SlideShare a Scribd company logo
7/17/2017 http://numericalmethods.eng.usf.edu 1
Linear Regression
Major: All Engineering Majors
Authors: Autar Kaw, Luke Snyder
http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM
Undergraduates
Linear Regression
http://numericalmethods.eng.usf.edu
http://numericalmethods.eng.usf.edu 3
What is Regression?
What is regression? Given n data points
best fit )
(x
f
y = to the data.
Residual at each point is
)
(x
f
y =
Figure. Basic model for regression
)
,
(
),......,
,
(
),
,
( 2
2
1
1 n
n y
x
y
x
y
x
)
( i
i
i x
f
y
E −
=
y
x
)
,
( 1
1 y
x
)
,
( n
n y
x
)
,
( i
i y
x
)
( i
i
i x
f
y
E −
=
http://numericalmethods.eng.usf.edu 4
Linear Regression-Criterion#1
Given n data points best fit x
a
a
y 1
0 +
= to the data.
Does minimizing∑
=
n
i
i
E
1
work as a criterion?
x
x
a
a
y 1
0 +
=
)
,
( 1
1 y
x
)
,
( 2
2 y
x
)
,
( 3
3 y
x
)
,
( n
n y
x
)
,
( i
i y
x
i
i
i x
a
a
y
E 1
0 −
−
=
y
Figure. Linear regression of y vs x data showing residuals at a typical point, xi .
)
,
(
),......,
,
(
),
,
( 2
2
1
1 n
n y
x
y
x
y
x
http://numericalmethods.eng.usf.edu 5
Example for Criterion#1
x y
2.0 4.0
3.0 6.0
2.0 6.0
3.0 8.0
Example: Given the data points (2,4), (3,6), (2,6) and (3,8), best fit
the data to a straight line using Criterion#1
Figure. Data points for y vs x data.
Table. Data Points
0
2
4
6
8
10
0 1 2 3 4
y
x
Minimize∑
=
n
i
i
E
1
http://numericalmethods.eng.usf.edu 6
Linear Regression-Criteria#1
0
4
1
=
∑
=
i
i
E
x y ypredicted E = y - ypredicted
2.0 4.0 4.0 0.0
3.0 6.0 8.0 -2.0
2.0 6.0 4.0 2.0
3.0 8.0 8.0 0.0
Table. Residuals at each point
for regression model y=4x − 4
Figure. Regression curve y=4x − 4 and y vs x data
0
2
4
6
8
10
0 1 2 3 4
y
x
Using y=4x − 4 as the regression curve
http://numericalmethods.eng.usf.edu 7
Linear Regression-Criterion#1
x y ypredicted E = y - ypredicted
2.0 4.0 6.0 -2.0
3.0 6.0 6.0 0.0
2.0 6.0 6.0 0.0
3.0 8.0 6.0 2.0
0
4
1
=
∑
=
i
i
E
0
2
4
6
8
10
0 1 2 3 4
y
x
Table. Residuals at each point
for regression model y=6
Figure. Regression curve y=6 and y vs x data
Using y=6 as a regression curve
http://numericalmethods.eng.usf.edu 8
Linear Regression – Criterion #1
0
4
1
=
∑
=
i
i
E for both regression models of y=4x-4 and y=6
The sum of the residuals is minimized, in this case it is zero,
but the regression model is not unique.
Hence the criterion of minimizing the sum of the residuals is a
bad criterion.
0
2
4
6
8
10
0 1 2 3 4
y
x
http://numericalmethods.eng.usf.edu 9
Linear Regression-Criterion#1
0
4
1
=
∑
=
i
i
E
x y ypredicted E = y - ypredicted
2.0 4.0 4.0 0.0
3.0 6.0 8.0 -2.0
2.0 6.0 4.0 2.0
3.0 8.0 8.0 0.0
Table. Residuals at each point
for regression model y=4x − 4
Figure. Regression curve y=4x-4 and y vs x data
0
2
4
6
8
10
0 1 2 3 4
y
x
Using y=4x − 4 as the regression curve
