SlideShare a Scribd company logo
Liver segmentation using U-net; Practical issues
Wonjoong Cheon / Ph.D. candidate
Department of health Science and Technology, SAIHST,
Sungkyunkwan University, Seoul 06351, Korea
Liver Segmentation
1. Data preparation
1-1. dataset
1-2. Preprocessing
2. Architecture
2-1. U-net Application
2-2. Information of in-house U-net
3. Result
3-1. Results: good & bad (1)~(4)
3-2. Discussion
4. Paper review
1.1 Dataset
 Dtype: *.nii
 Modality: Computed tomography (CT)
 Data (train): 24 subjects(3812)
Data (test) : 3 subjects(649)
 Dimension: 512 × 512 × z axis
 Dtype: *.jpg
 Modality: Computed tomography (CT)
 Data (train): 11 subjects(2664)
Data (test) : 4 subjects(351)
 Dimension: 512 × 512 × z axis
LiTS (Liver Tumor Segmentation Challenge) Liver imaging (Some person draw ROI)
1.2 Preprocessing
Standardization (Z-score scaling)
• 자료 집합에 적용되는 전처리 과정으로 모든 자료에 다음과 같은 선형 변환을 적용하여
전체 자료의 분포를 평균 0, 분산 1이 되도록 만드는 과정이다.
• 스케일링은 자료의 overflow나 underflow를 방지하고 독립 변수의 공분산 행렬의
condition number 를 감소시켜 최적화 과정에서의 안정성 및 수렴 속도를 향상시킨다.
 추후, Batch normalization 으로 변경.
정량적으로 약 2 %의 Accuracy 향상을 보임.
(https://www.youtube.com/watch?v=TDx8iZHwFtM, PR-12)
Image Resize
Resize coefficient: 1.0 or 0.5
Original image dimension: 512 x 512
Practical issue #1 True_Y image
Practical issue #2 Hounsfield unit
Practical issue #2 Hounsfield unit
데이터 비식별화 과정에서 실수가 일어남.
2.1 Unet Application
2015 awards(they won the ISBI cell tracking challenge 2015 in these categories by a large margin)
Segmentation golden standard
Application
Cells Segmentation
Brain Segmentation
MRBrains Challenge
2.2 Information of in-house U-net(1)
Convolution block
ReLU activation function
Padding Same
Activation function at final layer
Sigmoid function
Cost function
Dice loss function
Cross Entropy function
Optimizer
Adam optimizer
2.2 Information of in-house U-net(2)
input size: 256x256
batch size: 10
learning rate: 0.0001
Learning time: 3 ~ 4hour
500epochs
The number of Feature map:
2  4 8 16 32
3.1 Good result: (1) onlyroi, dice, nii
3.1 Bad result: (1) onlyroi, dice, nii
3.1 Good result: (2) onlyroi, dice, jpg
3.1 Bad result: (2) onlyroi, dice, jpg
3.1 Good result: (3) onlyroi, sigmoid, jpg
3.1 Bad result: (3) onlyroi, sigmoid, jpg
3.1 Good result: (4) onlyroi, sigmoid, jpg
3.1 Bad result: (4) onlyroi, sigmoid, jpg
Slice: only roi
Loss: dice
Dtype: nii
Slice: only roi
Loss: dice
Dtype: jpg
Slice: only roi
Loss: sigmoid
Dtype: nii
Slice: only roi
Loss: sigmoid
Dtype: jpg
Cost graph
Practical issue #3 Accuracy metric
0.1 0.05 0.1 0.03 0.04
0.05 0.32 0.22 0.4 0.02
0.4 0.93 0.92 0.63 0.2
0.32 0.96 0.89 0.99 0.5
0.02 0.01 0.04 0.05 0.07
0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 1 1 1 0
0 0 0 0 0
Practical issue #4 Prediction error
In imbalance condition
Information among frames
== Information among Slice image
Practical issue #4 Prediction error
In imbalance condition
Liver segmentation using U-net: Practical issues @ SNU-TF
Liver segmentation using U-net: Practical issues @ SNU-TF
Liver segmentation using U-net: Practical issues @ SNU-TF
Liver segmentation using U-net: Practical issues @ SNU-TF
5. Proposed method
 Architecture
Article
# segmentation
Cai, Jinzheng, et al. "Improving deep pancreas segmentation in ct and mri images
via recurrent neural contextual learning and direct loss function." arXiv preprint
arXiv:1707.04912 (2017).
Kim, Jung Uk, Hak Gu Kim, and Yong Man Ro. "Iterative deep convolutional
encoder-decoder network for medical image segmentation." Engineering in
Medicine and Biology Society (EMBC), 2017 39th Annual International
Conference of the IEEE. IEEE, 2017.
Oktay, Ozan, et al. "Anatomically Constrained Neural Networks (ACNN):
Application to Cardiac Image Enhancement and Segmentation." arXiv preprint
arXiv:1705.08302 (2017).
29
Papers Authors Journal Architecture
#1
Improving deep pancreas segmentation in ct
and mri images via recurrent neural
