SlideShare a Scribd company logo
Alain Rodriguez, Fraud Platform, Uber
Kelvin Chu, Hadoop Platform, Uber
Locality Sensitive
Hashing by Spark
June 08, 2016
Overlapping Routes
Finding similar trips in a city
The problem
Detect trips with a high degree of overlap
We are interested in detecting trips that have
various degrees of overlap.
• Large number of trips
• Noisy, inconsistent GPS data
• Not looking for exact matches
• Directionality is important
Input Data
Millions of trips scattered over time and space
GPS traces are represented as an ordered list
of (latitude,longitude,time) tuples.
• Coordinates are reals and have noise
• Traces can be dense or sparse, yet overlapping
• Large time and geographic search space
[
{
"latitude":25.7613453844,
"epoch":1446577692,
"longitude":-80.197244976
},
{
"latitude":25.7613489535,
"epoch":1446577693,
"longitude":-80.1972450862
},
…
]
Divides the world into consistently sized regions. Area segments can be had of different sizes
Google S2 Cells
Efficient geo hashing
Jaccard index
Set similarity coefficient
The Jaccard index can be used as
a measure of set similarity A = {a, b, c}, B = {b, c, d}, C = {c, d, e}
J(A, A) = 1.0
J(A, B) = 0.5
J(A, C) = 0.2
Sparse and dense traces should be matched Ensure points are at most X distance apart
Different devices generate varying data densities.
Two segments that start and end at the same
location should be detected as overlapping.
Densification ensures that continuous segments
are independently overlapping.
Heuristic
Densify sparse traces
A
A
B
B
A
A
B
B
Heuristic
Remove noise resulting from a
vehicle stopped at a light or a very
chatty device.
Remove contiguous duplicates
Discretize segments
Break down routes into equal size
area segments; this eliminates
route noise. Segment size
determines matching sensitivity.
Discretize route segments
Directionality matters Shingling captures directionality
Two overlapping trips with opposite directions
should not be matched.
Combining contiguous segments captures the
sequence of moves from one segment to
another.
Heuristic
Shingle contiguous area segments
1 2 3 4 5 6 7 8
A
A
B
B
1 2 3 4 5 6 7 8
1->2 2->3 3->4 4->5 5->6 6->7 7->8
A
A
B
B
2->1 3->2 4->3 5->4 6->5 7->6 8->7
Set overlap problem
Find traces that have the desired level of common shingles
1->2
2->3
3->4 4->5
5->6 6->7
7->8
8->9
9->10
N^2 takes forever
LSH to the rescue
● Sifting through a month’s worth of trips for a city
takes forever with the N^2 approach
● Locality-Sensitive Hashing allows us to find most
matches quickly. Spark provides the perfect engine.
Locality-Sensitive Hashing (LSH)
Quick Introduction
Problem - Near Neighbors Search
Set of Points P
Distance Function D
Query Point Q
Problem - Clustering
Set of Points P
Distance Function D
Curse of Dimensionality
1-Dimension e.g. single integer
Q: 7 Distance: 3
A Solution: Binary Tree e.g. Return 9, 4, 8, ...
2-Dimension e.g. GPS point
Q: (12.73, 61.45) Distance: 10
A Solution: Quadtree, R-tree, etc
Curse of Dimensionality
How about very high dimension?
1->2 2->3 3->4 4->5 5->6 6->7 7->8
Very hard problem
A trip often has thousands of shingles
->3k
Approximate Solution
Bucket1
T1
T2
h(T1
)
h(T2
)
D(T1
, T2
) is small
With high probability T1
and T2
are hashed into the same bucket.
Trip T1
& Trip T2
are similar
Approximate Solution
Bucket1T1
T2
h(T1
)
h(T2
)
D(T1
, T2
) is large
With high probability T1
and T2
are hashed into the different buckets.
Bucket2
Trip T1
& Trip T2
are not similar