http://numericalmethods.eng.usf.edu 10
Linear Regression-Criterion#2
x
)
,
( 1
1 y
x
)
,
( 2
2 y
x
)
,
( 3
3 y
x
)
,
( n
n y
x
)
,
( i
i y
x
i
i
i x
a
a
y
E 1
0 −
−
=
y
Figure. Linear regression of y vs. x data showing residuals at a typical point, xi .
Will minimizing |
|
1
∑
=
n
i
i
E work any better?
x
a
a
y 1
0 +
=
http://numericalmethods.eng.usf.edu 11
Example for Criterion#2
x y
2.0 4.0
3.0 6.0
2.0 6.0
3.0 8.0
Example: Given the data points (2,4), (3,6), (2,6) and (3,8), best fit
the data to a straight line using Criterion#2
Figure. Data points for y vs. x data.
Table. Data Points
0
2
4
6
8
10
0 1 2 3 4
y
x
Minimize ∑
=
n
i
i
E
1
|
|
http://numericalmethods.eng.usf.edu 12
Linear Regression-Criterion#2
4
|
|
4
1
=
∑
=
i
i
E
x y ypredicted E = y - ypredicted
2.0 4.0 4.0 0.0
3.0 6.0 8.0 -2.0
2.0 6.0 4.0 2.0
3.0 8.0 8.0 0.0
Table. Residuals at each point
for regression model y=4x − 4
Figure. Regression curve y= y=4x − 4 and y vs. x
data
0
2
4
6
8
10
0 1 2 3 4
y
x
Using y=4x − 4 as the regression curve
http://numericalmethods.eng.usf.edu 13
Linear Regression-Criterion#2
x y ypredicted E = y - ypredicted
2.0 4.0 6.0 -2.0
3.0 6.0 6.0 0.0
2.0 6.0 6.0 0.0
3.0 8.0 6.0 2.0
4
|
|
4
1
=
∑
=
i
i
E
0
2
4
6
8
10
0 1 2 3 4
y
x
Table. Residuals at each point
for regression model y=6
Figure. Regression curve y=6 and y vs x data
Using y=6 as a regression curve
http://numericalmethods.eng.usf.edu 14
Linear Regression-Criterion#2
for both regression models of y=4x − 4 and y=6.
The sum of the absolute residuals has been made as small as
possible, that is 4, but the regression model is not unique.
Hence the criterion of minimizing the sum of the absolute value
of the residuals is also a bad criterion.
4
4
1
=
∑
=
i
i
E
http://numericalmethods.eng.usf.edu 15
Least Squares Criterion
The least squares criterion minimizes the sum of the square of the
residuals in the model, and also produces a unique line.
( )
2
1
1
0
1
2
∑ −
−
=
∑
=
=
=
n
i
i
i
n
i
i
r x
a
a
y
E
S
x
1
1
, y
x
2
2
, y
x
3
3
, y
x
n
n
y
x ,
i
i
y
x ,
y
Figure. Linear regression of y vs x data showing residuals at a typical point, xi .
x
a
a
y 1
0 +
=
i
i
i x
a
a
y
E 1
0 −
−
=
http://numericalmethods.eng.usf.edu
16
Finding Constants of Linear Model
( )
2
1
1
0
1
2
∑ −
−
=
∑
=
=
=
n
i
i
i
n
i
i
r x
a
a
y
E
S
Minimize the sum of the square of the residuals:
To find
( )( ) 0
1
2
1
1
0
0
=
−
−
−
−
=
∂
∂
∑
=
n
i
i
i
r
x
a
a
y
a
S
( )( ) 0
2
1
1
0
1
=
−
−
−
−
=
∂
∂
∑
=
n
i
i
i
i
r
x
x
a
a
y
a
S
giving
i
n
i
i
i
n
i
i
n
i
x
y
x
a
x
a ∑
∑
∑ =
=
=
=
+
1
2
1
1
1
0
0
a and 1
a we minimize with respect to 1
a 0
a
and
r
S .
∑
∑
∑ =
=
=
=
+
n
i
i
i
n
i
n
i
y
x
a
a
1
1
1
1
0
http://numericalmethods.eng.usf.edu
17
Finding Constants of Linear Model
0
a
Solving for
2
1
1
2
1
1
1
1