contextual learning and direct loss function."
Cai, Jinzheng,
et al.
arXiv / 2017
#2
"Iterative deep convolutional encoder-
decoder network for medical image
segmentation."
Kim, Jung Uk
et al
IEEE / 2017
#3
"Anatomically Constrained Neural Networks
(ACNN): Application to Cardiac Image
Enhancement and Segmentation."
Oktay, Ozan,
et al.
arXiv / 2017
Papers Authors Journal Architecture
#1
Improving deep pancreas segmentation in ct
and mri images via recurrent neural
contextual learning and direct loss function."
Cai, Jinzheng,
et al.
arXiv / 2017
#2
"Iterative deep convolutional encoder-
decoder network for medical image
segmentation."
Kim, Jung Uk
et al
IEEE / 2017
#3
"Anatomically Constrained Neural Networks
(ACNN): Application to Cardiac Image
Enhancement and Segmentation."
Oktay, Ozan,
et al.
arXiv / 2017
Papers Authors Journal Architecture
#1
Improving deep pancreas segmentation in ct
and mri images via recurrent neural
contextual learning and direct loss function."
Cai, Jinzheng,
et al.
arXiv / 2017
#2
"Iterative deep convolutional encoder-
decoder network for medical image
segmentation."
Kim, Jung Uk
et al
IEEE / 2017
#3
"Anatomically Constrained Neural Networks
(ACNN): Application to Cardiac Image
Enhancement and Segmentation."
Oktay, Ozan,
et al.
arXiv / 2017
Papers Authors Journal Architecture
#1
"Improving deep pancreas segmentation in ct
and mri images via recurrent neural
contextual learning and direct loss function."
Cai, Jinzheng,
et al.
arXiv / 2017
#2
"Iterative deep convolutional encoder-
decoder network for medical image
segmentation."
Kim, Jung Uk
et al
IEEE / 2017
#3
"Anatomically Constrained Neural Networks
(ACNN): Application to Cardiac Image
Enhancement and Segmentation."
Oktay, Ozan,
et al.
arXiv / 2017
Papers Authors Journal Architecture
#1
"Improving deep pancreas segmentation in ct
and mri images via recurrent neural
contextual learning and direct loss function."
Cai, Jinzheng,
et al.
arXiv / 2017
#2
"Iterative deep convolutional encoder-
decoder network for medical image
segmentation."
Kim, Jung Uk
et al
IEEE / 2017
#3
"Anatomically Constrained Neural Networks
(ACNN): Application to Cardiac Image
Enhancement and Segmentation."
Oktay, Ozan,
et al.
arXiv / 2017
Papers Authors Journal Architecture
#1
"Improving deep pancreas segmentation in ct
and mri images via recurrent neural
contextual learning and direct loss function."
Cai, Jinzheng,
et al.
arXiv / 2017
#2
"Iterative deep convolutional encoder-
decoder network for medical image
segmentation."
Kim, Jung Uk
et al
IEEE / 2017
#3
"Anatomically Constrained Neural Networks
(ACNN): Application to Cardiac Image
Enhancement and Segmentation."
Oktay, Ozan,
et al.
arXiv / 2017
Papers Authors Journal Architecture
#1
"Improving deep pancreas segmentation in ct
and mri images via recurrent neural
contextual learning and direct loss function."
Cai, Jinzheng,
et al.
arXiv / 2017
#2
"Iterative deep convolutional encoder-
decoder network for medical image
segmentation."
Kim, Jung Uk
et al
IEEE / 2017
#3
"Anatomically Constrained Neural Networks
(ACNN): Application to Cardiac Image
Enhancement and Segmentation."
Oktay, Ozan,
et al.
arXiv / 2017
Papers Authors Journal Architecture
#1
"Improving deep pancreas segmentation in ct
and mri images via recurrent neural
contextual learning and direct loss function."
Cai, Jinzheng,
et al.
arXiv / 2017
#2
"Iterative deep convolutional encoder-
decoder network for medical image
segmentation."
Kim, Jung Uk
et al
IEEE / 2017
#3
"Anatomically Constrained Neural Networks
(ACNN): Application to Cardiac Image
Enhancement and Segmentation."
Oktay, Ozan,
et al.
arXiv / 2017
Department of health Science and Technology, SAIHST,
Sungkyunkwan University, Seoul 06351, Korea
Liver Segmentation
Liver segmentation using U-net; Practical issues
Batch normalization
Liver segmentation using U-net: Practical issues @ SNU-TF
Liver segmentation using U-net

