Churn prediction is big business. It minimizes customer defection by predicting which customers are likely to cancel a service. Though originally used within the telecommunications industry, it has become common practice for banks, ISPs, insurance firms, and other verticals. More: http://info.mapr.com/WB_PredictingChurn_Global_DG_17.06.15_RegistrationPage.html
The prediction process is data-driven and often uses advanced machine learning techniques. In this webinar, we'll look at customer data, do some preliminary analysis, and generate churn prediction models – all with Spark machine learning (ML) and a Zeppelin notebook.
Spark’s ML library goal is to make machine learning scalable and easy. Zeppelin with Spark provides a web-based notebook that enables interactive machine learning and visualization.
In this tutorial, we'll do the following:
Review classification and decision trees
Use Spark DataFrames with Spark ML pipelines
Predict customer churn with Apache Spark ML decision trees
Use Zeppelin to run Spark commands and visualize the results