SlideShare a Scribd company logo
プログラミング輪講
   機械学習

  @pika_shi
機械学習とは

l  ⼈人間が⾏行行うパターン認識則や経験則
    を,コンピュータで実現させる

l  サンプルデータ集合を対象に解析を
    ⾏行行い,そのデータから有⽤用な規則,
    ルールを抽出する




                          2
検索エンジンとの関係
l  ランキングの改良
  (例)どのページがユーザにとって好ましいかを,過去のクリックの履
     歴により分析


       Webページ
                     問い合わせ          クエリ
                              検索
                             エンジン
                                    クリック
  索引            DB
                             フィード
PageRank                      バック


                       ランキングされた検索結果



                                       3
機械学習の例
l  教師あり学習          l  教師なし学習


  決定⽊木
         ナイーブ・ベイズ     K-means

      SVM                    主成分分析


 パーセプトロン              強化学習




                                     4
SVM
SVMとは?
l  現在最も識別性能の⾼高い分類器の1つ
l  ⾼高次元でもうまく分類できるので,複雑な問題に適⽤用され
    ることが多い
  l  顔の表情の分類
  l  ⼿手書き⽂文字認識
  l  地震による被害規模の予測
  l  僕の研究
l  Pythonのライブラリ
  l  LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  l  SVM-Light http://svmlight.joachims.org/




                                                     6
SVMの学習
l  マージン最⼤大化により識別線を決定




                        7
カーネルトリック
l  訓練データを⾼高次元空間に写像し、その写像された空間上
    で線形分離を⾏行行う




                             8
LIBSVMを使う
>> from svm import *
>> from svmutil import *
>>
>> # 訓練データ
>> problem = svm_problem([1,-1], [[0,0], [1,1]])
>> # パラメータの設定 (カーネルの種類など)
>> # 多クラスSVMや,クロスバリデーションなども引数で設定可能
>> prameter = svm_parameter(‘-t 2 –h 0’)
>> # 訓練
>> m = svm_train(problem, parameter)
>> # 予測
>> predict = svm_predict([1,-1], [[-1, 0],[3, 3]], m)
>> predict[0]
[1.0, -1.0]




                                                        9
パーセプトロン
パーセプトロンとは?
l  ⼈人間の視覚・脳の機能をモデル化した分類器




                            11
パーセプトロンの学習能⼒力力
l  パーセプトロンは⾮非線形分離が不可能
    l AND,OR,XORのうち不可能なのは?



                        多層パーセプトロン
                            なら可能!




                               12
多層パーセプトロン
l  中間層(隠れ層)をもち,⾮非線形分離も可能に




                             13
バックプロパゲーション(誤差逆伝播法)
l  分類器の精度をより⾼高めるために,出⼒力力結果から重みを調
    整していく

l  ネットワーク内の重みを調整しながら,後ろに伝わってい
    く

l  今回の課題で実装してもらいます(クリックデータの学習)




                               14
過学習
l  学習しすぎて,逆に学習能⼒力力が低下
 l  中間層を多くしすぎた時などに⽣生じる




                          15
SVMとの⽐比較
l  パーセプトロンとSVMはどっちが汎化能⼒力力が⾼高い?




                                  16
決定⽊木
決定⽊木
l  意思決定を⾏行行うための学習モデル                        学年
                                       B4          M1
                                             B5
 学年   ⾃自宅 or 下宿   早起き     ソフト
                                  ⾃自宅or下宿    ⾏行行く ⾃自宅or下宿
 B4     下宿        得意      ⾏行行く
 B4     下宿        苦⼿手     ⾏行行く    下宿   ⾃自宅        下宿         ⾃自宅

 B4     ⾃自宅       苦⼿手    ⾏行行かない   ⾏行行く ⾏行行かない     ⾏行行く ⾏行行かない
 B5     下宿        苦⼿手     ⾏行行く
 M1     下宿        得意      ⾏行行く              ⾃自宅or下宿
 M1     ⾃自宅       得意     ⾏行行かない             下宿    ⾃自宅

                                            ⾏行行く ⾏行行かない




                                                        18
決定⽊木とは?
l  どっちの決定⽊木がよい?

