SlideShare a Scribd company logo
LOG DATA ANALYSIS PLATFORM
May, 2015
Agenda
1) User-Group Introduction
2) Problematic
3) Log Data Analysis System Overview
4) Task Analysis
5) Solution Architecture
6) Trade-off Analysis
7) Automation
8) Performance Testing
9) Outcome & Plans
PROBLEMATIC
Demo Lab: Why we’ve started this project?
1) Increase Internal Experience
2) Create Reference Solution w/o NDA Limitations
3) Get Playground for Tests
4) Provide Demo Environment for Customers (using their data)
5) Decrease time to Market (by introducing automation)
LOG DATA ANALYSIS PLATFORM :
OVERVIEW
Log Data Analysis Platform Details
Key Facts:
• ~270-300 Web Servers
• Log Types: HTTPD Access
logs, Error logs, Application
Server Servlet, OS Service
Logs
• ~500K events per minute
• 150GB of data per day
Technologies:
• Flume
• Hadoop/HDFS, MapReduce
• Hive, Impala
• Oozie
• Elasticsearch, Kibana 3
• Tableau Analytics platform
• Puppet + Vagrant
Log Data Examples
Access log:
127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326
Error log:
[Sun Mar 7 20:58:27 2004] [info] [client 64.242.88.10] (104)Connection reset by peer: client
stopped connection before send body completed
[Sun Mar 7 21:16:17 2004] [error] [client 24.70.56.49] File does not exist:
/home/httpd/twiki/view/Main/WebHome
Vmstat
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 305416 260688 29160 2356920 2 2 4 1 0 0 6 1 92 2 0
iostat
Linux 2.6.32-100.28.5.el6.x86_64 (dev-db) 07/09/2011
avg-cpu: %user %nice %system %iowait %steal %idle
5.68 0.00 0.52 2.03 0.00 91.76
TASK ANALYSIS
Architecture Drivers: Use Cases
Architecture Drivers: Quality Attributes (1/3)
Architecture Drivers: Quality Attributes (2/3)
Architecture Drivers: Quality Attributes (3/3)
Architecture Drivers: Limitations
Demo Lab: Marketecture
SOLUTION ARCHITECTURE
Solution Architecture
Batch Layer Serving Layer
Speed Layer
Raw Data
Storage
Data
Strea
m
Real-time
Views
Static Views
Precomputing
Precomputing
Ad-hoc Batch
Views
Static Batch
Views
Corporate BI
Tool
Legend:
Layer boundary
Data flow (with direction indicated)
Query flow
Apache HTTP Servers
Raw Data
Storage Pre-computing Batch Views
Real-Time Views
Dashboard/
Search
Data Stream
Real-Time Processing and
Aggregations
BI Tool
 Avro as a Raw Data Storage file
format
 Parquet as a Batch Views file
format
 Star schema as a Batch Views
data model
Architecture: Flume Topology
Batch ETL
TRADE-OFF ANALYSIS
Distribution Selection
Hive Stinger vs Impala
Compression Ratio
Access Speed
AUTOMATION
Automation (saves time and money)
80% 20%
Development and Debugging F&P Testing, Demo
Local Development Cloud Development
vagrant up
Automation Process
Phase Tool Notes
VM Provisioning Vagrant — Supports:
VirtualBox, VMWare ESX, Amazon AWS
VM Bootstraping Puppet — Installs Cloudera Manager, Cloudera Distribution
Hadoop, ElasticSearch+Kibana, Flume, Microstrategy, Log
Generator.
— Creates Cluster using Cloudera Manager API.
Configure ETL
and BI
Puppet — Configures Flume, Oozie, ElasticSearch, Impala, Hive,
Microstrategy Dashboards
Integration Tests Puppet — Generates Workload and ensures data go through.
— Checks Logs for errors.
— Calculates timing/throughput.
PERFORMANCE TESTING
Log Generator
1 Thread can generate:
4200 events / second (File source)
5500 events / second (TCP source)
Accurate Sizing
100k/min
50k/min
20k/min
200k
/min
Calculator!
OUTCOME & PLANS
Outcome
1) Demo lab, playground, testing platform (in 1 hour)
2) Sizing Calculator
3) Help to get 3 new customers (one is really, really
huge)
4) Strategic Partnership with Cloudera
5) Tons of experience and fun 
Plans
1) Add support for other Hadoop Distributions
(Hortonworks, MapR)
2) Make Project Open-Source
Thank You!
31
SoftServe US Office
One Congress Plaza,
111 Congress Avenue, Suite 2700 Austin, TX
78701
Tel: 512.516.8880
Contacts
Valentyn Kropov
vkrop@softserveinc.com
Tel: 866.687.3588 x4341
Ad

