SlideShare a Scribd company logo
SIMPLe : Simple Idea Meaningful Performance Level up*
ISL Lab Seminar
Hansol Kang
* Mao, Xudong, et al. "Least squares generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
Contents
2019-04-09
2
Introduction
Research Trend
Review
LSGAN
Concept
Objective Function
Global Optimality
Parameter Selection
Results Experiment
Source Code
Celeb-A(DCGAN, LSGAN)
Summary
I. Introduction
Introduction
Research Trend, Review(Concept, Vanilla GAN, DCGAN, InfoGAN)
Introduction
• Research Trend
2019-04-09
4
Introduction
• Research Trend
2019-04-09
5
• 70,000 high-quality PNG images at 1024×1024 resolution
• Considerable variation in terms of age, ethnicity and image background
• Good coverage of accessories such as eyeglasses, sunglasses, hats, etc.
Flickr-Faces-HQ (FFHQ)
Introduction
• Research Trend
2019-04-09
6
Introduction
• Concept of GAN
2019-04-09
7
VsD
GF1
F1
F1
F1
FakeR1
Introduction
• Concept of GAN
2019-04-09
8
VsD
G
Fake?R1
@
F1
Introduction
• Vanilla GAN : Adversarial Nets
2019-04-09
9
)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
DG zdata

Smart D
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
Real case
Fake case
1
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata

0
should be 0
should be 0
1
Log(x)
cf.
Stupid D
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
Real case
Fake case
0
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata

1
should be negative infinity
should be negative infinity
D perspective,
it should be maximum.
Introduction
• Vanilla GAN : Adversarial Nets
2019-04-09
10
)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
DG zdata

Generator
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata

1
should be negative infinity
1
Log(x)
cf.
G perspective,
it should be minimum.
Smart G
Stupid G )))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata

0
should be 0
Introduction
2019-04-09
11
• Vanilla GAN : Mathematical Proof
1) Global Optimality of datag pp 
2) Convergence of Algorithm
D GVs
x
)(xpdata
“Generative Adversarial Networks”
Goal Method
Introduction
2019-04-09
12
• DCGAN : Network
D
G
“쟤들 뭐하냐?”
“CNN이 MLP보다 훨씬 낫지롱”
D
“우리가 짱이야”
G
Vanilla GAN DCGAN
“VAE 죽어요 ㅠㅠ”
Introduction
2019-04-09
13
• DCGAN : Latent Space
0 1
0.1
0.15
0.18
0.143
0.5
0.45
0.47
0.473
0.9
0.95
0.96
0.937
0.607±
고차원(Image)에서 의미 x
저차원(Latent code)에서 의미 o
Introduction
2019-04-09
14
• InfoGAN - Network
D
“우리가 짱이야”
G D
DCGAN InfoGAN
Gz“나도 신경 써줘…”
zc
z
“우리는 Z(Latent code)를 더 세분화
해서 조작이 가능해!”
Introduction
2019-04-09
15
• InfoGAN - Latent Code
GNoise
Latent code
0.001
0.008
1.000
0.007
…
0.005
? : 실제 latent code의 구조는 복잡하여
해석이 어려움(entangled).
Let's make the latent code simple.
The proper generation is difficult.
[0.001, 0.008, …, 0.005] c
Latent code
0.001
0.008
1.000
0.007
…
0.005
0
0
0
0
…
1
Z C
Z C : Condition
How about adding latent code?
해석이 가능한 Condition을 제공.
Idea
Introduction
2019-04-09
16
• InfoGAN - Latent Code
G
Latent code
Z C
“뭐야? 그러면 C를 Z 옆에 바로
붙이면 되는 거야?”
[0.001, 0.008, …, 005 | 0, 0, … 1]
z c
[0.001, 0.008, …, 005 | 1, 0, … 0]
z c
[0.001, 0.008, …, 005 ]
z
[0.001, 0.008, …, 005 ]
z
Ignore the additional latent code c
Cost function을 수정하여 c의 영향을 만듦.),(maxmin GDV
DG
(Mutual Information)
Introduction
2019-04-09
17
• InfoGAN - Latent Code
: Generator와 c 사이의 연관성을 cost로 정의 ),(;),(),(maxmin czGcIGDVGDVI
DG