Some distance functions have good companions of hash functions.
For Jaccard distance, it is MinHash function.
MinHash(S) = min { h(x) for all x in the set S }
h(x) is hash function such as (ax + b) % m where a & b are some good
constants and m is the number of hash bins
Example:
S = {26, 88, 109}
h(x) = (2x + 7) % 8
MinHash(S) = min {3, 7, 1} = 1
Distance Hash Function
Jaccard MinHash
Hamming i-th value of vector x
Cosine Sign of the dot product of x and a random vector
Some Other Examples
How to increase and control the probability?
It turns out the solution is very intuitive.
Use Multiple Hash
Bucket1T1
T2
h1
(T1
)
h1
(T2
)
Bucket2
Bucket3
T1
T2
h2
(T1
)
h2
(T2
)
Both h1
and h2
are MinHash, but with different
parameters (e.g. a & b)
Our Approach of LSH on Spark
Shuffle Keys
h1
range
T1
T2
h1
(T1
)
h1
(T2
)
h2
(T1
)
h2
(T2
)
● RDD[Trip]
● The hash values are shuffle keys
● h1
and h2
have non-overlapping key ranges
● groupByKey()
h2
range
other hash
Keys Range
Post Processing
Bucket1
T1
, T2
● If T1
and T2
are hashed into the same bucket,
it’s likely that they are similar.
● Compute the Jaccard distance.
Approach 2
h1
range
T1
T2
h1
(T1
)
h1
(T2
)
h2
(T1
)
h2
(T2
)
● Same pair of trips are matched in both h1
and
h2
buckets
● Use one more shuffle to dedup
● Network vs Distance Computation
h2
range
other hash
Keys Range
Approach 3
● Don’t send the actual trip vector in the LSH and Dedup shuffles
● Send only the trip ID
● After dedup, join back with the trip objects with one more shuffle
○ Then compute the Jaccard distance of each pair of matched trips.
● When the trip object is large, Approach 3 saves a lot of network usage.
How to Generate Thousands of Hash Functions
● Naive approach
○ Generate thousands tuples of (a, b, m)
● Cache friendly approach - CPU register/L1/L2
○ Generate only two hash functions
○ h1
(x) = (a1
x + b1
) % m1
○ h2
(x) = (a2
x + b2
) % m2
hi
(x) = h1
(x) + i * h2
(x) i from 1 to number of hash functions
Other Features
● Amplification
○ Improve the probabilities
○ Reduce computation, memory and network used in final post-processing
○ More hashing (usually insignificant compared to the cost in final post-processing)
● Near Neighbors Search
○ Used in information retrieval, instances based machine learning
Other Applications of LSH
● Search for top K similar items
○ Documents, images, time-series, etc
● Cluster similar documents
○ Similar news articles, mirror web pages, etc
● Products recommendation
○ Collaborative filtering
Future Work
● Migrate to Spark ML API
○ DataFrame as first class citizen
○ Integrate it into Spark
● Low latency inserts with Spark Streaming
○ Avoid re-hashing when new objects are streaming in
Thank you
Proprietary and confidential © 2016 Uber Technologies, Inc. All rights reserved. No part of this document may be
reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage or retrieval systems, without permission in writing from Uber. This document is intended
only for the use of the individual or entity to whom it is addressed and contains information that is privileged,
confidential or otherwise exempt from disclosure under applicable law. All recipients of this document are notified
that the information contained herein includes proprietary and confidential information of Uber, and recipient may not
make use of, disseminate, or in any way disclose this document or any of the enclosed information to any person
other than employees of addressee to the extent necessary for consultations with authorized personnel of Uber.
Ad