More Related Content

What's hot (20)

Metail at Cambridge AWS User Group Main Meetup #3
Metail at Cambridge AWS User Group Main Meetup #3Metail at Cambridge AWS User Group Main Meetup #3
Metail at Cambridge AWS User Group Main Meetup #3
Gareth Rogers
 
An Introduction to the Heatmap / Histogram Plugin
An Introduction to the Heatmap / Histogram PluginAn Introduction to the Heatmap / Histogram Plugin
An Introduction to the Heatmap / Histogram Plugin
Mitsuhiro Tanda
 
ADF Mapping Data Flow Private Preview Migration
ADF Mapping Data Flow Private Preview MigrationADF Mapping Data Flow Private Preview Migration
ADF Mapping Data Flow Private Preview Migration
Mark Kromer
 
Presto: Distributed sql query engine
Presto: Distributed sql query engine Presto: Distributed sql query engine
Presto: Distributed sql query engine
kiran palaka
 
Hopsworks - The Platform for Data-Intensive AI
Hopsworks - The Platform for Data-Intensive AIHopsworks - The Platform for Data-Intensive AI
Hopsworks - The Platform for Data-Intensive AI
QAware GmbH
 
Sql to dax
Sql to daxSql to dax
Sql to dax
Annie Xu
 
Module Owb Repositories
Module Owb RepositoriesModule Owb Repositories
Module Owb Repositories
Nicholas Goodman
 
Anomaly Detection using Spark MLlib and Spark Streaming
Anomaly Detection using Spark MLlib and Spark StreamingAnomaly Detection using Spark MLlib and Spark Streaming
Anomaly Detection using Spark MLlib and Spark Streaming
Keira Zhou
 
Prometheus loves Grafana
Prometheus loves GrafanaPrometheus loves Grafana
Prometheus loves Grafana
Tobias Schmidt
 
Apache NiFi: A Drag and Drop Approach
Apache NiFi: A Drag and Drop ApproachApache NiFi: A Drag and Drop Approach
Apache NiFi: A Drag and Drop Approach
Calculated Systems
 
Advanced MLflow: Multi-Step Workflows, Hyperparameter Tuning and Integrating ...
Advanced MLflow: Multi-Step Workflows, Hyperparameter Tuning and Integrating ...Advanced MLflow: Multi-Step Workflows, Hyperparameter Tuning and Integrating ...
Advanced MLflow: Multi-Step Workflows, Hyperparameter Tuning and Integrating ...
Databricks
 
MLeap: Productionize Data Science Workflows Using Spark
MLeap: Productionize Data Science Workflows Using SparkMLeap: Productionize Data Science Workflows Using Spark
MLeap: Productionize Data Science Workflows Using Spark
Jen Aman
 
Automatic Forecasting using Prophet, Databricks, Delta Lake and MLflow
Automatic Forecasting using Prophet, Databricks, Delta Lake and MLflowAutomatic Forecasting using Prophet, Databricks, Delta Lake and MLflow
Automatic Forecasting using Prophet, Databricks, Delta Lake and MLflow
Databricks
 
Kibana + timelion: time series with the elastic stack
Kibana + timelion: time series with the elastic stackKibana + timelion: time series with the elastic stack
Kibana + timelion: time series with the elastic stack
Sylvain Wallez
 
MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
  MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...  MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
Spark Summit
 
Azure Data Factory for Redmond SQL PASS UG Sept 2018
Azure Data Factory for Redmond SQL PASS UG Sept 2018Azure Data Factory for Redmond SQL PASS UG Sept 2018
Azure Data Factory for Redmond SQL PASS UG Sept 2018
Mark Kromer
 
Managed Feature Store for Machine Learning
Managed Feature Store for Machine LearningManaged Feature Store for Machine Learning
Managed Feature Store for Machine Learning
Logical Clocks
 
Microsoft Azure Data Factory Hands-On Lab Overview Slides
Microsoft Azure Data Factory Hands-On Lab Overview SlidesMicrosoft Azure Data Factory Hands-On Lab Overview Slides
Microsoft Azure Data Factory Hands-On Lab Overview Slides
Mark Kromer
 
