SlideShare a Scribd company logo
Making the case for write-optimized
database algorithms
Mark Callaghan
Member of Technical Staff, Facebook
RocksDB
• Embedded key-value storage engine
MyRocks
• RocksDB storage engine for MySQL
• coming to Percona Server and MariaDB Server
MongoRocks
• RocksDB storage engine for MongoDB
• In Percona Server today
RocksDB, MyRocks & MongoRocks
• Good read efficiency
• Better write efficiency
• Best space efficiency
RocksDB, MyRocks & MongoRocks
• Use less SSD
• Use lower endurance SSD
In some cases, better read efficiency is possible
Efficient performance is the goal
Benchmarketing?
Sysbench read-write, in-memory
0
50000
100000
150000
200000
1 2 4 8 16 24 32 40 48 64 80 96 128
MyRocks InnoDB
Better is not just about throughput
tpmC
iostat
rKB/t
iostat
wKB/t
vmstat
CPU/t
Size

(GB)
p99
response
(ms)
MyRocks
+zlib
95680 2.19 2.02 528 82 29.9
InnoDB 91981 2.67 7.49 400 222 18.4
tpcc-mysql, 1000 warehouses, IO-bound
• QPS - average throughput
• QoS - worst case throughput
• Efficiency - hardware per query
Peak performance is overrated
Performance
Performance & Efficiency
Meet performance goals
Then optimize for efficiency
RUM or RWS?
• RUM = Read, Update, Memory
• RWS = Read, Write, Space
Efficiency
• Synonym for amplification
• Related to, but not equivalent to, performance.
An algorithm can’t be optimal for all of read, write & space amplification
• See Designing Access Methods: The RUM Conjecture
• daslab.seas.harvard.edu/rum-conjecture
RUM Conjecture
For any useful database algorithm there exists another
useful algorithm that has better read, write or space
amplification.
Define: optimal
Read, Write
• physical work per logical request
Space
• sizeof(database files) / sizeof(data)
Define: amplification
Storage
• random operations
• bytes read
• bytes written
Define: work
CPU
• blocks (un)compressed
• memory/cache operations
• hash searches
• key comparisons
• CPU seconds
Basic operations:
• point read
• range read
• put
• delete
Complex operations:
• query
• transaction
Define: operation
Update is one of:
• put
• point read, put
• point read, delete, put
Everything is relative
tpmC
iostat
rKB/t
iostat
wKB/t
vmstat
CPU/t
Size

(GB)
MyRocks+zlib 95680 2.19 2.02 528 82
InnoDB 91981 2.67 7.49 400 222
InnoDB/
MyRocks
0.96 1.22 3.71 0.76 2.71
tpcc-mysql, 1000 warehouses, IO-bound
Efficiency: B-Tree
Example: InnoDB
Read
• logN key compares
Write
• sizeof(page) / sizeof(row)
Space
• 1.5X if leaf pages are 2/3 full
Update-in-Place B-Tree
• InnoDB
Copy-on-Write B-Tree
• WiredTiger
• LMDB
Efficiency: leveled LSM
Example: RocksDB, Cassandra

Read
• logN + log(N/10) + log(N/100) + log(N/1000) key compares
• point reads can use bloom filter
Write
• rewrite previously written rows
• worse than size-tiered LSM, better than B-Tree
Space
• 1.1X
Efficiency: size-tiered LSM
Example: RocksDB, Cassandra, HBase
Read
• more than leveled LSM
• point reads can use bloom filter
Write
• rewrite previously written rows
• better than leveled LSM, better than B-Tree
Space
• ~2X, worse than leveled LSM
Efficiency: summary
Read Write Space
B-Tree best good
leveled LSM good for point good best
size-tiered LSM best
Theory meets practice
Access distribution
• LSM benefits from skew
Cache
• B-Tree - prefer to have index in cache
• LSM - prefer to have all but largest level in cache

IO costs are hard to predict
Linkbench, IO-bound
TPS
iostat
r/t
iostat
wKB/t
CPU
usecs/t
Size

(GB)
p99
update (ms)
MyRocks+zlib 28965 1.03 1.25 999 374 1
InnoDB 21474 1.16 19.70 914 14xx 6
InnoDB+zlib 20734 1.07 14.59 1199 880 6
MyRocks: best throughput & QoS, most efficient
Space efficiency
• Fragmentation
• Fixed page size
• More per-row metadata
• No prefix encoding (InnoDB)
Why did RocksDB beat a B-Tree?
Write efficiency
• Uses more space = more data to write
• Working set larger than cache
• sizeof(page) / sizeof(row)
• Double write buffer (InnoDB)
Page size & write amplification
Page size TPS
iostat
wKB/t
MyRocks+zlib 16kb 28965 1.25
InnoDB 4kb 24845 6.13
InnoDB 8kb 24352 10.52
InnoDB 16kb 21414 19.70
Advantage B-Tree
• Fewer key comparisons
• Less IO for range queries
Read efficiency: B-Tree vs LSM?
Advantage LSM
• Uses less space = more data in cache
• Prefix key encoding when uncompressed
• Efficient writes saves IO for reads
• Read-free index maintenance
• Bloom filter
Performance is complex
Save on writes, spend more on reads
MyRocks
zlib
TPS
InnoDB
TPS
Ratio