                               学年
    ⾃自宅or下宿              B4          M1
                               B5
   下宿    ⾃自宅
                    ⾃自宅or下宿    ⾏行行く ⾃自宅or下宿
    ⾏行行く ⾏行行かない
                   下宿    ⾃自宅        下宿    ⾃自宅
  簡単なものほどよい         ⾏行行く ⾏行行かない     ⾏行行く ⾏行行かない
   (オッカムの剃⼑刀)


l  情報理論(エントロピー),ジニ係数などを⽤用いて簡単な決
    定⽊木を求めることができる


                                                  19
決定⽊木のライブラリ
l  Pythonのライブラリ
  l  scikit-learn
      http://scikit-learn.sourceforge.net/dev/modules/
      tree.html


l  多クラス分類はSVMより決定⽊木の⽅方がうまくいくことが多
    い
  l  逆に2クラス分類はやはりSVMには精度は及ばない




                                                    20
scikit-learnを使う
>> from sklearn import tree
>>
>> # 訓練データ
>> samples = [[0, 0], [1, 1]]
>> # クラス
>> values = [0, 1]
>> # 訓練
>> clf = tree.DecisionTreeClassifier()
>> clf = clf.fit(samples, values)
>> # 予測
>> clf.predict([2, 2])
array([1])




                                         21
ナイーブ・ベイズ
ナイーブ・ベイズとは?
l  確率モデルに基づいた分類器
 l  ⽂文書分類,診断などに⽤用いられることが多い

  通常メール          スパムメール

   飲み会              当選
          旅⾏行行         おめでとう
                 出会い

l  次のメールはスパム?
  l  最近出会いがなくて寂しい.誰か飲み会開いて!
  l  出会いがなくて寂しいそこのあなた!このサイトに登録すればモテ
      モテですよ.



                                 23
その他
l  不均衡データ問題 (imbalanced data)
  l  識別器の訓練データに⼤大きなクラスの偏りがある場合,⼤大きいクラ
      スに流されてしまう
  l  対策としては,⼤大きい⽅方のクラスサイズを⼩小さい⽅方に合わせる,ま
      たはその逆が⼀一般的


l  アンサンブル学習 (ensemble learning)
  l  識別器を複数組み合わせて,⾼高精度の識別器を作成
  l  うまく作成できれば,識別器の能⼒力力を120%引き出すことができる




                                     24
課題
Ad

More Related Content

What's hot (20)

人工知能の概論の概論と セキュリティへの応用(的な~(改)
人工知能の概論の概論とセキュリティへの応用(的な~(改)人工知能の概論の概論とセキュリティへの応用(的な~(改)
人工知能の概論の概論と セキュリティへの応用(的な~(改)
Typhon 666
 
ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33
horihorio
 
Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
Ken Morishita
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた
卓也 安東
 
TensorFlowとは? ディープラーニング (深層学習) とは?
TensorFlowとは? ディープラーニング (深層学習) とは?TensorFlowとは? ディープラーニング (深層学習) とは?
TensorFlowとは? ディープラーニング (深層学習) とは?
KSK Analytics Inc.
 
Jubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCTJubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCT
Yuya Unno
 
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォームJubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Preferred Networks
 
Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習
Preferred Networks
 
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Yuya Unno
 
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Yuya Unno
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
Akira Masuda
 
機械学習CROSS 前半資料
機械学習CROSS 前半資料機械学習CROSS 前半資料
機械学習CROSS 前半資料
Shohei Hido
 
開発者からみたTensor flow
開発者からみたTensor flow開発者からみたTensor flow
開発者からみたTensor flow
Hideo Kinami
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
Yuta Kikuchi
 
予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル
Yuya Unno
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
Shohei Hido
 