Maximize
Hard to maximize directly as it requires access to the posterior )|( xcP
    )(||)|()(|log),,( )|( zpxzqKLzgxExL xzq 
 
),,(min xL 
Reconstruction Error Regularization
VAE Seminar (18.07.23)
Introduction
2019-04-09
18
• InfoGAN - Results
Introduction
2019-04-09
19
GAN
Concept
Performance
Manipulability
Stability
Concept
• GAN
Performance
• DCGAN, LSGAN
Stability
• DCGAN, LSGAN
Manipulability
• DCGAN, InfoGAN
II. LSGAN
LSGAN
Concept, Objective Function, Global Optimality, Parameter Selection, Results
LSGAN
2019-04-09
21
• Concept
D학습이 잘되었다
(=50:50)
학습이 잘되었다
(=Good representation)
G
Real
Fake
F5
R1
R2
R5
F1
F5
R1
F1
여전히 너무나도 가짜
같은 데이터가 존재
If 60:40 then stupid G
If 40:60 then stupid D
LSGAN
2019-04-09
22
• Concept
G
Real
Fake
F5
R1
R2
R5
F1
F5
R1
F1
경계 근처 ≈ Real? Fake?
Fake -> 경계 근처
F5
F1
훨씬 헷갈리는(Real에 가까운)
데이터 생성
LSGAN
2019-04-09
23
• Concept
LSGAN
• Objective function
2019-04-09
24
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata

Smart D
     2
)(~
2
~ ))((
2
1
)(
2
1
)(
azGDEbxDE zpxpx zxdata

     2
)(~
2
~ ))((
2
1
)(
2
1
)(
azGDEbxDE zpxpx zxdata
Real case
Fake case
1
0
(b=1), should be 0
(a=0), should be 0
Stupid D
D perspective,
it should be minimum.
     2
)(~
2
~ ))((
2
1
)(
2
1
)(
azGDEbxDE zpxpx zxdata

     2
)(~
2
~ ))((
2
1
)(
2
1
)(
azGDEbxDE zpxpx zxdata
Real case
Fake case
0 1
(b=1), should be 1
(a=0), should be 1
a : fake label.
b : real label.
c : G wants to make D believe for fake data
  2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

LSGAN
• Objective function
2019-04-09
25
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata

Generator
  2
~ ))((
2
1
)(
czGDE zzpz Smart G
Stupid G
1
(c=1), should be 0
(c=1), should be 1  2
~ ))((
2
1
)(
czGDE zzpz 
0
G perspective,
it should be minimum.
  2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

a : fake label.
b : real label.
c : G wants to make D believe for fake data
LSGAN
• Objective function
2019-04-09
26
a : fake label.
b : real label.
c : G wants to make D believe for fake data
조금 더 직관적으로 생각해보면,
D = Classifier
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata
   2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

Prediction - Label
LSGAN
2019-04-09
27
• Global Optimality – Vanilla GAN
LSGAN : 𝝌 𝑷𝒆𝒂𝒓𝒔𝒐𝒏
𝟐
를 통한 증명
Vanilla GAN : JSD를 통한 증명
LSGAN
2019-04-09
28
• Global Optimality – LSGAN
     2*
~
2*
~ )()()(2 cxDEcxDEGC gd pxpx 
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata

  2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

)()(
)()(
)(*
xpxp
xapxbp
xD
gdata
gdata











































2
~
2
~
)()(
)()(
)()(
)()(
c
xpxp
xapxbp
Ec
xpxp
xapxbp
E
gdata
gdata
px
gdata
gdata
px gd
  2
~ )(
2
1
)(
cxDE xdatapx  This term does not contain parameters of G
LSGAN
2019-04-09
29
• Global Optimality – LSGAN
22
)()(
)()()()(
)(
)()(
)()()()(
)(





















  xpxp
xpcaxpcb
xpdx
xpxp
xpcaxpcb
xp
gdata
gdata
x
g
gdata
gdata
x
data








































2
~
2
~
)()(
)()(
)()(
)()(
c
xpxp
xapxbp
Ec
xpxp
xapxbp
E
gdata
gdata
px
gdata
gdata
px gd
gdata
gdata
gdata
gdata
gdata
gdata
pp
xpcapcb
xpxp
xcpxcp
xpxp
xapxbp