(MyRocks / InnoDB)
Disk array 2195 414 5.3
Slow SSD 23484 10143 2.3
Fast SSD 28965 21414 1.4
Read versus Write efficiency
• Indexes - more & wider
Read versus Space efficiency
• Bloom filters
• Compression
• Indexes
Write versus Space efficiency
• RocksDB fanout
• Size-tiered vs leveled
• GC & defragmentation frequency
Trading between R, W and S efficiency
Write versus space amplification
Space vs write amplification for a log-based algorithm
WriteAmplification
0
2.5
5
7.5
10
Space Amplification
1.11 1.25 1.33 1.67 2
• space amplification = 100 / %full
• write amplification = 100 / (100 - %full)
One size doesn’t fit all
• B-Tree + LSM sharing one redo log
Adaptive algorithms
• DBA sets high-level goals
• Algorithm adapts to achieve them
More open source
• MyRocks in MariaDB Server & Percona Server
• MongoRocks in Percona Server
• More features in RocksDB
What comes next?
More performance results are
coming
• YCSB
• sysbench
• time series
• bulk load
• tpcc-mysql
rocksdb.org
mongorocks.org
github.com/facebook/mysql-5.6
Thank you
smalldatum.blogspot.com
twitter.com/markcallaghan
Ad

More Related Content

What's hot (19)

Алексей Лесовский "Тюнинг Linux для баз данных. "
Алексей Лесовский "Тюнинг Linux для баз данных. "Алексей Лесовский "Тюнинг Linux для баз данных. "
Алексей Лесовский "Тюнинг Linux для баз данных. "
Tanya Denisyuk
 
My Sql Performance In A Cloud
My Sql Performance In A CloudMy Sql Performance In A Cloud
My Sql Performance In A Cloud
Sky Jian
 
Scylla Summit 2018: In-Memory Scylla - When Fast Storage is Not Fast Enough
Scylla Summit 2018: In-Memory Scylla - When Fast Storage is Not Fast EnoughScylla Summit 2018: In-Memory Scylla - When Fast Storage is Not Fast Enough
Scylla Summit 2018: In-Memory Scylla - When Fast Storage is Not Fast Enough
ScyllaDB
 
High Performance Weibo QCon Beijing 2011
High Performance Weibo QCon Beijing 2011High Performance Weibo QCon Beijing 2011
High Performance Weibo QCon Beijing 2011
Tim Y
 
My Sql Performance On Ec2
My Sql Performance On Ec2My Sql Performance On Ec2
My Sql Performance On Ec2
MySQLConference
 
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
Ontico
 
Optimizing MongoDB: Lessons Learned at Localytics
Optimizing MongoDB: Lessons Learned at LocalyticsOptimizing MongoDB: Lessons Learned at Localytics
Optimizing MongoDB: Lessons Learned at Localytics
andrew311
 
Tarantool как платформа для микросервисов / Антон Резников, Владимир Перепели...
Tarantool как платформа для микросервисов / Антон Резников, Владимир Перепели...Tarantool как платформа для микросервисов / Антон Резников, Владимир Перепели...
Tarantool как платформа для микросервисов / Антон Резников, Владимир Перепели...
Ontico
 
Redis Developers Day 2014 - Redis Labs Talks
Redis Developers Day 2014 - Redis Labs TalksRedis Developers Day 2014 - Redis Labs Talks
Redis Developers Day 2014 - Redis Labs Talks
Redis Labs
 
Scaling MongoDB in the cloud with Microsoft Azure
Scaling MongoDB in the cloud with Microsoft AzureScaling MongoDB in the cloud with Microsoft Azure
Scaling MongoDB in the cloud with Microsoft Azure
Ivan Fioravanti
 
No sql but even less security
No sql but even less securityNo sql but even less security
No sql but even less security
iammutex
 
Day 2 General Session Presentations RedisConf
Day 2 General Session Presentations RedisConfDay 2 General Session Presentations RedisConf
Day 2 General Session Presentations RedisConf
Redis Labs
 
Высокопроизводительный инференс глубоких сетей на GPU с помощью TensorRT / Ма...
Высокопроизводительный инференс глубоких сетей на GPU с помощью TensorRT / Ма...Высокопроизводительный инференс глубоких сетей на GPU с помощью TensorRT / Ма...
Высокопроизводительный инференс глубоких сетей на GPU с помощью TensorRT / Ма...
Ontico
 
Ужимай и властвуй алгоритмы компрессии в базах данных / Петр Зайцев (Percona)
Ужимай и властвуй алгоритмы компрессии в базах данных / Петр Зайцев (Percona)Ужимай и властвуй алгоритмы компрессии в базах данных / Петр Зайцев (Percona)
Ужимай и властвуй алгоритмы компрессии в базах данных / Петр Зайцев (Percona)
Ontico
 
微博cache设计谈
微博cache设计谈微博cache设计谈
微博cache设计谈
Tim Y
 
Ceph Day Beijing - Our journey to high performance large scale Ceph cluster a...
Ceph Day Beijing - Our journey to high performance large scale Ceph cluster a...Ceph Day Beijing - Our journey to high performance large scale Ceph cluster a...
Ceph Day Beijing - Our journey to high performance large scale Ceph cluster a...
Danielle Womboldt
 
MongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTigerMongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTiger
WiredTiger
 
[Pgday.Seoul 2018] PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
[Pgday.Seoul 2018]  PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha[Pgday.Seoul 2018]  PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
[Pgday.Seoul 2018] PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
PgDay.Seoul
 
Troubleshooting redis
Troubleshooting redisTroubleshooting redis
Troubleshooting redis
DaeMyung Kang
 
Алексей Лесовский "Тюнинг Linux для баз данных. "
Алексей Лесовский "Тюнинг Linux для баз данных. "Алексей Лесовский "Тюнинг Linux для баз данных. "
Алексей Лесовский "Тюнинг Linux для баз данных. "
Tanya Denisyuk
 
My Sql Performance In A Cloud
My Sql Performance In A CloudMy Sql Performance In A Cloud
My Sql Performance In A Cloud
Sky Jian
 
Scylla Summit 2018: In-Memory Scylla - When Fast Storage is Not Fast Enough
Scylla Summit 2018: In-Memory Scylla - When Fast Storage is Not Fast EnoughScylla Summit 2018: In-Memory Scylla - When Fast Storage is Not Fast Enough
Scylla Summit 2018: In-Memory Scylla - When Fast Storage is Not Fast Enough
ScyllaDB
 