Building Your First Apache Apex (Next Gen Big Data/Hadoop) Application
Building Your First Apache Apex (Next Gen Big Data/Hadoop) ApplicationBuilding Your First Apache Apex (Next Gen Big Data/Hadoop) Application
Building Your First Apache Apex (Next Gen Big Data/Hadoop) Application
Apache Apex
 
A Short Presentation on Kafka
A Short Presentation on KafkaA Short Presentation on Kafka
A Short Presentation on Kafka
Mostafa Jubayer Khan
 
Metail at Cambridge AWS User Group Main Meetup #3
Metail at Cambridge AWS User Group Main Meetup #3Metail at Cambridge AWS User Group Main Meetup #3
Metail at Cambridge AWS User Group Main Meetup #3
Gareth Rogers
 
An Introduction to the Heatmap / Histogram Plugin
An Introduction to the Heatmap / Histogram PluginAn Introduction to the Heatmap / Histogram Plugin
An Introduction to the Heatmap / Histogram Plugin
Mitsuhiro Tanda
 
ADF Mapping Data Flow Private Preview Migration
ADF Mapping Data Flow Private Preview MigrationADF Mapping Data Flow Private Preview Migration
ADF Mapping Data Flow Private Preview Migration
Mark Kromer
 
Presto: Distributed sql query engine
Presto: Distributed sql query engine Presto: Distributed sql query engine
Presto: Distributed sql query engine
kiran palaka
 
Hopsworks - The Platform for Data-Intensive AI
Hopsworks - The Platform for Data-Intensive AIHopsworks - The Platform for Data-Intensive AI
Hopsworks - The Platform for Data-Intensive AI
QAware GmbH
 
Sql to dax
Sql to daxSql to dax
Sql to dax
Annie Xu
 
Anomaly Detection using Spark MLlib and Spark Streaming
Anomaly Detection using Spark MLlib and Spark StreamingAnomaly Detection using Spark MLlib and Spark Streaming
Anomaly Detection using Spark MLlib and Spark Streaming
Keira Zhou
 
Prometheus loves Grafana
Prometheus loves GrafanaPrometheus loves Grafana
Prometheus loves Grafana
Tobias Schmidt
 
Apache NiFi: A Drag and Drop Approach
Apache NiFi: A Drag and Drop ApproachApache NiFi: A Drag and Drop Approach
Apache NiFi: A Drag and Drop Approach
Calculated Systems
 
Advanced MLflow: Multi-Step Workflows, Hyperparameter Tuning and Integrating ...
Advanced MLflow: Multi-Step Workflows, Hyperparameter Tuning and Integrating ...Advanced MLflow: Multi-Step Workflows, Hyperparameter Tuning and Integrating ...
Advanced MLflow: Multi-Step Workflows, Hyperparameter Tuning and Integrating ...
Databricks
 
MLeap: Productionize Data Science Workflows Using Spark
MLeap: Productionize Data Science Workflows Using SparkMLeap: Productionize Data Science Workflows Using Spark
MLeap: Productionize Data Science Workflows Using Spark
Jen Aman
 
Automatic Forecasting using Prophet, Databricks, Delta Lake and MLflow
Automatic Forecasting using Prophet, Databricks, Delta Lake and MLflowAutomatic Forecasting using Prophet, Databricks, Delta Lake and MLflow
Automatic Forecasting using Prophet, Databricks, Delta Lake and MLflow
Databricks
 
Kibana + timelion: time series with the elastic stack
Kibana + timelion: time series with the elastic stackKibana + timelion: time series with the elastic stack
Kibana + timelion: time series with the elastic stack
Sylvain Wallez
 
MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
  MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...  MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
Spark Summit
 
Azure Data Factory for Redmond SQL PASS UG Sept 2018
Azure Data Factory for Redmond SQL PASS UG Sept 2018Azure Data Factory for Redmond SQL PASS UG Sept 2018
Azure Data Factory for Redmond SQL PASS UG Sept 2018
Mark Kromer
 
Managed Feature Store for Machine Learning
Managed Feature Store for Machine LearningManaged Feature Store for Machine Learning
Managed Feature Store for Machine Learning
Logical Clocks
 
Microsoft Azure Data Factory Hands-On Lab Overview Slides
Microsoft Azure Data Factory Hands-On Lab Overview SlidesMicrosoft Azure Data Factory Hands-On Lab Overview Slides
Microsoft Azure Data Factory Hands-On Lab Overview Slides
Mark Kromer
 