More Related Content

What's hot (20)

PDF
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
PPTX
brain tumor ppt.pptx
AdityaSingh728086
 
PDF
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
Universitat Politècnica de Catalunya
 
PPTX
Application of-image-segmentation-in-brain-tumor-detection
Myat Myint Zu Thin
 
PPTX
Brain Tumor Segmentation using Enhanced U-Net Model with Empirical Analysis
MD Abdullah Al Nasim
 
PDF
[Paper] Multiscale Vision Transformers(MVit)
Susang Kim
 
PDF
Gnn overview
Louis (Yufeng) Wang
 
PPTX
Brain Tumour Detection.pptx
RevolverRaja2
 
PPTX
BRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSING
Dharshika Shreeganesh
 
PPTX
Mask R-CNN
Jaehyun Jun
 
PDF
Support Vector Machines for Classification
Prakash Pimpale
 
PDF
MULTI-CLASSIFICATION OF BRAIN TUMOR IMAGES USING DEEP NEURAL NETWORK
Benyamin Moadab
 
PPTX
Graph Neural Networks.pptx
Kumar Iyer
 
PDF
Object Detection Using R-CNN Deep Learning Framework
Nader Karimi
 
PPTX
Introduction to Graph neural networks @ Vienna Deep Learning meetup
Liad Magen
 
PDF
Lec9: Medical Image Segmentation (III) (Fuzzy Connected Image Segmentation)
Ulaş Bağcı
 
PPTX
MONAI: Medical imaging AI for data scientists and developers @ 3D Slicer Proj...
Stephen Aylward
 
PDF
Lec16: Medical Image Registration (Advanced): Deformable Registration
Ulaş Bağcı
 
PPTX
1.Introduction to deep learning
KONGU ENGINEERING COLLEGE
 
PPTX
Introduction to Linear Discriminant Analysis
Jaclyn Kokx
 
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
brain tumor ppt.pptx
AdityaSingh728086
 
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
Universitat Politècnica de Catalunya
 
Application of-image-segmentation-in-brain-tumor-detection
Myat Myint Zu Thin
 
Brain Tumor Segmentation using Enhanced U-Net Model with Empirical Analysis
MD Abdullah Al Nasim
 
[Paper] Multiscale Vision Transformers(MVit)
Susang Kim
 
Gnn overview
Louis (Yufeng) Wang
 
Brain Tumour Detection.pptx
RevolverRaja2
 
BRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSING
Dharshika Shreeganesh
 
Mask R-CNN
Jaehyun Jun
 
Support Vector Machines for Classification
Prakash Pimpale
 
MULTI-CLASSIFICATION OF BRAIN TUMOR IMAGES USING DEEP NEURAL NETWORK
Benyamin Moadab
 
Graph Neural Networks.pptx
Kumar Iyer
 
Object Detection Using R-CNN Deep Learning Framework
Nader Karimi
 
Introduction to Graph neural networks @ Vienna Deep Learning meetup
Liad Magen
 
Lec9: Medical Image Segmentation (III) (Fuzzy Connected Image Segmentation)
Ulaş Bağcı
 
MONAI: Medical imaging AI for data scientists and developers @ 3D Slicer Proj...
Stephen Aylward
 
Lec16: Medical Image Registration (Advanced): Deformable Registration
Ulaş Bağcı
 
1.Introduction to deep learning
KONGU ENGINEERING COLLEGE
 
Introduction to Linear Discriminant Analysis
Jaclyn Kokx
 

Similar to Liver segmentation using U-net: Practical issues @ SNU-TF (20)