More Related Content

What's hot (20)

Introduction to PyTorch
Introduction to PyTorchIntroduction to PyTorch
Introduction to PyTorch
Jun Young Park
 
Apache Flink and what it is used for
Apache Flink and what it is used forApache Flink and what it is used for
Apache Flink and what it is used for
Aljoscha Krettek
 
Intro to LLMs
Intro to LLMsIntro to LLMs
Intro to LLMs
Loic Merckel
 
Time series forecasting with machine learning
Time series forecasting with machine learningTime series forecasting with machine learning
Time series forecasting with machine learning
Dr Wei Liu
 
Hadoop
HadoopHadoop
Hadoop
Rajesh Piryani
 
Feature Engineering
Feature EngineeringFeature Engineering
Feature Engineering
Sri Ambati
 
K means Clustering Algorithm
K means Clustering AlgorithmK means Clustering Algorithm
K means Clustering Algorithm
Kasun Ranga Wijeweera
 
Bootstrapping state in Apache Flink
Bootstrapping state in Apache FlinkBootstrapping state in Apache Flink
Bootstrapping state in Apache Flink
DataWorks Summit
 
Machine Learning & Embeddings for Large Knowledge Graphs
Machine Learning & Embeddings  for Large Knowledge GraphsMachine Learning & Embeddings  for Large Knowledge Graphs
Machine Learning & Embeddings for Large Knowledge Graphs
Heiko Paulheim
 
What is MLOps
What is MLOpsWhat is MLOps
What is MLOps
Henrik Skogström
 
An introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERTAn introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERT
Suman Debnath
 
Data Analyse Black Horse - ClickHouse
Data Analyse Black Horse - ClickHouseData Analyse Black Horse - ClickHouse
Data Analyse Black Horse - ClickHouse
Jack Gao
 
Introduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processingIntroduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processing
Till Rohrmann
 
Knowledge Graph Embeddings for Recommender Systems
Knowledge Graph Embeddings for Recommender SystemsKnowledge Graph Embeddings for Recommender Systems
Knowledge Graph Embeddings for Recommender Systems
Enrico Palumbo
 
Bloom filters
Bloom filtersBloom filters
Bloom filters
Devesh Maru
 
Machine Learning with PyCarent + MLflow
Machine Learning with PyCarent + MLflowMachine Learning with PyCarent + MLflow
Machine Learning with PyCarent + MLflow
Databricks
 
Event Sourcing, Stream Processing and Serverless (Benjamin Stopford, Confluen...
Event Sourcing, Stream Processing and Serverless (Benjamin Stopford, Confluen...Event Sourcing, Stream Processing and Serverless (Benjamin Stopford, Confluen...
Event Sourcing, Stream Processing and Serverless (Benjamin Stopford, Confluen...
confluent
 
Flink vs. Spark
Flink vs. SparkFlink vs. Spark
Flink vs. Spark
Slim Baltagi
 
Clustering - K-Means, DBSCAN
Clustering - K-Means, DBSCANClustering - K-Means, DBSCAN
Clustering - K-Means, DBSCAN
Medicaps University
 
Boosting Approach to Solving Machine Learning Problems
Boosting Approach to Solving Machine Learning ProblemsBoosting Approach to Solving Machine Learning Problems
Boosting Approach to Solving Machine Learning Problems
Dr Sulaimon Afolabi
 
Introduction to PyTorch
Introduction to PyTorchIntroduction to PyTorch
Introduction to PyTorch
Jun Young Park
 
Apache Flink and what it is used for
Apache Flink and what it is used forApache Flink and what it is used for
Apache Flink and what it is used for
Aljoscha Krettek
 
Time series forecasting with machine learning
Time series forecasting with machine learningTime series forecasting with machine learning
Time series forecasting with machine learning
Dr Wei Liu
 
Feature Engineering
Feature EngineeringFeature Engineering
Feature Engineering
Sri Ambati
 
Bootstrapping state in Apache Flink
Bootstrapping state in Apache FlinkBootstrapping state in Apache Flink
Bootstrapping state in Apache Flink
DataWorks Summit
 
Machine Learning & Embeddings for Large Knowledge Graphs
Machine Learning & Embeddings  for Large Knowledge GraphsMachine Learning & Embeddings  for Large Knowledge Graphs
Machine Learning & Embeddings for Large Knowledge Graphs
Heiko Paulheim
 
An introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERTAn introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERT
Suman Debnath
 
Data Analyse Black Horse - ClickHouse
Data Analyse Black Horse - ClickHouseData Analyse Black Horse - ClickHouse
Data Analyse Black Horse - ClickHouse
Jack Gao
 
Introduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processingIntroduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processing
Till Rohrmann
 
Knowledge Graph Embeddings for Recommender Systems
Knowledge Graph Embeddings for Recommender SystemsKnowledge Graph Embeddings for Recommender Systems
Knowledge Graph Embeddings for Recommender Systems
Enrico Palumbo
 
Machine Learning with PyCarent + MLflow
Machine Learning with PyCarent + MLflowMachine Learning with PyCarent + MLflow
Machine Learning with PyCarent + MLflow
Databricks
 