Building Your First Apache Apex (Next Gen Big Data/Hadoop) Application
Building Your First Apache Apex (Next Gen Big Data/Hadoop) ApplicationBuilding Your First Apache Apex (Next Gen Big Data/Hadoop) Application
Building Your First Apache Apex (Next Gen Big Data/Hadoop) Application
Apache Apex
 

Similar to Log Data Analysis Platform (20)

Apache Eagle at Hadoop Summit 2016 San Jose
Apache Eagle at Hadoop Summit 2016 San JoseApache Eagle at Hadoop Summit 2016 San Jose
Apache Eagle at Hadoop Summit 2016 San Jose
Hao Chen
 
Apache Eagle: Secure Hadoop in Real Time
Apache Eagle: Secure Hadoop in Real TimeApache Eagle: Secure Hadoop in Real Time
Apache Eagle: Secure Hadoop in Real Time
DataWorks Summit/Hadoop Summit
 
Apache Eagle Architecture Evolvement
Apache Eagle Architecture EvolvementApache Eagle Architecture Evolvement
Apache Eagle Architecture Evolvement
Hao Chen
 
Server Monitoring (Scaling while bootstrapped)
Server Monitoring  (Scaling while bootstrapped)Server Monitoring  (Scaling while bootstrapped)
Server Monitoring (Scaling while bootstrapped)
Ajibola Aiyedogbon
 
Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks
Jim Dowling
 
What is going on? Application Diagnostics on Azure - Copenhagen .NET User Group
What is going on? Application Diagnostics on Azure - Copenhagen .NET User GroupWhat is going on? Application Diagnostics on Azure - Copenhagen .NET User Group
What is going on? Application Diagnostics on Azure - Copenhagen .NET User Group
Maarten Balliauw
 
Productionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices ArchitectureProductionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices Architecture
Databricks
 
Cowboy Dating with Big Data or DWH Evolution in Action, Борис Трофимов
Cowboy Dating with Big Data or DWH Evolution in Action, Борис ТрофимовCowboy Dating with Big Data or DWH Evolution in Action, Борис Трофимов
Cowboy Dating with Big Data or DWH Evolution in Action, Борис Трофимов
Sigma Software
 
Microsoft SQL Server - StreamInsight Overview Presentation
Microsoft SQL Server - StreamInsight Overview PresentationMicrosoft SQL Server - StreamInsight Overview Presentation
Microsoft SQL Server - StreamInsight Overview Presentation
Microsoft Private Cloud
 
Sumo Logic QuickStart Webinar - Jan 2016
Sumo Logic QuickStart Webinar - Jan 2016Sumo Logic QuickStart Webinar - Jan 2016
Sumo Logic QuickStart Webinar - Jan 2016
Sumo Logic
 
Visualizing Big Data in Realtime
Visualizing Big Data in RealtimeVisualizing Big Data in Realtime
Visualizing Big Data in Realtime
DataWorks Summit
 
Service quality monitoring system architecture
Service quality monitoring system architectureService quality monitoring system architecture
Service quality monitoring system architecture
Matsuo Sawahashi
 
Hadoop World 2011: Building Web Analytics Processing on Hadoop at CBS Interac...
Hadoop World 2011: Building Web Analytics Processing on Hadoop at CBS Interac...Hadoop World 2011: Building Web Analytics Processing on Hadoop at CBS Interac...
Hadoop World 2011: Building Web Analytics Processing on Hadoop at CBS Interac...
Cloudera, Inc.
 
Cowboy dating with big data, Борис Трофімов
Cowboy dating with big data, Борис ТрофімовCowboy dating with big data, Борис Трофімов
Cowboy dating with big data, Борис Трофімов
Sigma Software
 
Apache Eagle in Action
Apache Eagle in ActionApache Eagle in Action
Apache Eagle in Action
Hao Chen
 
BizSpark Startup Night Windows Azure March 29, 2011
BizSpark Startup Night Windows Azure March 29, 2011BizSpark Startup Night Windows Azure March 29, 2011
BizSpark Startup Night Windows Azure March 29, 2011
Spiffy
 
Evolving Architecture
Evolving ArchitectureEvolving Architecture
Evolving Architecture
Douglas McClurg
 
Cloud Lambda Architecture Patterns
Cloud Lambda Architecture PatternsCloud Lambda Architecture Patterns
Cloud Lambda Architecture Patterns
Asis Mohanty
 
MuleSoft Meetup Roma - Processi di Automazione su CloudHub
MuleSoft Meetup Roma - Processi di Automazione su CloudHubMuleSoft Meetup Roma - Processi di Automazione su CloudHub
MuleSoft Meetup Roma - Processi di Automazione su CloudHub
Alfonso Martino
 