PDF
3D Reconstruction of Peripheral Nerves Based on Calcium Chloride Enhanced Mic...
ANALYTICAL AND QUANTITATIVE CYTOPATHOLOGY AND HISTOPATHOLOGY
 
PDF
Overview of convolutional neural networks architectures for brain tumor segm...
IJECEIAES
 
PDF
DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...
IRJET Journal
 
PDF
11.texture feature based analysis of segmenting soft tissues from brain ct im...
Alexander Decker
 
PDF
Retinal Vessel Segmentation using Infinite Perimeter Active Contour with Hybr...
IRJET Journal
 
PDF
Determination with Deep Learning and One Layer Neural Network for Image Proce...
IJERA Editor
 
PDF
IRJET- Blood Vessel Segmentation & Analysis in Retinal Images using Image Pro...
IRJET Journal
 
PDF
C1103041623
IOSR Journals
 
PPTX
BRAINREGION.pptx
VISHALAS9
 
PDF
Deep Learning based Segmentation Pipeline for Label-Free Phase-Contrast Micro...
UMBC
 
PDF
IRJET - Deep Learning based Bone Tumor Detection with Real Time Datasets
IRJET Journal
 
PDF
A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...
CSCJournals
 
PDF
IRJET- Brain Tumor Detection using Deep Learning
IRJET Journal
 
PDF
Essay On Image Processing
Susan Kennedy
 
PDF
Medical Image Processing in Nuclear Medicine and Bone Arthroplasty
IOSR Journals
 
PDF
IRJET- A Survey on Medical Image Interpretation for Predicting Pneumonia
IRJET Journal
 
PDF
Learning Clusters in Autism Spectrum Disorder: Image-Based Clustering of Eye-...
Mahmoud Elbattah
 
PDF
711201905
IJRAT
 
PDF
711201905
IJRAT
 
PDF
711201905
IJRAT
 
3D Reconstruction of Peripheral Nerves Based on Calcium Chloride Enhanced Mic...
ANALYTICAL AND QUANTITATIVE CYTOPATHOLOGY AND HISTOPATHOLOGY
 
Overview of convolutional neural networks architectures for brain tumor segm...
IJECEIAES
 
DIRECTIONAL CLASSIFICATION OF BRAIN TUMOR IMAGES FROM MRI USING CNN-BASED DEE...
IRJET Journal
 
11.texture feature based analysis of segmenting soft tissues from brain ct im...
Alexander Decker
 
Retinal Vessel Segmentation using Infinite Perimeter Active Contour with Hybr...
IRJET Journal
 
Determination with Deep Learning and One Layer Neural Network for Image Proce...
IJERA Editor
 
IRJET- Blood Vessel Segmentation & Analysis in Retinal Images using Image Pro...
IRJET Journal
 
C1103041623
IOSR Journals
 
BRAINREGION.pptx
VISHALAS9
 
Deep Learning based Segmentation Pipeline for Label-Free Phase-Contrast Micro...
UMBC
 
IRJET - Deep Learning based Bone Tumor Detection with Real Time Datasets
IRJET Journal
 
A Wavelet Based Automatic Segmentation of Brain Tumor in CT Images Using Opti...
CSCJournals
 
IRJET- Brain Tumor Detection using Deep Learning
IRJET Journal
 
Essay On Image Processing
Susan Kennedy
 
Medical Image Processing in Nuclear Medicine and Bone Arthroplasty
IOSR Journals
 
IRJET- A Survey on Medical Image Interpretation for Predicting Pneumonia
IRJET Journal
 
Learning Clusters in Autism Spectrum Disorder: Image-Based Clustering of Eye-...
Mahmoud Elbattah
 
711201905
IJRAT
 
711201905
IJRAT
 
711201905
IJRAT
 
Ad

More from WonjoongCheon (10)

PPTX
3D isocenters quality assurance in radiation treatment room using a motion c...
WonjoongCheon
 
PDF
2018 KOSRO-Oral presentation-Wonjoong Cheon
WonjoongCheon
 
PDF
Time-resolved mirrorless scintillation detector @ KSMPRS2018
WonjoongCheon
 
PPTX
3-D isotope position tracking system using portable gamma cameras; Feasibilit...
WonjoongCheon
 
PPTX
Error of Multileaf collimator prediction using recurrent neural network (LSTM)
WonjoongCheon
 