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
Takashi J OZAKI
 
いまさら聞けない機械学習の評価指標
いまさら聞けない機械学習の評価指標いまさら聞けない機械学習の評価指標
いまさら聞けない機械学習の評価指標
圭輔 大曽根
 
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Hisao Soyama
 
情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜
Yuya Unno
 
人工知能の概論の概論と セキュリティへの応用(的な~(改)
人工知能の概論の概論とセキュリティへの応用(的な~(改)人工知能の概論の概論とセキュリティへの応用(的な~(改)
人工知能の概論の概論と セキュリティへの応用(的な~(改)
Typhon 666
 
ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33
horihorio
 
Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
Ken Morishita
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた
卓也 安東
 
TensorFlowとは? ディープラーニング (深層学習) とは?
TensorFlowとは? ディープラーニング (深層学習) とは?TensorFlowとは? ディープラーニング (深層学習) とは?
TensorFlowとは? ディープラーニング (深層学習) とは?
KSK Analytics Inc.
 
Jubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCTJubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCT
Yuya Unno
 
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォームJubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Preferred Networks
 
Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習Jubatusにおける大規模分散オンライン機械学習
Jubatusにおける大規模分散オンライン機械学習
Preferred Networks
 
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Yuya Unno
 
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Yuya Unno
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
Akira Masuda
 
機械学習CROSS 前半資料
機械学習CROSS 前半資料機械学習CROSS 前半資料
機械学習CROSS 前半資料
Shohei Hido
 
開発者からみたTensor flow
開発者からみたTensor flow開発者からみたTensor flow
開発者からみたTensor flow
Hideo Kinami
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
Yuta Kikuchi
 
予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル
Yuya Unno
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
Shohei Hido
 
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
Takashi J OZAKI
 
いまさら聞けない機械学習の評価指標
いまさら聞けない機械学習の評価指標いまさら聞けない機械学習の評価指標
いまさら聞けない機械学習の評価指標
圭輔 大曽根
 
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Hisao Soyama
 
情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜
Yuya Unno
 

Similar to 機械学習 (20)

はじパタLT2
はじパタLT2はじパタLT2
はじパタLT2
Tadayuki Onishi
 
2014/5/29 東大相澤山崎研勉強会:パターン認識とニューラルネットワーク,Deep Learningまで
2014/5/29 東大相澤山崎研勉強会:パターン認識とニューラルネットワーク,Deep Learningまで2014/5/29 東大相澤山崎研勉強会:パターン認識とニューラルネットワーク,Deep Learningまで
2014/5/29 東大相澤山崎研勉強会:パターン認識とニューラルネットワーク,Deep Learningまで
Hokuto Kagaya
 
エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎
Daiyu Hatakeyama
 
修士論文発表:「非負値行列分解における漸近的Bayes汎化誤差」
修士論文発表:「非負値行列分解における漸近的Bayes汎化誤差」修士論文発表:「非負値行列分解における漸近的Bayes汎化誤差」
修士論文発表:「非負値行列分解における漸近的Bayes汎化誤差」
Naoki Hayashi
 
Nips20180127
Nips20180127Nips20180127
Nips20180127
WEBFARMER. ltd.
 
深層学習 - 画像認識のための深層学習 ②
深層学習 - 画像認識のための深層学習 ②深層学習 - 画像認識のための深層学習 ②
深層学習 - 画像認識のための深層学習 ②
Shohei Miyashita
 
Jubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニングJubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニング
Yuya Unno
 
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
Deep Learning JP
 
20180830 implement dqn_platinum_data_meetup_vol1
20180830 implement dqn_platinum_data_meetup_vol120180830 implement dqn_platinum_data_meetup_vol1
20180830 implement dqn_platinum_data_meetup_vol1
Keisuke Nakata
 
深層学習 - 画像認識のための深層学習 ①
深層学習 - 画像認識のための深層学習 ①深層学習 - 画像認識のための深層学習 ①
深層学習 - 画像認識のための深層学習 ①
Shohei Miyashita
 