 )()()(
)()(
)()(
)()(
)()(
 
 


x gdata
gdata
dx
xpxp
xpcaxpcb
)()(
)()()()(
2
  










x gdata
gdata
gdata dx
xpxp
xpcaxpcb
xpxp
2
)()(
)()()()(
)()(
  
 


x gdata
ggdata
dx
xpxp
xpabxpxpcb
)()(
)()()()()(
2
LSGAN
2019-04-09
30
• Global Optimality – LSGAN
  
 


x gdata
ggdata
dx
xpxp
xpabxpxpcb
)()(
)()()()()(
2
  dx
xpxp
xpxpxp
GC
x gdata
gdatag
 


)()(
))()(()(2
)(2
2
)2||(2
ggdataPearson ppp 
datag pp 
 
)(
)()(
2
2
xp
xpxq
Pearson


21  abandcbIf we set
If minimum
LSGAN
2019-04-09
31
• Parameters Selection
21  abandcb
01,1  candba
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata
   2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

     2
)(~
2
~ 1))((
2
1
1)(
2
1
)(min )(
 zGDExDEDV zpxpxLSGAN
D zxdata
i)
  2
~ ))((
2
1
)(min )(
zGDEGV zzpzLSGAN
G

bcandba  1,0
     2
)(~
2
~ 1))((
2
1
1)(
2
1
)(min )(
 zGDExDEDV zpxpxLSGAN
D zxdata
ii)
  2
~ ))((
2
1
)(min )(
zGDEGV zzpzLSGAN
G

->조건을 따르지 않는 경우
성능은 비슷하며, 큰 차이가 없음!
LSGAN
2019-04-09
32
• Results
LSGAN
2019-04-09
33
• Results
LSGAN
2019-04-09
34
• Results
Example of mode collapse
LSGAN
2019-04-09
35
• Results
III. Experiment
Experiment
Source Code, Celeb-A, Korean Idol
Experiment
• Source Code
2019-04-09
37
https://github.com/messy-snail/GAN_PyTorch
Experiment
• Celeb-A
2019-04-09
38
DCGAN LSGAN
ep=1
ep=2
ep=10
ep=16
Experiment
• Celeb-A(without BN)
2019-04-09
39
DCGAN LSGAN
ep=1
ep=2
ep=3
ep=5
Experiment
2019-04-09
40
• Korean Idol(DCGAN)
ep 1 ep 6
ep 51ep 21
ep 201ep 101
Experiment
2019-04-09
41
• Korean Idol(LSGAN)
ep 1 ep 6
ep 51ep 21
ep 201ep 101
Experiment
2019-04-09
42
• Gueess#1 Optimizer problem?
Experiment
2019-04-09
43
• Gueess#2 Domain problem?
Experiment
• Celeb-A
2019-04-09
44
https://www.slideshare.net/NaverEngineering/1-gangenerative-adversarial-network
“저자들이 source code를 공개했으면 한다.”
“같은 구조라면, LSGAN이 훨씬 잘 동작한다.”
IV. Summary
Summary
Summary, Future Work
Summary
2019-04-09
46
• 기존의 GAN보다 Real에 가까운 데이터를 생성하고, 안정성도 확보함.
• Pearson Chi square divergence으로 global optimality를 증명함. (기존 GAN은 JSD로 증명)
• 클래스가 많은 데이터에 대해서도 정상적으로 데이터를 생성함.
• 기존의 코드에서 단순히 loss만을 변경하기에 손쉽게 적용이 가능함.
GAN Research
Vanilla GAN
DCGAN
InfoGAN
LSGAN
BEGAN
Cycle GAN
Style GAN
SRGAN
Tools
Document
Programming
PyTorch
Python executable & UI
I Know What You Did
Last Faculty
C++ Coding Standard
Mathematical theory
LSM applications
Other Research
Level Processor
Ice Propagation
Future work
2019-04-09
47
&
Ad