High Performance Weibo QCon Beijing 2011
High Performance Weibo QCon Beijing 2011High Performance Weibo QCon Beijing 2011
High Performance Weibo QCon Beijing 2011
Tim Y
 
My Sql Performance On Ec2
My Sql Performance On Ec2My Sql Performance On Ec2
My Sql Performance On Ec2
MySQLConference
 
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
Ontico
 
Optimizing MongoDB: Lessons Learned at Localytics
Optimizing MongoDB: Lessons Learned at LocalyticsOptimizing MongoDB: Lessons Learned at Localytics
Optimizing MongoDB: Lessons Learned at Localytics
andrew311
 
Tarantool как платформа для микросервисов / Антон Резников, Владимир Перепели...
Tarantool как платформа для микросервисов / Антон Резников, Владимир Перепели...Tarantool как платформа для микросервисов / Антон Резников, Владимир Перепели...
Tarantool как платформа для микросервисов / Антон Резников, Владимир Перепели...
Ontico
 
Redis Developers Day 2014 - Redis Labs Talks
Redis Developers Day 2014 - Redis Labs TalksRedis Developers Day 2014 - Redis Labs Talks
Redis Developers Day 2014 - Redis Labs Talks
Redis Labs
 
Scaling MongoDB in the cloud with Microsoft Azure
Scaling MongoDB in the cloud with Microsoft AzureScaling MongoDB in the cloud with Microsoft Azure
Scaling MongoDB in the cloud with Microsoft Azure
Ivan Fioravanti
 
No sql but even less security
No sql but even less securityNo sql but even less security
No sql but even less security
iammutex
 
Day 2 General Session Presentations RedisConf
Day 2 General Session Presentations RedisConfDay 2 General Session Presentations RedisConf
Day 2 General Session Presentations RedisConf
Redis Labs
 
Высокопроизводительный инференс глубоких сетей на GPU с помощью TensorRT / Ма...
Высокопроизводительный инференс глубоких сетей на GPU с помощью TensorRT / Ма...Высокопроизводительный инференс глубоких сетей на GPU с помощью TensorRT / Ма...
Высокопроизводительный инференс глубоких сетей на GPU с помощью TensorRT / Ма...
Ontico
 
Ужимай и властвуй алгоритмы компрессии в базах данных / Петр Зайцев (Percona)
Ужимай и властвуй алгоритмы компрессии в базах данных / Петр Зайцев (Percona)Ужимай и властвуй алгоритмы компрессии в базах данных / Петр Зайцев (Percona)
Ужимай и властвуй алгоритмы компрессии в базах данных / Петр Зайцев (Percona)
Ontico
 
微博cache设计谈
微博cache设计谈微博cache设计谈
微博cache设计谈
Tim Y
 
Ceph Day Beijing - Our journey to high performance large scale Ceph cluster a...
Ceph Day Beijing - Our journey to high performance large scale Ceph cluster a...Ceph Day Beijing - Our journey to high performance large scale Ceph cluster a...
Ceph Day Beijing - Our journey to high performance large scale Ceph cluster a...
Danielle Womboldt
 
MongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTigerMongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTiger
WiredTiger
 
[Pgday.Seoul 2018] PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
[Pgday.Seoul 2018]  PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha[Pgday.Seoul 2018]  PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
[Pgday.Seoul 2018] PostgreSQL 성능을 위해 개발된 라이브러리 OS 소개 apposha
PgDay.Seoul
 
Troubleshooting redis
Troubleshooting redisTroubleshooting redis
Troubleshooting redis
DaeMyung Kang
 

Viewers also liked (20)

NoSQL внутри SQL: приземленные вопросы практического применения / Дмитрий До...
NoSQL внутри SQL: приземленные вопросы практического применения /  Дмитрий До...NoSQL внутри SQL: приземленные вопросы практического применения /  Дмитрий До...
NoSQL внутри SQL: приземленные вопросы практического применения / Дмитрий До...
Ontico
 
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
Ontico
 
Life Of A Dirty Page Inno Db Disk Io
Life Of A Dirty Page Inno Db Disk IoLife Of A Dirty Page Inno Db Disk Io
Life Of A Dirty Page Inno Db Disk Io
Sky Jian
 
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...
Ontico
 
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Ontico
 
Отладка производительности приложения на Erlang / Максим Лапшин (Erlyvideo)
 Отладка производительности приложения на Erlang / Максим Лапшин (Erlyvideo) Отладка производительности приложения на Erlang / Максим Лапшин (Erlyvideo)
Отладка производительности приложения на Erlang / Максим Лапшин (Erlyvideo)
Ontico
 
Хранение данных на виниле / Константин Осипов (tarantool.org)
Хранение данных на виниле / Константин Осипов (tarantool.org)Хранение данных на виниле / Константин Осипов (tarantool.org)
Хранение данных на виниле / Константин Осипов (tarantool.org)
Ontico
 
Профилирование кода на C/C++ в *nix-системах / Александр Алексеев (Postgres P...
Профилирование кода на C/C++ в *nix-системах / Александр Алексеев (Postgres P...Профилирование кода на C/C++ в *nix-системах / Александр Алексеев (Postgres P...
Профилирование кода на C/C++ в *nix-системах / Александр Алексеев (Postgres P...
Ontico
 
Peeking into the Black Hole Called PL/PGSQL - the New PL Profiler / Jan Wieck...
Peeking into the Black Hole Called PL/PGSQL - the New PL Profiler / Jan Wieck...Peeking into the Black Hole Called PL/PGSQL - the New PL Profiler / Jan Wieck...
Peeking into the Black Hole Called PL/PGSQL - the New PL Profiler / Jan Wieck...
Ontico
 