Event Sourcing, Stream Processing and Serverless (Benjamin Stopford, Confluen...
Event Sourcing, Stream Processing and Serverless (Benjamin Stopford, Confluen...Event Sourcing, Stream Processing and Serverless (Benjamin Stopford, Confluen...
Event Sourcing, Stream Processing and Serverless (Benjamin Stopford, Confluen...
confluent
 
Boosting Approach to Solving Machine Learning Problems
Boosting Approach to Solving Machine Learning ProblemsBoosting Approach to Solving Machine Learning Problems
Boosting Approach to Solving Machine Learning Problems
Dr Sulaimon Afolabi
 

Similar to Locality Sensitive Hashing By Spark (20)

Thorny Path to the Large Scale Graph Processing, Алексей Зиновьев (Тамтэк)
Thorny Path to the Large Scale Graph Processing, Алексей Зиновьев (Тамтэк)Thorny Path to the Large Scale Graph Processing, Алексей Зиновьев (Тамтэк)
Thorny Path to the Large Scale Graph Processing, Алексей Зиновьев (Тамтэк)
Ontico
 
Thorny path to the Large-Scale Graph Processing (Highload++, 2014)
Thorny path to the Large-Scale Graph Processing (Highload++, 2014)Thorny path to the Large-Scale Graph Processing (Highload++, 2014)
Thorny path to the Large-Scale Graph Processing (Highload++, 2014)
Alexey Zinoviev
 
Magellen: Geospatial Analytics on Spark by Ram Sriharsha
Magellen: Geospatial Analytics on Spark by Ram SriharshaMagellen: Geospatial Analytics on Spark by Ram Sriharsha
Magellen: Geospatial Analytics on Spark by Ram Sriharsha
Spark Summit
 
Magellan FOSS4G Talk, Boston 2017
Magellan FOSS4G Talk, Boston 2017Magellan FOSS4G Talk, Boston 2017
Magellan FOSS4G Talk, Boston 2017
Ram Sriharsha
 
Spark summit europe 2015 magellan
Spark summit europe 2015 magellanSpark summit europe 2015 magellan
Spark summit europe 2015 magellan
Ram Sriharsha
 
Magellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Magellan-Spark as a Geospatial Analytics Engine by Ram SriharshaMagellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Magellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Spark Summit
 
Target Holding - Big Dikes and Big Data
Target Holding - Big Dikes and Big DataTarget Holding - Big Dikes and Big Data
Target Holding - Big Dikes and Big Data
Frens Jan Rumph
 
Gis capabilities on Big Data Systems
Gis capabilities on Big Data SystemsGis capabilities on Big Data Systems
Gis capabilities on Big Data Systems
Ahmad Jawwad
 
A Lightweight Infrastructure for Graph Analytics
A Lightweight Infrastructure for Graph AnalyticsA Lightweight Infrastructure for Graph Analytics
A Lightweight Infrastructure for Graph Analytics
Donald Nguyen
 
Using Graph Analysis and Fraud Detection in the Fintech Industry
Using Graph Analysis and Fraud Detection in the Fintech IndustryUsing Graph Analysis and Fraud Detection in the Fintech Industry
Using Graph Analysis and Fraud Detection in the Fintech Industry
Stanka Dalekova
 
Using Graph Analysis and Fraud Detection in the Fintech Industry
Using Graph Analysis and Fraud Detection in the Fintech IndustryUsing Graph Analysis and Fraud Detection in the Fintech Industry
Using Graph Analysis and Fraud Detection in the Fintech Industry
Stanka Dalekova
 
Building graphs to discover information by David Martínez at Big Data Spain 2015
Building graphs to discover information by David Martínez at Big Data Spain 2015Building graphs to discover information by David Martínez at Big Data Spain 2015
Building graphs to discover information by David Martínez at Big Data Spain 2015
Big Data Spain
 
Big data distributed processing: Spark introduction
Big data distributed processing: Spark introductionBig data distributed processing: Spark introduction
Big data distributed processing: Spark introduction
Hektor Jacynycz García
 
Azure Cosmos DB - Technical Deep Dive
Azure Cosmos DB - Technical Deep DiveAzure Cosmos DB - Technical Deep Dive
Azure Cosmos DB - Technical Deep Dive
Andre Essing
 
Sparksummitny2016
Sparksummitny2016Sparksummitny2016
Sparksummitny2016
Ram Sriharsha
 