More Related Content

What's hot (20)

ConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティスConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティス
Yusuke Uchida
 
A Walk in the GAN Zoo
A Walk in the GAN ZooA Walk in the GAN Zoo
A Walk in the GAN Zoo
Larry Guo
 
敵対的生成ネットワーク(GAN)
敵対的生成ネットワーク(GAN)敵対的生成ネットワーク(GAN)
敵対的生成ネットワーク(GAN)
cvpaper. challenge
 
Objects as points (CenterNet) review [CDM]
Objects as points (CenterNet) review [CDM]Objects as points (CenterNet) review [CDM]
Objects as points (CenterNet) review [CDM]
Dongmin Choi
 
[부스트캠프 Tech Talk] 신원지_Wandb Visualization
[부스트캠프 Tech Talk] 신원지_Wandb Visualization[부스트캠프 Tech Talk] 신원지_Wandb Visualization
[부스트캠프 Tech Talk] 신원지_Wandb Visualization
CONNECT FOUNDATION
 
Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)
Hwa Pyung Kim
 
【DL輪読会】Language Conditioned Imitation Learning over Unstructured Data
【DL輪読会】Language Conditioned Imitation Learning over Unstructured Data【DL輪読会】Language Conditioned Imitation Learning over Unstructured Data
【DL輪読会】Language Conditioned Imitation Learning over Unstructured Data
Deep Learning JP
 
[DL輪読会] off-policyなメタ強化学習
[DL輪読会] off-policyなメタ強化学習[DL輪読会] off-policyなメタ強化学習
[DL輪読会] off-policyなメタ強化学習
Deep Learning JP
 
Semantic segmentation
Semantic segmentationSemantic segmentation
Semantic segmentation
Takuya Minagawa
 
階層的クラスタリング入門の入門
階層的クラスタリング入門の入門階層的クラスタリング入門の入門
階層的クラスタリング入門の入門
Mas Kot
 
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
NAVER Engineering
 
統計的学習手法による人検出
統計的学習手法による人検出統計的学習手法による人検出
統計的学習手法による人検出
MPRG_Chubu_University
 
[PR12] intro. to gans jaejun yoo
[PR12] intro. to gans   jaejun yoo[PR12] intro. to gans   jaejun yoo
[PR12] intro. to gans jaejun yoo
JaeJun Yoo
 
MS COCO Dataset Introduction
MS COCO Dataset IntroductionMS COCO Dataset Introduction
MS COCO Dataset Introduction
Shinagawa Seitaro
 
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...
harmonylab
 
08_게임 물리 프로그래밍 가이드
08_게임 물리 프로그래밍 가이드08_게임 물리 프로그래밍 가이드
08_게임 물리 프로그래밍 가이드
noerror
 
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
Masaya Kaneko
 
物体検知(Meta Study Group 発表資料)
物体検知(Meta Study Group 発表資料)物体検知(Meta Study Group 発表資料)
物体検知(Meta Study Group 発表資料)
cvpaper. challenge
 
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
Taehoon Kim
 
最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介
ぱんいち すみもと
 
ConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティスConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティス
Yusuke Uchida
 
A Walk in the GAN Zoo
A Walk in the GAN ZooA Walk in the GAN Zoo
A Walk in the GAN Zoo
Larry Guo
 
敵対的生成ネットワーク(GAN)
敵対的生成ネットワーク(GAN)敵対的生成ネットワーク(GAN)
敵対的生成ネットワーク(GAN)
cvpaper. challenge
 
Objects as points (CenterNet) review [CDM]
Objects as points (CenterNet) review [CDM]Objects as points (CenterNet) review [CDM]
Objects as points (CenterNet) review [CDM]
Dongmin Choi
 