Archival Disc на смену Blu-ray: построение архивного хранилища на оптических ...
Archival Disc на смену Blu-ray: построение архивного хранилища на оптических ...Archival Disc на смену Blu-ray: построение архивного хранилища на оптических ...
Archival Disc на смену Blu-ray: построение архивного хранилища на оптических ...
Ontico
 
Как смигрировать 50Пб в 32 без даунтайма? / Альберт Галимов, Андрей Сумин (Ma...
Как смигрировать 50Пб в 32 без даунтайма? / Альберт Галимов, Андрей Сумин (Ma...Как смигрировать 50Пб в 32 без даунтайма? / Альберт Галимов, Андрей Сумин (Ma...
Как смигрировать 50Пб в 32 без даунтайма? / Альберт Галимов, Андрей Сумин (Ma...
Ontico
 
Как мы сделали PHP 7 в два раза быстрее PHP 5 / Дмитрий Стогов (Zend Technolo...
Как мы сделали PHP 7 в два раза быстрее PHP 5 / Дмитрий Стогов (Zend Technolo...Как мы сделали PHP 7 в два раза быстрее PHP 5 / Дмитрий Стогов (Zend Technolo...
Как мы сделали PHP 7 в два раза быстрее PHP 5 / Дмитрий Стогов (Zend Technolo...
Ontico
 
Долгожданный релиз pg_pathman 1.0 / Александр Коротков, Дмитрий Иванов (Post...
Долгожданный релиз pg_pathman 1.0 / Александр Коротков,  Дмитрий Иванов (Post...Долгожданный релиз pg_pathman 1.0 / Александр Коротков,  Дмитрий Иванов (Post...
Долгожданный релиз pg_pathman 1.0 / Александр Коротков, Дмитрий Иванов (Post...
Ontico
 
Performance Schema in MySQL (Danil Zburivsky)
Performance Schema in MySQL (Danil Zburivsky)Performance Schema in MySQL (Danil Zburivsky)
Performance Schema in MySQL (Danil Zburivsky)
Ontico
 
MySQL Troubleshooting with the Performance Schema
MySQL Troubleshooting with the Performance SchemaMySQL Troubleshooting with the Performance Schema
MySQL Troubleshooting with the Performance Schema
Sveta Smirnova
 
The MySQL Performance Schema & New SYS Schema
The MySQL Performance Schema & New SYS SchemaThe MySQL Performance Schema & New SYS Schema
The MySQL Performance Schema & New SYS Schema
Ted Wennmark
 
MySQL Performance - SydPHP October 2011
MySQL Performance - SydPHP October 2011MySQL Performance - SydPHP October 2011
MySQL Performance - SydPHP October 2011
Graham Weldon
 
Девять кругов ада или PostgreSQL Vacuum / Алексей Лесовский (PostgreSQL-Consu...
Девять кругов ада или PostgreSQL Vacuum / Алексей Лесовский (PostgreSQL-Consu...Девять кругов ада или PostgreSQL Vacuum / Алексей Лесовский (PostgreSQL-Consu...
Девять кругов ада или PostgreSQL Vacuum / Алексей Лесовский (PostgreSQL-Consu...
Ontico
 
PostgreSQL @Alibaba Cloud / Xianming Dou (Alibaba Cloud)
PostgreSQL @Alibaba Cloud / Xianming Dou (Alibaba Cloud)PostgreSQL @Alibaba Cloud / Xianming Dou (Alibaba Cloud)
PostgreSQL @Alibaba Cloud / Xianming Dou (Alibaba Cloud)
Ontico
 
LuaJIT как основа для сервера приложений - проблемы и решения / Игорь Эрлих (...
LuaJIT как основа для сервера приложений - проблемы и решения / Игорь Эрлих (...LuaJIT как основа для сервера приложений - проблемы и решения / Игорь Эрлих (...
LuaJIT как основа для сервера приложений - проблемы и решения / Игорь Эрлих (...
Ontico
 
NoSQL внутри SQL: приземленные вопросы практического применения / Дмитрий До...
NoSQL внутри SQL: приземленные вопросы практического применения /  Дмитрий До...NoSQL внутри SQL: приземленные вопросы практического применения /  Дмитрий До...
NoSQL внутри SQL: приземленные вопросы практического применения / Дмитрий До...
Ontico
 
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
Ontico
 
Life Of A Dirty Page Inno Db Disk Io
Life Of A Dirty Page Inno Db Disk IoLife Of A Dirty Page Inno Db Disk Io
Life Of A Dirty Page Inno Db Disk Io
Sky Jian
 
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...
Ontico
 
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Ontico
 
Отладка производительности приложения на Erlang / Максим Лапшин (Erlyvideo)
 Отладка производительности приложения на Erlang / Максим Лапшин (Erlyvideo) Отладка производительности приложения на Erlang / Максим Лапшин (Erlyvideo)
Отладка производительности приложения на Erlang / Максим Лапшин (Erlyvideo)
Ontico
 
Хранение данных на виниле / Константин Осипов (tarantool.org)
Хранение данных на виниле / Константин Осипов (tarantool.org)Хранение данных на виниле / Константин Осипов (tarantool.org)
Хранение данных на виниле / Константин Осипов (tarantool.org)
Ontico
 
Профилирование кода на C/C++ в *nix-системах / Александр Алексеев (Postgres P...
Профилирование кода на C/C++ в *nix-системах / Александр Алексеев (Postgres P...Профилирование кода на C/C++ в *nix-системах / Александр Алексеев (Postgres P...
Профилирование кода на C/C++ в *nix-системах / Александр Алексеев (Postgres P...
Ontico
 
Peeking into the Black Hole Called PL/PGSQL - the New PL Profiler / Jan Wieck...
Peeking into the Black Hole Called PL/PGSQL - the New PL Profiler / Jan Wieck...Peeking into the Black Hole Called PL/PGSQL - the New PL Profiler / Jan Wieck...
Peeking into the Black Hole Called PL/PGSQL - the New PL Profiler / Jan Wieck...
Ontico
 