−
−
=
∑
∑
∑
∑
∑
=
=
=
=
=
n
i
i
n
i
i
n
i
i
n
i
i
n
i
i
i
x
x
n
y
x
y
x
n
a
and
2
1
1
2
1
1
1
1
2
0






−
−
=
∑
∑
∑
∑
∑
∑
=
=
=
=
=
=
n
i
i
n
i
i
n
i
i
i
n
i
i
n
i
i
n
i
i
x
x
n
y
x
x
y
x
a
1
a
and directly yields,
x
a
y
a 1
0 −
=
http://numericalmethods.eng.usf.edu
18
Example 1
The torque, T needed to turn the torsion spring of a mousetrap through
an angle, is given below.
Angle, θ Torque, T
Radians N-m
0.698132 0.188224
0.959931 0.209138
1.134464 0.230052
1.570796 0.250965
1.919862 0.313707
Table: Torque vs Angle for a
torsional spring
Find the constants for the model given by
θ
2
1 k
k
T +
=
Figure. Data points for Torque vs Angle data
0.1
0.2
0.3
0.4
0.5 1 1.5 2
θ (radians)
Torque
(N-m)
http://numericalmethods.eng.usf.edu
19
Example 1 cont.
1
a
The following table shows the summations needed for the calculations of
the constants in the regression model.
θ 2
θ θ
T
Radians N-m Radians2 N-m-Radians
0.698132 0.188224 0.487388 0.131405
0.959931 0.209138 0.921468 0.200758
1.134464 0.230052 1.2870 0.260986
1.570796 0.250965 2.4674 0.394215
1.919862 0.313707 3.6859 0.602274
6.2831 1.1921 8.8491 1.5896
Table. Tabulation of data for calculation of important
∑
=
=
5
1
i
5
=
n
Using equations described for
2
5
1
5
1
2
5
1
5
1
5
1
2






−
−
=
∑
∑
∑
∑
∑
=
=
=
=
=
i
i
i
i
i
i
i
i
i
i
i
n
T
T
n
k
θ
θ
θ
θ
( ) ( )( )
( ) ( )2
2831
6
8491
8
5
1921
1
2831
6
5896
1
5
.
.
.
.
.
−
−
=
2
10
6091
9 −
×
= . N-m/rad
summations
0
a
T
and with
http://numericalmethods.eng.usf.edu
20
Example 1 cont.
n
T
T i
i
∑
=
=
5
1
_
Use the average torque and average angle to calculate 1
k
_
2
_
1 θ
k
T
k −
=
n
i
i
∑
=
=
5
1
_
θ
θ
5
1921
.
1
=
1
10
3842
.
2 −
×
=
5
2831
.
6
=
2566
.
1
=
Using,
)
2566
.
1
)(
10
6091
.
9
(
10
3842
.
2 2
1 −
−
×
−
×
=
1
10
1767
.
1 −
×
= N-m
http://numericalmethods.eng.usf.edu
21
Example 1 Results
Figure. Linear regression of Torque versus Angle data
Using linear regression, a trend line is found from the data
Can you find the energy in the spring if it is twisted from 0 to 180 degrees?
http://numericalmethods.eng.usf.edu
22
Linear Regression (special case)
Given
best fit
to the data.
)
,
(
,
...
),
,
(
),
,
( 2
2
1
1 n
n y
x
y
x
y
x
x
a
y 1
=
http://numericalmethods.eng.usf.edu
23
Linear Regression (special case cont.)
Is this correct?
2
1
1
2
1
1
1
1