ノンパラベイズ入門の入門
ノンパラベイズ入門の入門ノンパラベイズ入門の入門
ノンパラベイズ入門の入門
Shuyo Nakatani
 
Deep learningbook chap7
Deep learningbook chap7Deep learningbook chap7
Deep learningbook chap7
Shinsaku Kono
 
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
Yoshitaka Ushiku
 
分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用
y-uti
 
数式を使わない機械学習超入門 〜Support Vector Machine 解説編〜
数式を使わない機械学習超入門 〜Support Vector Machine 解説編〜数式を使わない機械学習超入門 〜Support Vector Machine 解説編〜
数式を使わない機械学習超入門 〜Support Vector Machine 解説編〜
Shu Sakamoto
 
言語資源と付き合う
言語資源と付き合う言語資源と付き合う
言語資源と付き合う
Yuya Unno
 
順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング
. .
 
Deep Learningの基礎と応用
Deep Learningの基礎と応用Deep Learningの基礎と応用
Deep Learningの基礎と応用
Seiya Tokui
 
2014/5/29 東大相澤山崎研勉強会:パターン認識とニューラルネットワーク,Deep Learningまで
2014/5/29 東大相澤山崎研勉強会:パターン認識とニューラルネットワーク,Deep Learningまで2014/5/29 東大相澤山崎研勉強会:パターン認識とニューラルネットワーク,Deep Learningまで
2014/5/29 東大相澤山崎研勉強会:パターン認識とニューラルネットワーク,Deep Learningまで
Hokuto Kagaya
 
エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎
Daiyu Hatakeyama
 
修士論文発表:「非負値行列分解における漸近的Bayes汎化誤差」
修士論文発表:「非負値行列分解における漸近的Bayes汎化誤差」修士論文発表:「非負値行列分解における漸近的Bayes汎化誤差」
修士論文発表:「非負値行列分解における漸近的Bayes汎化誤差」
Naoki Hayashi
 
深層学習 - 画像認識のための深層学習 ②
深層学習 - 画像認識のための深層学習 ②深層学習 - 画像認識のための深層学習 ②
深層学習 - 画像認識のための深層学習 ②
Shohei Miyashita
 
Jubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニングJubatusの紹介@第6回さくさくテキストマイニング
Jubatusの紹介@第6回さくさくテキストマイニング
Yuya Unno
 
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
[DL輪読会]10分で10本の論⽂をざっくりと理解する (ICML2020)
Deep Learning JP
 
20180830 implement dqn_platinum_data_meetup_vol1
20180830 implement dqn_platinum_data_meetup_vol120180830 implement dqn_platinum_data_meetup_vol1
20180830 implement dqn_platinum_data_meetup_vol1
Keisuke Nakata
 
深層学習 - 画像認識のための深層学習 ①
深層学習 - 画像認識のための深層学習 ①深層学習 - 画像認識のための深層学習 ①
深層学習 - 画像認識のための深層学習 ①
Shohei Miyashita
 
ノンパラベイズ入門の入門
ノンパラベイズ入門の入門ノンパラベイズ入門の入門
ノンパラベイズ入門の入門
Shuyo Nakatani
 
Deep learningbook chap7
Deep learningbook chap7Deep learningbook chap7
Deep learningbook chap7
Shinsaku Kono
 
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vi...
Yoshitaka Ushiku
 
分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用
y-uti
 
数式を使わない機械学習超入門 〜Support Vector Machine 解説編〜
数式を使わない機械学習超入門 〜Support Vector Machine 解説編〜数式を使わない機械学習超入門 〜Support Vector Machine 解説編〜
数式を使わない機械学習超入門 〜Support Vector Machine 解説編〜
Shu Sakamoto
 
言語資源と付き合う
言語資源と付き合う言語資源と付き合う
言語資源と付き合う
Yuya Unno
 
順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング
. .
 
Deep Learningの基礎と応用
Deep Learningの基礎と応用Deep Learningの基礎と応用
Deep Learningの基礎と応用
Seiya Tokui
 
Ad

機械学習