Archival Disc на смену Blu-ray: построение архивного хранилища на оптических ...
Archival Disc на смену Blu-ray: построение архивного хранилища на оптических ...Archival Disc на смену Blu-ray: построение архивного хранилища на оптических ...
Archival Disc на смену Blu-ray: построение архивного хранилища на оптических ...
Ontico
 
Как смигрировать 50Пб в 32 без даунтайма? / Альберт Галимов, Андрей Сумин (Ma...
Как смигрировать 50Пб в 32 без даунтайма? / Альберт Галимов, Андрей Сумин (Ma...Как смигрировать 50Пб в 32 без даунтайма? / Альберт Галимов, Андрей Сумин (Ma...
Как смигрировать 50Пб в 32 без даунтайма? / Альберт Галимов, Андрей Сумин (Ma...
Ontico
 
Как мы сделали PHP 7 в два раза быстрее PHP 5 / Дмитрий Стогов (Zend Technolo...
Как мы сделали PHP 7 в два раза быстрее PHP 5 / Дмитрий Стогов (Zend Technolo...Как мы сделали PHP 7 в два раза быстрее PHP 5 / Дмитрий Стогов (Zend Technolo...
Как мы сделали PHP 7 в два раза быстрее PHP 5 / Дмитрий Стогов (Zend Technolo...
Ontico
 
Долгожданный релиз pg_pathman 1.0 / Александр Коротков, Дмитрий Иванов (Post...
Долгожданный релиз pg_pathman 1.0 / Александр Коротков,  Дмитрий Иванов (Post...Долгожданный релиз pg_pathman 1.0 / Александр Коротков,  Дмитрий Иванов (Post...
Долгожданный релиз pg_pathman 1.0 / Александр Коротков, Дмитрий Иванов (Post...
Ontico
 
Performance Schema in MySQL (Danil Zburivsky)
Performance Schema in MySQL (Danil Zburivsky)Performance Schema in MySQL (Danil Zburivsky)
Performance Schema in MySQL (Danil Zburivsky)
Ontico
 
MySQL Troubleshooting with the Performance Schema
MySQL Troubleshooting with the Performance SchemaMySQL Troubleshooting with the Performance Schema
MySQL Troubleshooting with the Performance Schema
Sveta Smirnova
 
The MySQL Performance Schema & New SYS Schema
The MySQL Performance Schema & New SYS SchemaThe MySQL Performance Schema & New SYS Schema
The MySQL Performance Schema & New SYS Schema
Ted Wennmark
 
MySQL Performance - SydPHP October 2011
MySQL Performance - SydPHP October 2011MySQL Performance - SydPHP October 2011
MySQL Performance - SydPHP October 2011
Graham Weldon
 
Девять кругов ада или PostgreSQL Vacuum / Алексей Лесовский (PostgreSQL-Consu...
Девять кругов ада или PostgreSQL Vacuum / Алексей Лесовский (PostgreSQL-Consu...Девять кругов ада или PostgreSQL Vacuum / Алексей Лесовский (PostgreSQL-Consu...
Девять кругов ада или PostgreSQL Vacuum / Алексей Лесовский (PostgreSQL-Consu...
Ontico
 
PostgreSQL @Alibaba Cloud / Xianming Dou (Alibaba Cloud)
PostgreSQL @Alibaba Cloud / Xianming Dou (Alibaba Cloud)PostgreSQL @Alibaba Cloud / Xianming Dou (Alibaba Cloud)
PostgreSQL @Alibaba Cloud / Xianming Dou (Alibaba Cloud)
Ontico
 
LuaJIT как основа для сервера приложений - проблемы и решения / Игорь Эрлих (...
LuaJIT как основа для сервера приложений - проблемы и решения / Игорь Эрлих (...LuaJIT как основа для сервера приложений - проблемы и решения / Игорь Эрлих (...
LuaJIT как основа для сервера приложений - проблемы и решения / Игорь Эрлих (...
Ontico
 
Ad

Similar to Making the case for write-optimized database algorithms / Mark Callaghan (Facebook) (20)

FlashSQL 소개 & TechTalk
FlashSQL 소개 & TechTalkFlashSQL 소개 & TechTalk
FlashSQL 소개 & TechTalk
I Goo Lee
 
Introduction to TokuDB v7.5 and Read Free Replication
Introduction to TokuDB v7.5 and Read Free ReplicationIntroduction to TokuDB v7.5 and Read Free Replication
Introduction to TokuDB v7.5 and Read Free Replication
Tim Callaghan
 
MyRocks introduction and production deployment
MyRocks introduction and production deploymentMyRocks introduction and production deployment
MyRocks introduction and production deployment
Yoshinori Matsunobu
 
Accelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket CacheAccelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket Cache
Nicolas Poggi
 
Accelerating hbase with nvme and bucket cache
Accelerating hbase with nvme and bucket cacheAccelerating hbase with nvme and bucket cache
Accelerating hbase with nvme and bucket cache
David Grier
 
Migrating from InnoDB and HBase to MyRocks at Facebook
Migrating from InnoDB and HBase to MyRocks at FacebookMigrating from InnoDB and HBase to MyRocks at Facebook
Migrating from InnoDB and HBase to MyRocks at Facebook
MariaDB plc
 
Scaling HDFS to Manage Billions of Files with Key-Value Stores
Scaling HDFS to Manage Billions of Files with Key-Value StoresScaling HDFS to Manage Billions of Files with Key-Value Stores
Scaling HDFS to Manage Billions of Files with Key-Value Stores
DataWorks Summit
 
Scaling HDFS to Manage Billions of Files
Scaling HDFS to Manage Billions of FilesScaling HDFS to Manage Billions of Files
Scaling HDFS to Manage Billions of Files
Haohui Mai
 