−
−
=
∑
∑
∑
∑
∑
=
=
=
=
=
n
i
i
n
i
i
n
i
i
n
i
i
n
i
i
i
x
x
n
y
x
y
x
n
a
x
a
y 1
=
http://numericalmethods.eng.usf.edu
24
x
1
1
, y
x
i
i x
a
x 1
,
n
n
y
x ,
i
i
y
x ,
i
i
i x
a
y 1
−
=
ε
y
Linear Regression (special case cont.)
http://numericalmethods.eng.usf.edu
25
Linear Regression (special case cont.)
i
i
i x
a
y 1
−
=
ε
∑
=
=
n
i
i
r
S
1
2
ε
( )
2
1
1
∑
=
−
=
n
i
i
i x
a
y
Residual at each data point
Sum of square of residuals
http://numericalmethods.eng.usf.edu
26
Linear Regression (special case cont.)
Differentiate with respect to
gives
( )( )
∑
=
−
−
=
n
i
i
i
i
r
x
x
a
y
da
dS
1
1
1
2
( )
∑
=
+
−
=
n
i
i
i
i x
a
x
y
1
2
1
2
2
0
1
=
da
dSr
∑
∑
=
=
= n
i
i
n
i
i
i
x
y
x
a
1
2
1
1
1
a
http://numericalmethods.eng.usf.edu
27
Linear Regression (special case cont.)
∑
∑
=
=
= n
i
i
n
i
i
i
x
y
x
a
1
2
1
1
( )
∑
=
+
−
=
n
i
i
i
i
r
x
a
x
y
da
dS
1
2
1
1
2
2
0
2
1
2
2
1
2
>
= ∑
=
n
i
i
r
x
da
S
d
∑
∑
=
=
= n
i
i
n
i
i
i
x
y
x
a
1
2
1
1
Does this value of a1 correspond to a local minima or local
maxima?
Yes, it corresponds to a local minima.
http://numericalmethods.eng.usf.edu
28
Linear Regression (special case cont.)
Is this local minima of an absolute minimum of ?
r
S r
S
1
a
r
S
http://numericalmethods.eng.usf.edu
29
Example 2
Strain Stress
(%) (MPa)
0 0
0.183 306
0.36 612
0.5324 917
0.702 1223
0.867 1529
1.0244 1835
1.1774 2140
1.329 2446
1.479 2752
1.5 2767
1.56 2896
To find the longitudinal modulus of composite, the following data is
collected. Find the longitudinal modulus,
Table. Stress vs. Strain data
E using the regression model
ε
σ E
= and the sum of the square of the
0.0E+00
1.0E+09
2.0E+09
3.0E+09
0 0.005 0.01 0.015 0.02
Strain, ε (m/m)
Stress,
σ
(Pa)
residuals.
Figure. Data points for Stress vs. Strain data
http://numericalmethods.eng.usf.edu
30
Example 2 cont.
i ε σ ε 2 εσ
1 0.0000 0.0000 0.0000 0.0000
2 1.8300×10−3 3.0600×108 3.3489×10−6 5.5998×105
3 3.6000×10−3 6.1200×108 1.2960×10−5 2.2032×106
4 5.3240×10−3 9.1700×108 2.8345×10−5 4.8821×106
5 7.0200×10−3 1.2230×109 4.9280×10−5 8.5855×106
6 8.6700×10−3 1.5290×109 7.5169×10−5 1.3256×107
7 1.0244×10−2 1.8350×109 1.0494×10−4 1.8798×107
8 1.1774×10−2 2.1400×109 1.3863×10−4 2.5196×107
9 1.3290×10−2 2.4460×109 1.7662×10−4 3.2507×107
10 1.4790×10−2 2.7520×109 2.1874×10−4 4.0702×107
11 1.5000×10−2 2.7670×109 2.2500×10−4 4.1505×107
12 1.5600×10−2 2.8960×109 2.4336×10−4 4.5178×107
1.2764×10−3 2.3337×108
Table. Summation data for regression model
∑
=
12
1
i
∑
=
−
×
=
12
1
3
2
10
2764
.
1
i
i
ε
∑
=
×
=
12
1
8
10
3337
.
2
i
i
iε
σ
∑
∑
=
=
= 12
1
2
12
1
i
i
i
i
i
E
ε
ε
σ
3
8
10
2764
.
1
10
3337
.
2
−
×
×
=
GPa
84
.
182
=
∑
∑
=
=
= n
i
i
n
i
i
i
E
1
2
1
ε
ε
σ
http://numericalmethods.eng.usf.edu
31
Example 2 Results
ε
σ 9
10
84
.
182 ×
=
The equation
Figure. Linear regression for stress vs. strain data
describes the data.
Additional Resources
For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit
http://numericalmethods.eng.usf.edu/topics/linear_regr
ession.html
THE END
http://numericalmethods.eng.usf.edu
Ad

More Related Content

Similar to Linear regression: introduction and method (20)

Applied numerical methods lec8
Applied numerical methods lec8Applied numerical methods lec8
Applied numerical methods lec8
Yasser Ahmed
 
Different Types of Machine Learning Algorithms
Different Types of Machine Learning AlgorithmsDifferent Types of Machine Learning Algorithms
Different Types of Machine Learning Algorithms
rahmedraj93
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptx
AlokSingh205089
 
numerical method hgg hghg hg12500223125.pptx
numerical method hgg hghg hg12500223125.pptxnumerical method hgg hghg hg12500223125.pptx
numerical method hgg hghg hg12500223125.pptx
barunkrsinghit
 
