14: Proceedings of the Extended Semantic Web Conference, 2014. 12.  T. Gottron, A. Scherp, and S. Scheglmann, “Providing alternative declarative descriptions for entity sets using parallel concept lattices,” in ESWC’14: Proceedings of the Extended Semantic Web Conference, 2014. 13.  Carothers, G.: Rdf 1.1 n-quads. W3C Recommendation (Feb 2014), http://www.w3. org/TR/2014/REC-n- quads-20140225/, (accessed 14 March 2014) 14.  Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked data dynamics. In: The Se- mantic Web: Semantics and Big Data, Lecture Notes in Computer Science, vol. 7882, pp. 213– 227. Springer Berlin Heidelberg (2013) 15.  T. Gottron, “Of Sampling and Smoothing: Approximating Distributions over Linked Open Data,” in PROFILES’14: Proceedings of the Workshop on Dataset ProfiIling and Federated Search for Linked Data, 2014. 16.  R. Dividino, T. Gottron, A. Scherp, and G. Gröner, “From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources,” in PROFILES’14: Proceedings of the Workshop on Dataset ProfiIling and Federated Search for Linked Data, 2014. 17.  R. Dividino, A. Kramer, and T. Gottron, “An Investigation of HTTP Header Information for Detecting Changes of Linked Open Data Sources,” in ESWC’14: Proceedings of the Extended Semantic Web Conference, 2014.
  • 105. Thomas Gottron IRSS, Athens, 18.7.2014, 105Leveraging the Web of Data Sources •  Photograph of three of Nevins Memorial Library's earliest librarians. Wikimedia Commons collection, http://commons.wikimedia.org/wiki/File:Nevins_Library_First_Librarians.jpg •  Wide-angle view of the ALMA correlator, This Wikipedia and Wikimedia Commons image is from the European Southern Observatory (ESO) and is freely available at http://commons.wikimedia.org/wiki/ File:Wide-angle_view_of_the_ALMA_correlator.jpg under Creative Commons Attribution 3.0 Unportedlicense. •  Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/, This work is available under a CC-BY-SA license.