MyRocks Deep Dive
MyRocks Deep DiveMyRocks Deep Dive
MyRocks Deep Dive
Yoshinori Matsunobu
 
In-memory Caching in HDFS: Lower Latency, Same Great Taste
In-memory Caching in HDFS: Lower Latency, Same Great TasteIn-memory Caching in HDFS: Lower Latency, Same Great Taste
In-memory Caching in HDFS: Lower Latency, Same Great Taste
DataWorks Summit
 
MongoDB Aggregation Performance
MongoDB Aggregation PerformanceMongoDB Aggregation Performance
MongoDB Aggregation Performance
MongoDB
 
TiDB vs Aurora.pdf
TiDB vs Aurora.pdfTiDB vs Aurora.pdf
TiDB vs Aurora.pdf
ssuser3fb50b
 
Storage Engine Wars at Parse
Storage Engine Wars at ParseStorage Engine Wars at Parse
Storage Engine Wars at Parse
MongoDB
 
Gruter TECHDAY 2014 Realtime Processing in Telco
Gruter TECHDAY 2014 Realtime Processing in TelcoGruter TECHDAY 2014 Realtime Processing in Telco
Gruter TECHDAY 2014 Realtime Processing in Telco
Gruter
 
Configuring workload-based storage and topologies
Configuring workload-based storage and topologiesConfiguring workload-based storage and topologies
Configuring workload-based storage and topologies
MariaDB plc
 
Linux and H/W optimizations for MySQL
Linux and H/W optimizations for MySQLLinux and H/W optimizations for MySQL
Linux and H/W optimizations for MySQL
Yoshinori Matsunobu
 
Galaxy Big Data with MariaDB
Galaxy Big Data with MariaDBGalaxy Big Data with MariaDB
Galaxy Big Data with MariaDB
MariaDB Corporation
 
Colvin exadata mistakes_ioug_2014
Colvin exadata mistakes_ioug_2014Colvin exadata mistakes_ioug_2014
Colvin exadata mistakes_ioug_2014
marvin herrera
 
Capacity Planning
Capacity PlanningCapacity Planning
Capacity Planning
MongoDB
 
Deep Dive into DynamoDB
Deep Dive into DynamoDBDeep Dive into DynamoDB
Deep Dive into DynamoDB
AWS Germany
 
FlashSQL 소개 & TechTalk
FlashSQL 소개 & TechTalkFlashSQL 소개 & TechTalk
FlashSQL 소개 & TechTalk
I Goo Lee
 
Introduction to TokuDB v7.5 and Read Free Replication
Introduction to TokuDB v7.5 and Read Free ReplicationIntroduction to TokuDB v7.5 and Read Free Replication
Introduction to TokuDB v7.5 and Read Free Replication
Tim Callaghan
 
MyRocks introduction and production deployment
MyRocks introduction and production deploymentMyRocks introduction and production deployment
MyRocks introduction and production deployment
Yoshinori Matsunobu
 
Accelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket CacheAccelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket Cache
Nicolas Poggi
 
Accelerating hbase with nvme and bucket cache
Accelerating hbase with nvme and bucket cacheAccelerating hbase with nvme and bucket cache
Accelerating hbase with nvme and bucket cache
David Grier
 
Migrating from InnoDB and HBase to MyRocks at Facebook
Migrating from InnoDB and HBase to MyRocks at FacebookMigrating from InnoDB and HBase to MyRocks at Facebook
Migrating from InnoDB and HBase to MyRocks at Facebook
MariaDB plc
 
Scaling HDFS to Manage Billions of Files with Key-Value Stores
Scaling HDFS to Manage Billions of Files with Key-Value StoresScaling HDFS to Manage Billions of Files with Key-Value Stores
Scaling HDFS to Manage Billions of Files with Key-Value Stores
DataWorks Summit
 
Scaling HDFS to Manage Billions of Files
Scaling HDFS to Manage Billions of FilesScaling HDFS to Manage Billions of Files
Scaling HDFS to Manage Billions of Files
Haohui Mai
 
In-memory Caching in HDFS: Lower Latency, Same Great Taste
In-memory Caching in HDFS: Lower Latency, Same Great TasteIn-memory Caching in HDFS: Lower Latency, Same Great Taste
In-memory Caching in HDFS: Lower Latency, Same Great Taste
DataWorks Summit
 
MongoDB Aggregation Performance
MongoDB Aggregation PerformanceMongoDB Aggregation Performance
MongoDB Aggregation Performance
MongoDB
 
TiDB vs Aurora.pdf
TiDB vs Aurora.pdfTiDB vs Aurora.pdf
TiDB vs Aurora.pdf
ssuser3fb50b
 
Storage Engine Wars at Parse
Storage Engine Wars at ParseStorage Engine Wars at Parse
Storage Engine Wars at Parse
MongoDB
 
Gruter TECHDAY 2014 Realtime Processing in Telco
Gruter TECHDAY 2014 Realtime Processing in TelcoGruter TECHDAY 2014 Realtime Processing in Telco
Gruter TECHDAY 2014 Realtime Processing in Telco
Gruter
 
Configuring workload-based storage and topologies
Configuring workload-based storage and topologiesConfiguring workload-based storage and topologies
Configuring workload-based storage and topologies
MariaDB plc
 
Linux and H/W optimizations for MySQL
Linux and H/W optimizations for MySQLLinux and H/W optimizations for MySQL
Linux and H/W optimizations for MySQL
Yoshinori Matsunobu
 
Colvin exadata mistakes_ioug_2014
Colvin exadata mistakes_ioug_2014Colvin exadata mistakes_ioug_2014
Colvin exadata mistakes_ioug_2014
marvin herrera
 