[부스트캠프 Tech Talk] 신원지_Wandb Visualization
[부스트캠프 Tech Talk] 신원지_Wandb Visualization[부스트캠프 Tech Talk] 신원지_Wandb Visualization
[부스트캠프 Tech Talk] 신원지_Wandb Visualization
CONNECT FOUNDATION
 
Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)
Hwa Pyung Kim
 
【DL輪読会】Language Conditioned Imitation Learning over Unstructured Data
【DL輪読会】Language Conditioned Imitation Learning over Unstructured Data【DL輪読会】Language Conditioned Imitation Learning over Unstructured Data
【DL輪読会】Language Conditioned Imitation Learning over Unstructured Data
Deep Learning JP
 
[DL輪読会] off-policyなメタ強化学習
[DL輪読会] off-policyなメタ強化学習[DL輪読会] off-policyなメタ強化学習
[DL輪読会] off-policyなメタ強化学習
Deep Learning JP
 
階層的クラスタリング入門の入門
階層的クラスタリング入門の入門階層的クラスタリング入門の入門
階層的クラスタリング入門の入門
Mas Kot
 
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
NAVER Engineering
 
統計的学習手法による人検出
統計的学習手法による人検出統計的学習手法による人検出
統計的学習手法による人検出
MPRG_Chubu_University
 
[PR12] intro. to gans jaejun yoo
[PR12] intro. to gans   jaejun yoo[PR12] intro. to gans   jaejun yoo
[PR12] intro. to gans jaejun yoo
JaeJun Yoo
 
MS COCO Dataset Introduction
MS COCO Dataset IntroductionMS COCO Dataset Introduction
MS COCO Dataset Introduction
Shinagawa Seitaro
 
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...
harmonylab
 
08_게임 물리 프로그래밍 가이드
08_게임 물리 프로그래밍 가이드08_게임 물리 프로그래밍 가이드
08_게임 물리 프로그래밍 가이드
noerror
 
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
Masaya Kaneko
 
物体検知(Meta Study Group 発表資料)
物体検知(Meta Study Group 発表資料)物体検知(Meta Study Group 発表資料)
物体検知(Meta Study Group 発表資料)
cvpaper. challenge
 
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
Taehoon Kim
 
最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介最近(2020/09/13)のarxivの分布外検知の論文を紹介
最近(2020/09/13)のarxivの分布外検知の論文を紹介
ぱんいち すみもと
 

Similar to LSGAN - SIMPle(Simple Idea Meaningful Performance Level up) (20)

Introduction of DiscoGAN
Introduction of DiscoGANIntroduction of DiscoGAN
Introduction of DiscoGAN
Seongcheol Baek
 
From Flat to Stacked - Alicia C Newberry - City of Milton
From Flat to Stacked - Alicia C Newberry - City of MiltonFrom Flat to Stacked - Alicia C Newberry - City of Milton
From Flat to Stacked - Alicia C Newberry - City of Milton
Alicia Newberry
 
eel6935_ch2.pdf
eel6935_ch2.pdfeel6935_ch2.pdf
eel6935_ch2.pdf
Sambasiva62
 
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
Masayuki Matsushita
 
Spark Streaming Tips for Devs and Ops by Fran perez y federico fernández
Spark Streaming Tips for Devs and Ops by Fran perez y federico fernándezSpark Streaming Tips for Devs and Ops by Fran perez y federico fernández
Spark Streaming Tips for Devs and Ops by Fran perez y federico fernández
J On The Beach
 
Spark Streaming Tips for Devs and Ops
Spark Streaming Tips for Devs and OpsSpark Streaming Tips for Devs and Ops
Spark Streaming Tips for Devs and Ops
Francisco Pérez Paradas
 
Displaying Animated Images on GLCD display with LPC2148 Microcontroller
Displaying Animated Images on GLCD display with LPC2148 MicrocontrollerDisplaying Animated Images on GLCD display with LPC2148 Microcontroller
Displaying Animated Images on GLCD display with LPC2148 Microcontroller
Omkar Rane
 