Regression
Regression  Regression
Regression
Long Beach City College
 
Basics of Regression analysis
 Basics of Regression analysis Basics of Regression analysis
Basics of Regression analysis
Mahak Vijayvargiya
 
principalcomponentanalysis-150314161616-conversion-gate01 (1).pptx
principalcomponentanalysis-150314161616-conversion-gate01 (1).pptxprincipalcomponentanalysis-150314161616-conversion-gate01 (1).pptx
principalcomponentanalysis-150314161616-conversion-gate01 (1).pptx
sushmitjivtode21
 
Comparing the methods of Estimation of Three-Parameter Weibull distribution
Comparing the methods of Estimation of Three-Parameter Weibull distributionComparing the methods of Estimation of Three-Parameter Weibull distribution
Comparing the methods of Estimation of Three-Parameter Weibull distribution
IOSRJM
 
Regression
RegressionRegression
Regression
ramyaranjith
 
Curve_Fitting.pdf
Curve_Fitting.pdfCurve_Fitting.pdf
Curve_Fitting.pdf
Irfan Khan
 
capsul.pdf11111111111111111111111111111111
capsul.pdf11111111111111111111111111111111capsul.pdf11111111111111111111111111111111
capsul.pdf11111111111111111111111111111111
ssuser76a952
 
Simple linear regression
Simple linear regressionSimple linear regression
Simple linear regression
Maria Theresa
 
Simple linear regression
Simple linear regressionSimple linear regression
Simple linear regression
Maria Theresa
 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
Shivakumar B N
 
Principal component analysis
Principal component analysisPrincipal component analysis
Principal component analysis
Farah M. Altufaili
 
Lecture Notes in Econometrics Arsen Palestini.pdf
Lecture Notes in Econometrics Arsen Palestini.pdfLecture Notes in Econometrics Arsen Palestini.pdf
Lecture Notes in Econometrics Arsen Palestini.pdf
MDNomanCh
 
Get Multiple Regression Assignment Help
Get Multiple Regression Assignment Help Get Multiple Regression Assignment Help
Get Multiple Regression Assignment Help
HelpWithAssignment.com
 
18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt
BAGARAGAZAROMUALD2
 
mws_gen_reg_ppt_nonlinear.ppt
mws_gen_reg_ppt_nonlinear.pptmws_gen_reg_ppt_nonlinear.ppt
mws_gen_reg_ppt_nonlinear.ppt
ssuser6ff4d5
 
Regression vs Neural Net
Regression vs Neural NetRegression vs Neural Net
Regression vs Neural Net
Ratul Alahy
 
Applied numerical methods lec8
Applied numerical methods lec8Applied numerical methods lec8
Applied numerical methods lec8
Yasser Ahmed
 
Different Types of Machine Learning Algorithms
Different Types of Machine Learning AlgorithmsDifferent Types of Machine Learning Algorithms
Different Types of Machine Learning Algorithms
rahmedraj93
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptx
AlokSingh205089
 
numerical method hgg hghg hg12500223125.pptx
numerical method hgg hghg hg12500223125.pptxnumerical method hgg hghg hg12500223125.pptx
numerical method hgg hghg hg12500223125.pptx
barunkrsinghit
 
Basics of Regression analysis
 Basics of Regression analysis Basics of Regression analysis
Basics of Regression analysis
Mahak Vijayvargiya
 
principalcomponentanalysis-150314161616-conversion-gate01 (1).pptx
principalcomponentanalysis-150314161616-conversion-gate01 (1).pptxprincipalcomponentanalysis-150314161616-conversion-gate01 (1).pptx
principalcomponentanalysis-150314161616-conversion-gate01 (1).pptx
sushmitjivtode21
 
Comparing the methods of Estimation of Three-Parameter Weibull distribution
Comparing the methods of Estimation of Three-Parameter Weibull distributionComparing the methods of Estimation of Three-Parameter Weibull distribution
Comparing the methods of Estimation of Three-Parameter Weibull distribution
IOSRJM
 
Curve_Fitting.pdf
Curve_Fitting.pdfCurve_Fitting.pdf
Curve_Fitting.pdf
Irfan Khan
 
capsul.pdf11111111111111111111111111111111
capsul.pdf11111111111111111111111111111111capsul.pdf11111111111111111111111111111111
capsul.pdf11111111111111111111111111111111
ssuser76a952
 
Simple linear regression
Simple linear regressionSimple linear regression
Simple linear regression
Maria Theresa
 
Simple linear regression
Simple linear regressionSimple linear regression
Simple linear regression
Maria Theresa
 