Follow the money with graphs
Follow the money with graphsFollow the money with graphs
Follow the money with graphs
Stanka Dalekova
 
Clustering - ACM 2013 02-25
Clustering - ACM 2013 02-25Clustering - ACM 2013 02-25
Clustering - ACM 2013 02-25
MapR Technologies
 
MapReduceAlgorithms.ppt
MapReduceAlgorithms.pptMapReduceAlgorithms.ppt
MapReduceAlgorithms.ppt
CheeWeiTan10
 
Hardware Accelerated Machine Learning Solution for Detecting Fraud and Money ...
Hardware Accelerated Machine Learning Solution for Detecting Fraud and Money ...Hardware Accelerated Machine Learning Solution for Detecting Fraud and Money ...
Hardware Accelerated Machine Learning Solution for Detecting Fraud and Money ...
TigerGraph
 
Ai1.pdf
Ai1.pdfAi1.pdf
Ai1.pdf
kaxeca4096
 
Thorny Path to the Large Scale Graph Processing, Алексей Зиновьев (Тамтэк)
Thorny Path to the Large Scale Graph Processing, Алексей Зиновьев (Тамтэк)Thorny Path to the Large Scale Graph Processing, Алексей Зиновьев (Тамтэк)
Thorny Path to the Large Scale Graph Processing, Алексей Зиновьев (Тамтэк)
Ontico
 
Thorny path to the Large-Scale Graph Processing (Highload++, 2014)
Thorny path to the Large-Scale Graph Processing (Highload++, 2014)Thorny path to the Large-Scale Graph Processing (Highload++, 2014)
Thorny path to the Large-Scale Graph Processing (Highload++, 2014)
Alexey Zinoviev
 
Magellen: Geospatial Analytics on Spark by Ram Sriharsha
Magellen: Geospatial Analytics on Spark by Ram SriharshaMagellen: Geospatial Analytics on Spark by Ram Sriharsha
Magellen: Geospatial Analytics on Spark by Ram Sriharsha
Spark Summit
 
Magellan FOSS4G Talk, Boston 2017
Magellan FOSS4G Talk, Boston 2017Magellan FOSS4G Talk, Boston 2017
Magellan FOSS4G Talk, Boston 2017
Ram Sriharsha
 
Spark summit europe 2015 magellan
Spark summit europe 2015 magellanSpark summit europe 2015 magellan
Spark summit europe 2015 magellan
Ram Sriharsha
 
Magellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Magellan-Spark as a Geospatial Analytics Engine by Ram SriharshaMagellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Magellan-Spark as a Geospatial Analytics Engine by Ram Sriharsha
Spark Summit
 
Target Holding - Big Dikes and Big Data
Target Holding - Big Dikes and Big DataTarget Holding - Big Dikes and Big Data
Target Holding - Big Dikes and Big Data
Frens Jan Rumph
 
Gis capabilities on Big Data Systems
Gis capabilities on Big Data SystemsGis capabilities on Big Data Systems
Gis capabilities on Big Data Systems
Ahmad Jawwad
 
A Lightweight Infrastructure for Graph Analytics
A Lightweight Infrastructure for Graph AnalyticsA Lightweight Infrastructure for Graph Analytics
A Lightweight Infrastructure for Graph Analytics
Donald Nguyen
 
Using Graph Analysis and Fraud Detection in the Fintech Industry
Using Graph Analysis and Fraud Detection in the Fintech IndustryUsing Graph Analysis and Fraud Detection in the Fintech Industry
Using Graph Analysis and Fraud Detection in the Fintech Industry
Stanka Dalekova
 
Using Graph Analysis and Fraud Detection in the Fintech Industry
Using Graph Analysis and Fraud Detection in the Fintech IndustryUsing Graph Analysis and Fraud Detection in the Fintech Industry
Using Graph Analysis and Fraud Detection in the Fintech Industry
Stanka Dalekova
 
Building graphs to discover information by David Martínez at Big Data Spain 2015
Building graphs to discover information by David Martínez at Big Data Spain 2015Building graphs to discover information by David Martínez at Big Data Spain 2015
Building graphs to discover information by David Martínez at Big Data Spain 2015
Big Data Spain
 