PPTX
Lymphedema measurement using kinect volume reconstruction
WonjoongCheon
 
PPTX
Development of gamma camera simulator using arduino capston design_yonseiuniv
WonjoongCheon
 
PPTX
New Quality Assurance Method Using Motion Tracking for 6D Robotic Couches
WonjoongCheon
 
PPTX
Prediction of patient respiratory signal using deep learning model: LSTM
WonjoongCheon
 
PPTX
Time-resolved mirrorless scintillation detector @ AAPM2018
WonjoongCheon
 
3D isocenters quality assurance in radiation treatment room using a motion c...
WonjoongCheon
 
2018 KOSRO-Oral presentation-Wonjoong Cheon
WonjoongCheon
 
Time-resolved mirrorless scintillation detector @ KSMPRS2018
WonjoongCheon
 
3-D isotope position tracking system using portable gamma cameras; Feasibilit...
WonjoongCheon
 
Error of Multileaf collimator prediction using recurrent neural network (LSTM)
WonjoongCheon
 
Lymphedema measurement using kinect volume reconstruction
WonjoongCheon
 
Development of gamma camera simulator using arduino capston design_yonseiuniv
WonjoongCheon
 
New Quality Assurance Method Using Motion Tracking for 6D Robotic Couches
WonjoongCheon
 
Prediction of patient respiratory signal using deep learning model: LSTM
WonjoongCheon
 
Time-resolved mirrorless scintillation detector @ AAPM2018
WonjoongCheon
 
Ad

Recently uploaded (20)

PPTX
Presentation on Ankylosing Spondylitis BY DR AVIJIT AND DR WAHED
DR AVIJIT DAS
 
PPTX
4. Chest Trauma a topic of General Surgery .ppt..pptx
Bolan University of Medical and Health Sciences ,Quetta
 
PDF
CARDIAC LIFE SUPPORT - Jagadish N. BSN RN
Jagadish N. BSN RN
 
PPTX
Cancer - Treatment Modalities, Principles of cancer chemotherapy.pptx
Ayesha Fatima
 
PPTX
Complete Drug Discovery Process, AI.pptx
sumitdevkar50
 
PPT
Nursing Strategies in Transthyretin Cardiac Amyloidosis: Targeted Therapies a...
PVI, PeerView Institute for Medical Education
 
PPTX
Bill Faloon's Presentation Slides at RAADfest 2025
maximuspeto
 
PPTX
OBESITY and the underlying physiology.pptx
Dr. Sukriti Silwal
 
PDF
Complete Eye Exams in Kitchener for Personalized Vision Care
Romin Optical
 
DOCX
Why Inflammation Markers Are Reshaping Heart Disease Risk Assessment
Ram Gopal Varma
 
PPTX
Materiovigilance and Medical Device Adverse Events: A Practical Guide
Shivankan Kakkar
 
PDF
RGUHS BSc Nursing Sociology Notes, All types of question answers are availabl...
healthscedu
 
PDF
Development and validation of the PRISM Scale for Tomorrowmind
Yoga Tokuyoshi
 
PPTX
X-RAY PHYSICS AND IT'S PROPERTIES & FUNDAMENTALS FOR RADIOLOGY ASPIRANTS.
Shubhambharti94
 
PPTX
POSTPARTUM HAEMORRHAGEby Maj Taniabose.pptx
Maj Tania Bose
 
PPTX
Project Team 4 - Accor VS AirBnb slides.pptx
airguys
 
PPTX
Cleaning validation SlideShare presentation
preethibs6
 
PDF
bushnell-et-al-2024-guideline-for-the-primary-prevention-of-stroke-a-guidelin...
RobertGonzalez210093
 
PDF
RGUHS BSc Nursing Nutrition Notes, All types of question answers are availabl...
healthscedu
 
PPTX
Decoding the Optic Disc: A Beginner’s Guide to OCT Imaging & Analysis
KafrELShiekh University
 
Presentation on Ankylosing Spondylitis BY DR AVIJIT AND DR WAHED
DR AVIJIT DAS
 
4. Chest Trauma a topic of General Surgery .ppt..pptx
Bolan University of Medical and Health Sciences ,Quetta
 
CARDIAC LIFE SUPPORT - Jagadish N. BSN RN
Jagadish N. BSN RN
 
Cancer - Treatment Modalities, Principles of cancer chemotherapy.pptx
Ayesha Fatima
 