Capacity Planning
Capacity PlanningCapacity Planning
Capacity Planning
MongoDB
 
Deep Dive into DynamoDB
Deep Dive into DynamoDBDeep Dive into DynamoDB
Deep Dive into DynamoDB
AWS Germany
 
Ad

More from Ontico (20)

One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
Ontico
 
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Ontico
 
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Ontico
 
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Ontico
 
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Ontico
 
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Ontico
 
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Ontico
 
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
Ontico
 
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Ontico
 
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Ontico
 
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Ontico
 
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Ontico
 
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
Ontico
 
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Ontico
 
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Ontico
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
Ontico
 
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Ontico
 
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Ontico
 
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Ontico
 
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Ontico
 
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
Ontico
 
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Ontico
 
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Ontico
 
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Ontico
 
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Ontico
 
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Ontico
 
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Ontico
 
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
Ontico
 
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Ontico
 
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Ontico
 
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Ontico
 
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Ontico
 
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
Ontico
 
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Ontico
 
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Ontico
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
Ontico
 
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Ontico
 
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Ontico
 
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Ontico
 
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Ontico
 

Recently uploaded (20)

Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.
anuragmk56
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
Engineering Chemistry First Year Fullerenes
Engineering Chemistry First Year FullerenesEngineering Chemistry First Year Fullerenes
Engineering Chemistry First Year Fullerenes
5g2jpd9sp4
 
QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)
rccbatchplant
 
BCS401 ADA Second IA Test Question Bank.pdf
BCS401 ADA Second IA Test Question Bank.pdfBCS401 ADA Second IA Test Question Bank.pdf
BCS401 ADA Second IA Test Question Bank.pdf
VENKATESHBHAT25
 
Fourth Semester BE CSE BCS401 ADA Module 3 PPT.pptx
Fourth Semester BE CSE BCS401 ADA Module 3 PPT.pptxFourth Semester BE CSE BCS401 ADA Module 3 PPT.pptx
Fourth Semester BE CSE BCS401 ADA Module 3 PPT.pptx
VENKATESHBHAT25
 
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
charlesdick1345
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITYADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ijscai
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
LiyaShaji4
 
Lecture 13 (Air and Noise Pollution and their Control) (1).pptx
Lecture 13 (Air and Noise Pollution and their Control) (1).pptxLecture 13 (Air and Noise Pollution and their Control) (1).pptx
Lecture 13 (Air and Noise Pollution and their Control) (1).pptx
huzaifabilalshams
 
Taking AI Welfare Seriously, In this report, we argue that there is a realist...
Taking AI Welfare Seriously, In this report, we argue that there is a realist...Taking AI Welfare Seriously, In this report, we argue that there is a realist...
Taking AI Welfare Seriously, In this report, we argue that there is a realist...
MiguelMarques372250
 
vlsi digital circuits full power point presentation
vlsi digital circuits full power point presentationvlsi digital circuits full power point presentation
vlsi digital circuits full power point presentation
DrSunitaPatilUgaleKK
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
comparison of motors.pptx 1. Motor Terminology.ppt
comparison of motors.pptx 1. Motor Terminology.pptcomparison of motors.pptx 1. Motor Terminology.ppt
comparison of motors.pptx 1. Motor Terminology.ppt
yadavmrr7
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.
anuragmk56
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
Engineering Chemistry First Year Fullerenes
Engineering Chemistry First Year FullerenesEngineering Chemistry First Year Fullerenes
Engineering Chemistry First Year Fullerenes
5g2jpd9sp4
 
QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)
rccbatchplant
 
BCS401 ADA Second IA Test Question Bank.pdf
BCS401 ADA Second IA Test Question Bank.pdfBCS401 ADA Second IA Test Question Bank.pdf
BCS401 ADA Second IA Test Question Bank.pdf
VENKATESHBHAT25
 
Fourth Semester BE CSE BCS401 ADA Module 3 PPT.pptx
Fourth Semester BE CSE BCS401 ADA Module 3 PPT.pptxFourth Semester BE CSE BCS401 ADA Module 3 PPT.pptx
Fourth Semester BE CSE BCS401 ADA Module 3 PPT.pptx
VENKATESHBHAT25
 
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
charlesdick1345
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITYADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ijscai
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
Explainable-Artificial-Intelligence-in-Disaster-Risk-Management (2).pptx_2024...
LiyaShaji4
 
Lecture 13 (Air and Noise Pollution and their Control) (1).pptx
Lecture 13 (Air and Noise Pollution and their Control) (1).pptxLecture 13 (Air and Noise Pollution and their Control) (1).pptx
Lecture 13 (Air and Noise Pollution and their Control) (1).pptx
huzaifabilalshams
 
Taking AI Welfare Seriously, In this report, we argue that there is a realist...
Taking AI Welfare Seriously, In this report, we argue that there is a realist...Taking AI Welfare Seriously, In this report, we argue that there is a realist...
Taking AI Welfare Seriously, In this report, we argue that there is a realist...
MiguelMarques372250
 
vlsi digital circuits full power point presentation
vlsi digital circuits full power point presentationvlsi digital circuits full power point presentation
vlsi digital circuits full power point presentation
DrSunitaPatilUgaleKK
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
comparison of motors.pptx 1. Motor Terminology.ppt
comparison of motors.pptx 1. Motor Terminology.pptcomparison of motors.pptx 1. Motor Terminology.ppt
comparison of motors.pptx 1. Motor Terminology.ppt
yadavmrr7
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 

Making the case for write-optimized database algorithms / Mark Callaghan (Facebook)