Big data distributed processing: Spark introduction
Big data distributed processing: Spark introductionBig data distributed processing: Spark introduction
Big data distributed processing: Spark introduction
Hektor Jacynycz García
 
Azure Cosmos DB - Technical Deep Dive
Azure Cosmos DB - Technical Deep DiveAzure Cosmos DB - Technical Deep Dive
Azure Cosmos DB - Technical Deep Dive
Andre Essing
 
Follow the money with graphs
Follow the money with graphsFollow the money with graphs
Follow the money with graphs
Stanka Dalekova
 
MapReduceAlgorithms.ppt
MapReduceAlgorithms.pptMapReduceAlgorithms.ppt
MapReduceAlgorithms.ppt
CheeWeiTan10
 
Hardware Accelerated Machine Learning Solution for Detecting Fraud and Money ...
Hardware Accelerated Machine Learning Solution for Detecting Fraud and Money ...Hardware Accelerated Machine Learning Solution for Detecting Fraud and Money ...
Hardware Accelerated Machine Learning Solution for Detecting Fraud and Money ...
TigerGraph
 
Ad

More from Spark Summit (20)

FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
Ad

Recently uploaded (20)

Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 

Locality Sensitive Hashing By Spark

  • 1. Alain Rodriguez, Fraud Platform, Uber Kelvin Chu, Hadoop Platform, Uber Locality Sensitive Hashing by Spark June 08, 2016
  • 3. The problem Detect trips with a high degree of overlap We are interested in detecting trips that have various degrees of overlap. • Large number of trips • Noisy, inconsistent GPS data • Not looking for exact matches • Directionality is important
  • 4. Input Data Millions of trips scattered over time and space GPS traces are represented as an ordered list of (latitude,longitude,time) tuples. • Coordinates are reals and have noise • Traces can be dense or sparse, yet overlapping • Large time and geographic search space [ { "latitude":25.7613453844, "epoch":1446577692, "longitude":-80.197244976 }, { "latitude":25.7613489535, "epoch":1446577693, "longitude":-80.1972450862 }, … ]
  • 5. Divides the world into consistently sized regions. Area segments can be had of different sizes Google S2 Cells Efficient geo hashing
  • 6. Jaccard index Set similarity coefficient The Jaccard index can be used as a measure of set similarity A = {a, b, c}, B = {b, c, d}, C = {c, d, e} J(A, A) = 1.0 J(A, B) = 0.5 J(A, C) = 0.2
  • 7. Sparse and dense traces should be matched Ensure points are at most X distance apart Different devices generate varying data densities. Two segments that start and end at the same location should be detected as overlapping. Densification ensures that continuous segments are independently overlapping. Heuristic Densify sparse traces A A B B A A B B
  • 8. Heuristic Remove noise resulting from a vehicle stopped at a light or a very chatty device. Remove contiguous duplicates Discretize segments Break down routes into equal size area segments; this eliminates route noise. Segment size determines matching sensitivity. Discretize route segments
  • 9. Directionality matters Shingling captures directionality Two overlapping trips with opposite directions should not be matched. Combining contiguous segments captures the sequence of moves from one segment to another. Heuristic Shingle contiguous area segments 1 2 3 4 5 6 7 8 A A B B 1 2 3 4 5 6 7 8 1->2 2->3 3->4 4->5 5->6 6->7 7->8 A A B B 2->1 3->2 4->3 5->4 6->5 7->6 8->7
  • 10. Set overlap problem Find traces that have the desired level of common shingles 1->2 2->3 3->4 4->5 5->6 6->7 7->8 8->9 9->10
  • 11. N^2 takes forever LSH to the rescue ● Sifting through a month’s worth of trips for a city takes forever with the N^2 approach ● Locality-Sensitive Hashing allows us to find most matches quickly. Spark provides the perfect engine.
  • 13. Problem - Near Neighbors Search Set of Points P Distance Function D Query Point Q
  • 14. Problem - Clustering Set of Points P Distance Function D
  • 15. Curse of Dimensionality 1-Dimension e.g. single integer Q: 7 Distance: 3 A Solution: Binary Tree e.g. Return 9, 4, 8, ... 2-Dimension e.g. GPS point Q: (12.73, 61.45) Distance: 10 A Solution: Quadtree, R-tree, etc