LalitBDA2015V3
LalitBDA2015V3LalitBDA2015V3
LalitBDA2015V3
Lalit Kumar
 
[系列活動] Data exploration with modern R
[系列活動] Data exploration with modern R[系列活動] Data exploration with modern R
[系列活動] Data exploration with modern R
台灣資料科學年會
 
OpenGL L02-Transformations
OpenGL L02-TransformationsOpenGL L02-Transformations
OpenGL L02-Transformations
Mohammad Shaker
 
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
Amazon Web Services Korea
 
[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan
[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan
[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan
CODE BLUE
 
“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...
“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...
“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...
Edge AI and Vision Alliance
 
Image-to-Image Translation
Image-to-Image TranslationImage-to-Image Translation
Image-to-Image Translation
Junho Kim
 
A 3D printing programming API
A 3D printing programming APIA 3D printing programming API
A 3D printing programming API
Max Kleiner
 
VitaFlow | Mageswaran Dhandapani [Pramati]
VitaFlow | Mageswaran Dhandapani [Pramati]VitaFlow | Mageswaran Dhandapani [Pramati]
VitaFlow | Mageswaran Dhandapani [Pramati]
Pramati Technologies
 
JAWS DAYS 2018
JAWS DAYS 2018JAWS DAYS 2018
JAWS DAYS 2018
Itaru Ogawa
 
Embedded systems
Embedded systemsEmbedded systems
Embedded systems
Abhishek Gupta
 
201707 SER332 Lecture 07
201707 SER332 Lecture 07   201707 SER332 Lecture 07
201707 SER332 Lecture 07
Javier Gonzalez-Sanchez
 
Вивисекция: анатомия ботнета из маршрутизаторов
Вивисекция: анатомия ботнета из маршрутизаторовВивисекция: анатомия ботнета из маршрутизаторов
Вивисекция: анатомия ботнета из маршрутизаторов
Positive Hack Days
 
Introduction of DiscoGAN
Introduction of DiscoGANIntroduction of DiscoGAN
Introduction of DiscoGAN
Seongcheol Baek
 
From Flat to Stacked - Alicia C Newberry - City of Milton
From Flat to Stacked - Alicia C Newberry - City of MiltonFrom Flat to Stacked - Alicia C Newberry - City of Milton
From Flat to Stacked - Alicia C Newberry - City of Milton
Alicia Newberry
 
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
Masayuki Matsushita
 
Spark Streaming Tips for Devs and Ops by Fran perez y federico fernández
Spark Streaming Tips for Devs and Ops by Fran perez y federico fernándezSpark Streaming Tips for Devs and Ops by Fran perez y federico fernández
Spark Streaming Tips for Devs and Ops by Fran perez y federico fernández
J On The Beach
 
Displaying Animated Images on GLCD display with LPC2148 Microcontroller
Displaying Animated Images on GLCD display with LPC2148 MicrocontrollerDisplaying Animated Images on GLCD display with LPC2148 Microcontroller
Displaying Animated Images on GLCD display with LPC2148 Microcontroller
Omkar Rane
 
[系列活動] Data exploration with modern R
[系列活動] Data exploration with modern R[系列活動] Data exploration with modern R
[系列活動] Data exploration with modern R
台灣資料科學年會
 
OpenGL L02-Transformations
OpenGL L02-TransformationsOpenGL L02-Transformations
OpenGL L02-Transformations
Mohammad Shaker
 
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
Amazon Web Services Korea
 
[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan
[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan
[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan
CODE BLUE
 
“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...
“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...
“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...
Edge AI and Vision Alliance
 
Image-to-Image Translation
Image-to-Image TranslationImage-to-Image Translation
Image-to-Image Translation
Junho Kim
 
A 3D printing programming API
A 3D printing programming APIA 3D printing programming API
A 3D printing programming API
Max Kleiner
 
VitaFlow | Mageswaran Dhandapani [Pramati]
VitaFlow | Mageswaran Dhandapani [Pramati]VitaFlow | Mageswaran Dhandapani [Pramati]
VitaFlow | Mageswaran Dhandapani [Pramati]
Pramati Technologies
 