  • 1. Making the case for write-optimized database algorithms Mark Callaghan Member of Technical Staff, Facebook
  • 2. RocksDB • Embedded key-value storage engine MyRocks • RocksDB storage engine for MySQL • coming to Percona Server and MariaDB Server MongoRocks • RocksDB storage engine for MongoDB • In Percona Server today RocksDB, MyRocks & MongoRocks
  • 3. • Good read efficiency • Better write efficiency • Best space efficiency RocksDB, MyRocks & MongoRocks • Use less SSD • Use lower endurance SSD In some cases, better read efficiency is possible Efficient performance is the goal
  • 4. Benchmarketing? Sysbench read-write, in-memory 0 50000 100000 150000 200000 1 2 4 8 16 24 32 40 48 64 80 96 128 MyRocks InnoDB
  • 5. Better is not just about throughput tpmC iostat rKB/t iostat wKB/t vmstat CPU/t Size
 (GB) p99 response (ms) MyRocks +zlib 95680 2.19 2.02 528 82 29.9 InnoDB 91981 2.67 7.49 400 222 18.4 tpcc-mysql, 1000 warehouses, IO-bound • QPS - average throughput • QoS - worst case throughput • Efficiency - hardware per query
  • 6. Peak performance is overrated Performance Performance & Efficiency Meet performance goals Then optimize for efficiency
  • 7. RUM or RWS? • RUM = Read, Update, Memory • RWS = Read, Write, Space Efficiency • Synonym for amplification • Related to, but not equivalent to, performance. An algorithm can’t be optimal for all of read, write & space amplification • See Designing Access Methods: The RUM Conjecture • daslab.seas.harvard.edu/rum-conjecture RUM Conjecture
  • 8. For any useful database algorithm there exists another useful algorithm that has better read, write or space amplification. Define: optimal
  • 9. Read, Write • physical work per logical request Space • sizeof(database files) / sizeof(data) Define: amplification
  • 10. Storage • random operations • bytes read • bytes written Define: work CPU • blocks (un)compressed • memory/cache operations • hash searches • key comparisons • CPU seconds
  • 11. Basic operations: • point read • range read • put • delete Complex operations: • query • transaction Define: operation Update is one of: • put • point read, put • point read, delete, put
  • 12. Everything is relative tpmC iostat rKB/t iostat wKB/t vmstat CPU/t Size
 (GB) MyRocks+zlib 95680 2.19 2.02 528 82 InnoDB 91981 2.67 7.49 400 222 InnoDB/ MyRocks 0.96 1.22 3.71 0.76 2.71 tpcc-mysql, 1000 warehouses, IO-bound
  • 13. Efficiency: B-Tree Example: InnoDB Read • logN key compares Write • sizeof(page) / sizeof(row) Space • 1.5X if leaf pages are 2/3 full Update-in-Place B-Tree • InnoDB Copy-on-Write B-Tree • WiredTiger • LMDB
  • 14. Efficiency: leveled LSM Example: RocksDB, Cassandra
 Read • logN + log(N/10) + log(N/100) + log(N/1000) key compares • point reads can use bloom filter Write • rewrite previously written rows • worse than size-tiered LSM, better than B-Tree Space • 1.1X
  • 15. Efficiency: size-tiered LSM Example: RocksDB, Cassandra, HBase Read • more than leveled LSM • point reads can use bloom filter Write • rewrite previously written rows • better than leveled LSM, better than B-Tree Space • ~2X, worse than leveled LSM
  • 16. Efficiency: summary Read Write Space B-Tree best good leveled LSM good for point good best size-tiered LSM best
  • 17. Theory meets practice Access distribution • LSM benefits from skew Cache • B-Tree - prefer to have index in cache • LSM - prefer to have all but largest level in cache
 IO costs are hard to predict
  • 18. Linkbench, IO-bound TPS iostat r/t iostat wKB/t CPU usecs/t Size
 (GB) p99 update (ms) MyRocks+zlib 28965 1.03 1.25 999 374 1 InnoDB 21474 1.16 19.70 914 14xx 6 InnoDB+zlib 20734 1.07 14.59 1199 880 6 MyRocks: best throughput & QoS, most efficient
  • 19. Space efficiency • Fragmentation • Fixed page size • More per-row metadata • No prefix encoding (InnoDB) Why did RocksDB beat a B-Tree? Write efficiency • Uses more space = more data to write • Working set larger than cache • sizeof(page) / sizeof(row) • Double write buffer (InnoDB)
  • 20. Page size & write amplification Page size TPS iostat wKB/t MyRocks+zlib 16kb 28965 1.25 InnoDB 4kb 24845 6.13 InnoDB 8kb 24352 10.52 InnoDB 16kb 21414 19.70
  • 21. Advantage B-Tree • Fewer key comparisons • Less IO for range queries Read efficiency: B-Tree vs LSM? Advantage LSM • Uses less space = more data in cache • Prefix key encoding when uncompressed • Efficient writes saves IO for reads • Read-free index maintenance • Bloom filter Performance is complex
  • 22. Save on writes, spend more on reads MyRocks zlib TPS InnoDB TPS Ratio
 (MyRocks / InnoDB) Disk array 2195 414 5.3 Slow SSD 23484 10143 2.3 Fast SSD 28965 21414 1.4
  • 23. Read versus Write efficiency • Indexes - more & wider Read versus Space efficiency • Bloom filters • Compression • Indexes Write versus Space efficiency • RocksDB fanout • Size-tiered vs leveled • GC & defragmentation frequency Trading between R, W and S efficiency
  • 24. Write versus space amplification Space vs write amplification for a log-based algorithm WriteAmplification 0 2.5 5 7.5 10 Space Amplification 1.11 1.25 1.33 1.67 2 • space amplification = 100 / %full • write amplification = 100 / (100 - %full)
  • 25. One size doesn’t fit all • B-Tree + LSM sharing one redo log Adaptive algorithms • DBA sets high-level goals • Algorithm adapts to achieve them More open source • MyRocks in MariaDB Server & Percona Server • MongoRocks in Percona Server • More features in RocksDB What comes next? More performance results are coming • YCSB • sysbench • time series • bulk load • tpcc-mysql