Lecture Notes in Econometrics Arsen Palestini.pdf
Lecture Notes in Econometrics Arsen Palestini.pdfLecture Notes in Econometrics Arsen Palestini.pdf
Lecture Notes in Econometrics Arsen Palestini.pdf
MDNomanCh
 
Get Multiple Regression Assignment Help
Get Multiple Regression Assignment Help Get Multiple Regression Assignment Help
Get Multiple Regression Assignment Help
HelpWithAssignment.com
 
18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt
BAGARAGAZAROMUALD2
 
mws_gen_reg_ppt_nonlinear.ppt
mws_gen_reg_ppt_nonlinear.pptmws_gen_reg_ppt_nonlinear.ppt
mws_gen_reg_ppt_nonlinear.ppt
ssuser6ff4d5
 
Regression vs Neural Net
Regression vs Neural NetRegression vs Neural Net
Regression vs Neural Net
Ratul Alahy
 

More from ThomasWong104635 (6)

Differentiation rules for learning Calculus
Differentiation rules for learning CalculusDifferentiation rules for learning Calculus
Differentiation rules for learning Calculus
ThomasWong104635
 
HKALE Microeconomics: Theory about rent.
HKALE  Microeconomics: Theory about rent.HKALE  Microeconomics: Theory about rent.
HKALE Microeconomics: Theory about rent.
ThomasWong104635
 
香港股票期權 市場發展歷史與未來,香港交易所集團副營運總裁 霍廣文展望 , 股票期權與相關產品種類
香港股票期權市場發展歷史與未來,香港交易所集團副營運總裁 霍廣文展望, 股票期權與相關產品種類香港股票期權市場發展歷史與未來,香港交易所集團副營運總裁 霍廣文展望, 股票期權與相關產品種類
香港股票期權 市場發展歷史與未來,香港交易所集團副營運總裁 霍廣文展望 , 股票期權與相關產品種類
ThomasWong104635
 
College Mathematics: Differentiation rules
College Mathematics: Differentiation rulesCollege Mathematics: Differentiation rules
College Mathematics: Differentiation rules
ThomasWong104635
 
forex introduction.pdf
forex introduction.pdfforex introduction.pdf
forex introduction.pdf
ThomasWong104635
 
技術分析簡介.ppt
技術分析簡介.ppt技術分析簡介.ppt
技術分析簡介.ppt
ThomasWong104635
 
Differentiation rules for learning Calculus
Differentiation rules for learning CalculusDifferentiation rules for learning Calculus
Differentiation rules for learning Calculus
ThomasWong104635
 
HKALE Microeconomics: Theory about rent.
HKALE  Microeconomics: Theory about rent.HKALE  Microeconomics: Theory about rent.
HKALE Microeconomics: Theory about rent.
ThomasWong104635
 
香港股票期權 市場發展歷史與未來,香港交易所集團副營運總裁 霍廣文展望 , 股票期權與相關產品種類
香港股票期權市場發展歷史與未來,香港交易所集團副營運總裁 霍廣文展望, 股票期權與相關產品種類香港股票期權市場發展歷史與未來,香港交易所集團副營運總裁 霍廣文展望, 股票期權與相關產品種類
香港股票期權 市場發展歷史與未來,香港交易所集團副營運總裁 霍廣文展望 , 股票期權與相關產品種類
ThomasWong104635
 
College Mathematics: Differentiation rules
College Mathematics: Differentiation rulesCollege Mathematics: Differentiation rules
College Mathematics: Differentiation rules
ThomasWong104635
 
Ad

Recently uploaded (20)

Zoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptxZoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptx
Dr Showkat Ahmad Wani
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptxPreparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Dr Showkat Ahmad Wani
 
Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025
Shiva Nejati
 
Antliff, Mark. - Avant-Garde Fascism. The Mobilization of Myth, Art, and Cult...
Antliff, Mark. - Avant-Garde Fascism. The Mobilization of Myth, Art, and Cult...Antliff, Mark. - Avant-Garde Fascism. The Mobilization of Myth, Art, and Cult...
Antliff, Mark. - Avant-Garde Fascism. The Mobilization of Myth, Art, and Cult...
Francisco Sandoval Martínez
 
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Himarsha Jayanetti
 
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
muralinath2
 
Gel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptxGel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Vital Vitamins: A Clinical Nutrition Approach to Functions, Deficiency & Sources
Vital Vitamins: A Clinical Nutrition Approach to Functions, Deficiency & SourcesVital Vitamins: A Clinical Nutrition Approach to Functions, Deficiency & Sources
Vital Vitamins: A Clinical Nutrition Approach to Functions, Deficiency & Sources
Sarumathi Murugesan
 