Processing Real-Time Data at Scale: A streaming platform as a central nervous...
Processing Real-Time Data at Scale: A streaming platform as a central nervous...Processing Real-Time Data at Scale: A streaming platform as a central nervous...
Processing Real-Time Data at Scale: A streaming platform as a central nervous...
confluent
 
Apache Eagle at Hadoop Summit 2016 San Jose
Apache Eagle at Hadoop Summit 2016 San JoseApache Eagle at Hadoop Summit 2016 San Jose
Apache Eagle at Hadoop Summit 2016 San Jose
Hao Chen
 
Apache Eagle Architecture Evolvement
Apache Eagle Architecture EvolvementApache Eagle Architecture Evolvement
Apache Eagle Architecture Evolvement
Hao Chen
 
Server Monitoring (Scaling while bootstrapped)
Server Monitoring  (Scaling while bootstrapped)Server Monitoring  (Scaling while bootstrapped)
Server Monitoring (Scaling while bootstrapped)
Ajibola Aiyedogbon
 
Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks
Jim Dowling
 
What is going on? Application Diagnostics on Azure - Copenhagen .NET User Group
What is going on? Application Diagnostics on Azure - Copenhagen .NET User GroupWhat is going on? Application Diagnostics on Azure - Copenhagen .NET User Group
What is going on? Application Diagnostics on Azure - Copenhagen .NET User Group
Maarten Balliauw
 
Productionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices ArchitectureProductionizing Machine Learning with a Microservices Architecture
Productionizing Machine Learning with a Microservices Architecture
Databricks
 
Cowboy Dating with Big Data or DWH Evolution in Action, Борис Трофимов
Cowboy Dating with Big Data or DWH Evolution in Action, Борис ТрофимовCowboy Dating with Big Data or DWH Evolution in Action, Борис Трофимов
Cowboy Dating with Big Data or DWH Evolution in Action, Борис Трофимов
Sigma Software
 
Microsoft SQL Server - StreamInsight Overview Presentation
Microsoft SQL Server - StreamInsight Overview PresentationMicrosoft SQL Server - StreamInsight Overview Presentation
Microsoft SQL Server - StreamInsight Overview Presentation
Microsoft Private Cloud
 
Sumo Logic QuickStart Webinar - Jan 2016
Sumo Logic QuickStart Webinar - Jan 2016Sumo Logic QuickStart Webinar - Jan 2016
Sumo Logic QuickStart Webinar - Jan 2016
Sumo Logic
 
Visualizing Big Data in Realtime
Visualizing Big Data in RealtimeVisualizing Big Data in Realtime
Visualizing Big Data in Realtime
DataWorks Summit
 
Service quality monitoring system architecture
Service quality monitoring system architectureService quality monitoring system architecture
Service quality monitoring system architecture
Matsuo Sawahashi
 
Hadoop World 2011: Building Web Analytics Processing on Hadoop at CBS Interac...
Hadoop World 2011: Building Web Analytics Processing on Hadoop at CBS Interac...Hadoop World 2011: Building Web Analytics Processing on Hadoop at CBS Interac...
Hadoop World 2011: Building Web Analytics Processing on Hadoop at CBS Interac...
Cloudera, Inc.
 
Cowboy dating with big data, Борис Трофімов
Cowboy dating with big data, Борис ТрофімовCowboy dating with big data, Борис Трофімов
Cowboy dating with big data, Борис Трофімов
Sigma Software
 
Apache Eagle in Action
Apache Eagle in ActionApache Eagle in Action
Apache Eagle in Action
Hao Chen
 
BizSpark Startup Night Windows Azure March 29, 2011
BizSpark Startup Night Windows Azure March 29, 2011BizSpark Startup Night Windows Azure March 29, 2011
BizSpark Startup Night Windows Azure March 29, 2011
Spiffy
 
Cloud Lambda Architecture Patterns
Cloud Lambda Architecture PatternsCloud Lambda Architecture Patterns
Cloud Lambda Architecture Patterns
Asis Mohanty
 
MuleSoft Meetup Roma - Processi di Automazione su CloudHub
MuleSoft Meetup Roma - Processi di Automazione su CloudHubMuleSoft Meetup Roma - Processi di Automazione su CloudHub
MuleSoft Meetup Roma - Processi di Automazione su CloudHub
Alfonso Martino
 