  • 16. Curse of Dimensionality How about very high dimension? 1->2 2->3 3->4 4->5 5->6 6->7 7->8 Very hard problem A trip often has thousands of shingles ->3k
  • 17. Approximate Solution Bucket1 T1 T2 h(T1 ) h(T2 ) D(T1 , T2 ) is small With high probability T1 and T2 are hashed into the same bucket. Trip T1 & Trip T2 are similar
  • 18. Approximate Solution Bucket1T1 T2 h(T1 ) h(T2 ) D(T1 , T2 ) is large With high probability T1 and T2 are hashed into the different buckets. Bucket2 Trip T1 & Trip T2 are not similar
  • 19. Some distance functions have good companions of hash functions. For Jaccard distance, it is MinHash function.
  • 20. MinHash(S) = min { h(x) for all x in the set S } h(x) is hash function such as (ax + b) % m where a & b are some good constants and m is the number of hash bins Example: S = {26, 88, 109} h(x) = (2x + 7) % 8 MinHash(S) = min {3, 7, 1} = 1
  • 21. Distance Hash Function Jaccard MinHash Hamming i-th value of vector x Cosine Sign of the dot product of x and a random vector Some Other Examples
  • 22. How to increase and control the probability? It turns out the solution is very intuitive.
  • 23. Use Multiple Hash Bucket1T1 T2 h1 (T1 ) h1 (T2 ) Bucket2 Bucket3 T1 T2 h2 (T1 ) h2 (T2 ) Both h1 and h2 are MinHash, but with different parameters (e.g. a & b)
  • 24. Our Approach of LSH on Spark
  • 25. Shuffle Keys h1 range T1 T2 h1 (T1 ) h1 (T2 ) h2 (T1 ) h2 (T2 ) ● RDD[Trip] ● The hash values are shuffle keys ● h1 and h2 have non-overlapping key ranges ● groupByKey() h2 range other hash Keys Range
  • 26. Post Processing Bucket1 T1 , T2 ● If T1 and T2 are hashed into the same bucket, it’s likely that they are similar. ● Compute the Jaccard distance.
  • 27. Approach 2 h1 range T1 T2 h1 (T1 ) h1 (T2 ) h2 (T1 ) h2 (T2 ) ● Same pair of trips are matched in both h1 and h2 buckets ● Use one more shuffle to dedup ● Network vs Distance Computation h2 range other hash Keys Range
  • 28. Approach 3 ● Don’t send the actual trip vector in the LSH and Dedup shuffles ● Send only the trip ID ● After dedup, join back with the trip objects with one more shuffle ○ Then compute the Jaccard distance of each pair of matched trips. ● When the trip object is large, Approach 3 saves a lot of network usage.
  • 29. How to Generate Thousands of Hash Functions ● Naive approach ○ Generate thousands tuples of (a, b, m) ● Cache friendly approach - CPU register/L1/L2 ○ Generate only two hash functions ○ h1 (x) = (a1 x + b1 ) % m1 ○ h2 (x) = (a2 x + b2 ) % m2 hi (x) = h1 (x) + i * h2 (x) i from 1 to number of hash functions
  • 30. Other Features ● Amplification ○ Improve the probabilities ○ Reduce computation, memory and network used in final post-processing ○ More hashing (usually insignificant compared to the cost in final post-processing) ● Near Neighbors Search ○ Used in information retrieval, instances based machine learning
  • 31. Other Applications of LSH ● Search for top K similar items ○ Documents, images, time-series, etc ● Cluster similar documents ○ Similar news articles, mirror web pages, etc ● Products recommendation ○ Collaborative filtering
  • 32. Future Work ● Migrate to Spark ML API ○ DataFrame as first class citizen ○ Integrate it into Spark ● Low latency inserts with Spark Streaming ○ Avoid re-hashing when new objects are streaming in
  • 33. Thank you Proprietary and confidential © 2016 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from Uber. This document is intended only for the use of the individual or entity to whom it is addressed and contains information that is privileged, confidential or otherwise exempt from disclosure under applicable law. All recipients of this document are notified that the information contained herein includes proprietary and confidential information of Uber, and recipient may not make use of, disseminate, or in any way disclose this document or any of the enclosed information to any person other than employees of addressee to the extent necessary for consultations with authorized personnel of Uber.