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Ali Raei
 
Adamson, Walter L. - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Adamson, Walter L.  - Avant-Garde Florence. From Modernism to Fascism [ocr] [...Adamson, Walter L.  - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Adamson, Walter L. - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Francisco Sandoval Martínez
 
The Man Who Dared to Challenge Newton and Won! - The True Story of Thane Hein...
The Man Who Dared to Challenge Newton and Won! - The True Story of Thane Hein...The Man Who Dared to Challenge Newton and Won! - The True Story of Thane Hein...
The Man Who Dared to Challenge Newton and Won! - The True Story of Thane Hein...
Thane Heins NOBEL PRIZE WINNING ENERGY RESEARCHER
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
UNIT chromatography instrumental6 .pptx
UNIT chromatography  instrumental6 .pptxUNIT chromatography  instrumental6 .pptx
UNIT chromatography instrumental6 .pptx
myselfit143
 
Metallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda PathakMetallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda Pathak
GovindaPathak6
 
2025 Insilicogen Company Korean Brochure
2025 Insilicogen Company Korean Brochure2025 Insilicogen Company Korean Brochure
2025 Insilicogen Company Korean Brochure
Insilico Gen
 
amino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathakamino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathak
GovindaPathak6
 
A tale of two Lucies: talk at the maths dept, Free University of Amsterdam
A tale of two Lucies: talk at the maths dept, Free University of AmsterdamA tale of two Lucies: talk at the maths dept, Free University of Amsterdam
A tale of two Lucies: talk at the maths dept, Free University of Amsterdam
Richard Gill
 
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Sérgio Sacani
 
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Yasasi Abeysinghe
 
Zoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptxZoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptx
Dr Showkat Ahmad Wani
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptxPreparation of Permanent mounts of Parasitic Protozoans.pptx
Preparation of Permanent mounts of Parasitic Protozoans.pptx
Dr Showkat Ahmad Wani
 
Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025
Shiva Nejati
 
Antliff, Mark. - Avant-Garde Fascism. The Mobilization of Myth, Art, and Cult...
Antliff, Mark. - Avant-Garde Fascism. The Mobilization of Myth, Art, and Cult...Antliff, Mark. - Avant-Garde Fascism. The Mobilization of Myth, Art, and Cult...
Antliff, Mark. - Avant-Garde Fascism. The Mobilization of Myth, Art, and Cult...
Francisco Sandoval Martínez
 
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Himarsha Jayanetti
 
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
muralinath2
 
Gel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptxGel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Vital Vitamins: A Clinical Nutrition Approach to Functions, Deficiency & Sources
Vital Vitamins: A Clinical Nutrition Approach to Functions, Deficiency & SourcesVital Vitamins: A Clinical Nutrition Approach to Functions, Deficiency & Sources
Vital Vitamins: A Clinical Nutrition Approach to Functions, Deficiency & Sources
Sarumathi Murugesan
 
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Ali Raei
 
Adamson, Walter L. - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Adamson, Walter L.  - Avant-Garde Florence. From Modernism to Fascism [ocr] [...Adamson, Walter L.  - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Adamson, Walter L. - Avant-Garde Florence. From Modernism to Fascism [ocr] [...
Francisco Sandoval Martínez
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
UNIT chromatography instrumental6 .pptx
UNIT chromatography  instrumental6 .pptxUNIT chromatography  instrumental6 .pptx
UNIT chromatography instrumental6 .pptx
myselfit143
 
Metallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda PathakMetallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda Pathak
GovindaPathak6
 
2025 Insilicogen Company Korean Brochure
2025 Insilicogen Company Korean Brochure2025 Insilicogen Company Korean Brochure
2025 Insilicogen Company Korean Brochure
Insilico Gen
 
amino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathakamino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathak
GovindaPathak6
 
A tale of two Lucies: talk at the maths dept, Free University of Amsterdam
A tale of two Lucies: talk at the maths dept, Free University of AmsterdamA tale of two Lucies: talk at the maths dept, Free University of Amsterdam
A tale of two Lucies: talk at the maths dept, Free University of Amsterdam
Richard Gill
 
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Sérgio Sacani
 
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Yasasi Abeysinghe
 
Ad

Linear regression: introduction and method