Processing Real-Time Data at Scale: A streaming platform as a central nervous...
Processing Real-Time Data at Scale: A streaming platform as a central nervous...Processing Real-Time Data at Scale: A streaming platform as a central nervous...
Processing Real-Time Data at Scale: A streaming platform as a central nervous...
confluent
 
Ad

Recently uploaded (20)

Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Ad

Log Data Analysis Platform

  • 1. LOG DATA ANALYSIS PLATFORM May, 2015
  • 2. Agenda 1) User-Group Introduction 2) Problematic 3) Log Data Analysis System Overview 4) Task Analysis 5) Solution Architecture 6) Trade-off Analysis 7) Automation 8) Performance Testing 9) Outcome & Plans
  • 4. Demo Lab: Why we’ve started this project? 1) Increase Internal Experience 2) Create Reference Solution w/o NDA Limitations 3) Get Playground for Tests 4) Provide Demo Environment for Customers (using their data) 5) Decrease time to Market (by introducing automation)
  • 5. LOG DATA ANALYSIS PLATFORM : OVERVIEW
  • 6. Log Data Analysis Platform Details Key Facts: • ~270-300 Web Servers • Log Types: HTTPD Access logs, Error logs, Application Server Servlet, OS Service Logs • ~500K events per minute • 150GB of data per day Technologies: • Flume • Hadoop/HDFS, MapReduce • Hive, Impala • Oozie • Elasticsearch, Kibana 3 • Tableau Analytics platform • Puppet + Vagrant
  • 7. Log Data Examples Access log: 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 Error log: [Sun Mar 7 20:58:27 2004] [info] [client 64.242.88.10] (104)Connection reset by peer: client stopped connection before send body completed [Sun Mar 7 21:16:17 2004] [error] [client 24.70.56.49] File does not exist: /home/httpd/twiki/view/Main/WebHome Vmstat procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 305416 260688 29160 2356920 2 2 4 1 0 0 6 1 92 2 0 iostat Linux 2.6.32-100.28.5.el6.x86_64 (dev-db) 07/09/2011 avg-cpu: %user %nice %system %iowait %steal %idle 5.68 0.00 0.52 2.03 0.00 91.76
  • 10. Architecture Drivers: Quality Attributes (1/3)
  • 11. Architecture Drivers: Quality Attributes (2/3)
  • 12. Architecture Drivers: Quality Attributes (3/3)
  • 16. Solution Architecture Batch Layer Serving Layer Speed Layer Raw Data Storage Data Strea m Real-time Views Static Views Precomputing Precomputing Ad-hoc Batch Views Static Batch Views Corporate BI Tool Legend: Layer boundary Data flow (with direction indicated) Query flow Apache HTTP Servers Raw Data Storage Pre-computing Batch Views Real-Time Views Dashboard/ Search Data Stream Real-Time Processing and Aggregations BI Tool  Avro as a Raw Data Storage file format  Parquet as a Batch Views file format  Star schema as a Batch Views data model
  • 21. Hive Stinger vs Impala Compression Ratio Access Speed
  • 23. Automation (saves time and money) 80% 20% Development and Debugging F&P Testing, Demo Local Development Cloud Development
  • 25. Automation Process Phase Tool Notes VM Provisioning Vagrant — Supports: VirtualBox, VMWare ESX, Amazon AWS VM Bootstraping Puppet — Installs Cloudera Manager, Cloudera Distribution Hadoop, ElasticSearch+Kibana, Flume, Microstrategy, Log Generator. — Creates Cluster using Cloudera Manager API. Configure ETL and BI Puppet — Configures Flume, Oozie, ElasticSearch, Impala, Hive, Microstrategy Dashboards Integration Tests Puppet — Generates Workload and ensures data go through. — Checks Logs for errors. — Calculates timing/throughput.
  • 27. Log Generator 1 Thread can generate: 4200 events / second (File source) 5500 events / second (TCP source)
  • 30. Outcome 1) Demo lab, playground, testing platform (in 1 hour) 2) Sizing Calculator 3) Help to get 3 new customers (one is really, really huge) 4) Strategic Partnership with Cloudera 5) Tons of experience and fun  Plans 1) Add support for other Hadoop Distributions (Hortonworks, MapR) 2) Make Project Open-Source
  • 31. Thank You! 31 SoftServe US Office One Congress Plaza, 111 Congress Avenue, Suite 2700 Austin, TX 78701 Tel: 512.516.8880 Contacts Valentyn Kropov [email protected] Tel: 866.687.3588 x4341