Complete Drug Discovery Process, AI.pptx
sumitdevkar50
 
Nursing Strategies in Transthyretin Cardiac Amyloidosis: Targeted Therapies a...
PVI, PeerView Institute for Medical Education
 
Bill Faloon's Presentation Slides at RAADfest 2025
maximuspeto
 
OBESITY and the underlying physiology.pptx
Dr. Sukriti Silwal
 
Complete Eye Exams in Kitchener for Personalized Vision Care
Romin Optical
 
Why Inflammation Markers Are Reshaping Heart Disease Risk Assessment
Ram Gopal Varma
 
Materiovigilance and Medical Device Adverse Events: A Practical Guide
Shivankan Kakkar
 
RGUHS BSc Nursing Sociology Notes, All types of question answers are availabl...
healthscedu
 
Development and validation of the PRISM Scale for Tomorrowmind
Yoga Tokuyoshi
 
X-RAY PHYSICS AND IT'S PROPERTIES & FUNDAMENTALS FOR RADIOLOGY ASPIRANTS.
Shubhambharti94
 
POSTPARTUM HAEMORRHAGEby Maj Taniabose.pptx
Maj Tania Bose
 
Project Team 4 - Accor VS AirBnb slides.pptx
airguys
 
Cleaning validation SlideShare presentation
preethibs6
 
bushnell-et-al-2024-guideline-for-the-primary-prevention-of-stroke-a-guidelin...
RobertGonzalez210093
 
RGUHS BSc Nursing Nutrition Notes, All types of question answers are availabl...
healthscedu
 
Decoding the Optic Disc: A Beginner’s Guide to OCT Imaging & Analysis
KafrELShiekh University
 