Вивисекция: анатомия ботнета из маршрутизаторов
Вивисекция: анатомия ботнета из маршрутизаторовВивисекция: анатомия ботнета из маршрутизаторов
Вивисекция: анатомия ботнета из маршрутизаторов
Positive Hack Days
 
Ad

More from Hansol Kang (20)

이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
Hansol Kang
 
Support Vector Machine - 기본 이해와 OpenCV 실습.pdf
Support Vector Machine - 기본 이해와 OpenCV 실습.pdfSupport Vector Machine - 기본 이해와 OpenCV 실습.pdf
Support Vector Machine - 기본 이해와 OpenCV 실습.pdf
Hansol Kang
 
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
Hansol Kang
 
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
Hansol Kang
 
알아두면 쓸모있는 깃허브 2
알아두면 쓸모있는 깃허브 2알아두면 쓸모있는 깃허브 2
알아두면 쓸모있는 깃허브 2
Hansol Kang
 
알아두면 쓸모있는 깃허브 1
알아두면 쓸모있는 깃허브 1알아두면 쓸모있는 깃허브 1
알아두면 쓸모있는 깃허브 1
Hansol Kang
 
FPN 리뷰
FPN 리뷰FPN 리뷰
FPN 리뷰
Hansol Kang
 
R-FCN 리뷰
R-FCN 리뷰R-FCN 리뷰
R-FCN 리뷰
Hansol Kang
 
basic of deep learning
basic of deep learningbasic of deep learning
basic of deep learning
Hansol Kang
 
파이썬 제대로 활용하기
파이썬 제대로 활용하기파이썬 제대로 활용하기
파이썬 제대로 활용하기
Hansol Kang
 
모던 C++ 정리
모던 C++ 정리모던 C++ 정리
모던 C++ 정리
Hansol Kang
 
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
Hansol Kang
 
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
Hansol Kang
 
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
Hansol Kang
 
PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)
Hansol Kang
 
Deep Convolutional GANs - meaning of latent space
Deep Convolutional GANs - meaning of latent spaceDeep Convolutional GANs - meaning of latent space
Deep Convolutional GANs - meaning of latent space
Hansol Kang
 
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
Hansol Kang
 
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
Hansol Kang
 
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
Hansol Kang
 
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
Hansol Kang
 
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
Hansol Kang
 
Support Vector Machine - 기본 이해와 OpenCV 실습.pdf
Support Vector Machine - 기본 이해와 OpenCV 실습.pdfSupport Vector Machine - 기본 이해와 OpenCV 실습.pdf
Support Vector Machine - 기본 이해와 OpenCV 실습.pdf
Hansol Kang
 
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
Hansol Kang
 
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
Hansol Kang
 
알아두면 쓸모있는 깃허브 2
알아두면 쓸모있는 깃허브 2알아두면 쓸모있는 깃허브 2
알아두면 쓸모있는 깃허브 2
Hansol Kang
 
알아두면 쓸모있는 깃허브 1
알아두면 쓸모있는 깃허브 1알아두면 쓸모있는 깃허브 1
알아두면 쓸모있는 깃허브 1
Hansol Kang
 
basic of deep learning
basic of deep learningbasic of deep learning
basic of deep learning
Hansol Kang
 
파이썬 제대로 활용하기
파이썬 제대로 활용하기파이썬 제대로 활용하기
파이썬 제대로 활용하기
Hansol Kang
 
모던 C++ 정리
모던 C++ 정리모던 C++ 정리
모던 C++ 정리
Hansol Kang
 
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
Hansol Kang
 
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
Hansol Kang
 
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
Hansol Kang
 
PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)
Hansol Kang
 
Deep Convolutional GANs - meaning of latent space
Deep Convolutional GANs - meaning of latent spaceDeep Convolutional GANs - meaning of latent space
Deep Convolutional GANs - meaning of latent space
Hansol Kang
 
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
Hansol Kang
 
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
Hansol Kang
 
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
Hansol Kang
 
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
Hansol Kang
 
Ad

Recently uploaded (20)

Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 

LSGAN - SIMPle(Simple Idea Meaningful Performance Level up)