Liver segmentation using U-net: Practical issues @ SNU-TF

  • 1. Liver segmentation using U-net; Practical issues Wonjoong Cheon / Ph.D. candidate Department of health Science and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea Liver Segmentation
  • 2. 1. Data preparation 1-1. dataset 1-2. Preprocessing 2. Architecture 2-1. U-net Application 2-2. Information of in-house U-net 3. Result 3-1. Results: good & bad (1)~(4) 3-2. Discussion 4. Paper review
  • 3. 1.1 Dataset  Dtype: *.nii  Modality: Computed tomography (CT)  Data (train): 24 subjects(3812) Data (test) : 3 subjects(649)  Dimension: 512 × 512 × z axis  Dtype: *.jpg  Modality: Computed tomography (CT)  Data (train): 11 subjects(2664) Data (test) : 4 subjects(351)  Dimension: 512 × 512 × z axis LiTS (Liver Tumor Segmentation Challenge) Liver imaging (Some person draw ROI)
  • 4. 1.2 Preprocessing Standardization (Z-score scaling) • 자료 집합에 적용되는 전처리 과정으로 모든 자료에 다음과 같은 선형 변환을 적용하여 전체 자료의 분포를 평균 0, 분산 1이 되도록 만드는 과정이다. • 스케일링은 자료의 overflow나 underflow를 방지하고 독립 변수의 공분산 행렬의 condition number 를 감소시켜 최적화 과정에서의 안정성 및 수렴 속도를 향상시킨다.  추후, Batch normalization 으로 변경. 정량적으로 약 2 %의 Accuracy 향상을 보임. (https://www.youtube.com/watch?v=TDx8iZHwFtM, PR-12) Image Resize Resize coefficient: 1.0 or 0.5 Original image dimension: 512 x 512
  • 5. Practical issue #1 True_Y image
  • 6. Practical issue #2 Hounsfield unit
  • 7. Practical issue #2 Hounsfield unit 데이터 비식별화 과정에서 실수가 일어남.
  • 8. 2.1 Unet Application 2015 awards(they won the ISBI cell tracking challenge 2015 in these categories by a large margin) Segmentation golden standard Application Cells Segmentation Brain Segmentation MRBrains Challenge
  • 9. 2.2 Information of in-house U-net(1) Convolution block ReLU activation function Padding Same Activation function at final layer Sigmoid function Cost function Dice loss function Cross Entropy function Optimizer Adam optimizer
  • 10. 2.2 Information of in-house U-net(2) input size: 256x256 batch size: 10 learning rate: 0.0001 Learning time: 3 ~ 4hour 500epochs The number of Feature map: 2  4 8 16 32
  • 11. 3.1 Good result: (1) onlyroi, dice, nii
  • 12. 3.1 Bad result: (1) onlyroi, dice, nii
  • 13. 3.1 Good result: (2) onlyroi, dice, jpg
  • 14. 3.1 Bad result: (2) onlyroi, dice, jpg
  • 15. 3.1 Good result: (3) onlyroi, sigmoid, jpg
  • 16. 3.1 Bad result: (3) onlyroi, sigmoid, jpg
  • 17. 3.1 Good result: (4) onlyroi, sigmoid, jpg
  • 18. 3.1 Bad result: (4) onlyroi, sigmoid, jpg
  • 19. Slice: only roi Loss: dice Dtype: nii Slice: only roi Loss: dice Dtype: jpg Slice: only roi Loss: sigmoid Dtype: nii Slice: only roi Loss: sigmoid Dtype: jpg
  • 21. Practical issue #3 Accuracy metric 0.1 0.05 0.1 0.03 0.04 0.05 0.32 0.22 0.4 0.02 0.4 0.93 0.92 0.63 0.2 0.32 0.96 0.89 0.99 0.5 0.02 0.01 0.04 0.05 0.07 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0
  • 22. Practical issue #4 Prediction error In imbalance condition
  • 23. Information among frames == Information among Slice image Practical issue #4 Prediction error In imbalance condition
  • 28. 5. Proposed method  Architecture
  • 29. Article # segmentation Cai, Jinzheng, et al. "Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." arXiv preprint arXiv:1707.04912 (2017). Kim, Jung Uk, Hak Gu Kim, and Yong Man Ro. "Iterative deep convolutional encoder-decoder network for medical image segmentation." Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE. IEEE, 2017. Oktay, Ozan, et al. "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." arXiv preprint arXiv:1705.08302 (2017). 29
  • 30. Papers Authors Journal Architecture #1 Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." Cai, Jinzheng, et al. arXiv / 2017 #2 "Iterative deep convolutional encoder- decoder network for medical image segmentation." Kim, Jung Uk et al IEEE / 2017 #3 "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." Oktay, Ozan, et al. arXiv / 2017
  • 31. Papers Authors Journal Architecture #1 Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." Cai, Jinzheng, et al. arXiv / 2017 #2 "Iterative deep convolutional encoder- decoder network for medical image segmentation." Kim, Jung Uk et al IEEE / 2017 #3 "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." Oktay, Ozan, et al. arXiv / 2017
  • 32. Papers Authors Journal Architecture #1 Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." Cai, Jinzheng, et al. arXiv / 2017 #2 "Iterative deep convolutional encoder- decoder network for medical image segmentation." Kim, Jung Uk et al IEEE / 2017 #3 "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." Oktay, Ozan, et al. arXiv / 2017
  • 33. Papers Authors Journal Architecture #1 "Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." Cai, Jinzheng, et al. arXiv / 2017 #2 "Iterative deep convolutional encoder- decoder network for medical image segmentation." Kim, Jung Uk et al IEEE / 2017 #3 "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." Oktay, Ozan, et al. arXiv / 2017
  • 34. Papers Authors Journal Architecture #1 "Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." Cai, Jinzheng, et al. arXiv / 2017 #2 "Iterative deep convolutional encoder- decoder network for medical image segmentation." Kim, Jung Uk et al IEEE / 2017 #3 "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." Oktay, Ozan, et al. arXiv / 2017
  • 35. Papers Authors Journal Architecture #1 "Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." Cai, Jinzheng, et al. arXiv / 2017 #2 "Iterative deep convolutional encoder- decoder network for medical image segmentation." Kim, Jung Uk et al IEEE / 2017 #3 "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." Oktay, Ozan, et al. arXiv / 2017
  • 36. Papers Authors Journal Architecture #1 "Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." Cai, Jinzheng, et al. arXiv / 2017 #2 "Iterative deep convolutional encoder- decoder network for medical image segmentation." Kim, Jung Uk et al IEEE / 2017 #3 "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." Oktay, Ozan, et al. arXiv / 2017
  • 37. Papers Authors Journal Architecture #1 "Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function." Cai, Jinzheng, et al. arXiv / 2017 #2 "Iterative deep convolutional encoder- decoder network for medical image segmentation." Kim, Jung Uk et al IEEE / 2017 #3 "Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation." Oktay, Ozan, et al. arXiv / 2017
  • 38. Department of health Science and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea Liver Segmentation Liver segmentation using U-net; Practical issues