SlideShare a Scribd company logo
Marp入門
2021/10/04 版
1
基本的な記法
# Heading tag
item1
item2
item3
Bold, 打消し, emoji
Blockquotes
など.Markdownの基本的な記法をサポート

詳しくは,Markdown記法 チートシートを参照
2
Code
Inline

puts 'Marp'
Code block
Python
import numpy as np

print('Hello Marp')

C++
void main(){

printf("Hello Marpn");

return 0;

}

3
数式
レンダラーはKaTeXだが,いつものLaTeX形式で書ける



​
D(X∥FQ) s.t. f ​
, q ​ ≥ 0 ∀i,  j,  k
F ,Q
min ik kj
​ ​ ​ ​ ​ ​
⎝
⎛a ​
11
⋮
a ​
i1
⋮
a ​
n1
⋯
⋱
⋯
a ​
1i
a ​
ii
a ​
ni
⋯
⋱
⋯
a ​
1n
⋮
a ​
in
⋮
a ​
nn
⎠
⎞
4
Marpの機能
5
Speaker notes
スライド内( --- --- 間)のコメント文 <!-- --> は全て発表ノートとして認識され,

pptx出力する際や,Marp CLIのプレゼンターモードの時に表示される.
pptx変換やプレゼンターモードはNotionの方で解説
6
Directives
Marpのスライドプロパティを設定する属性

Directiveを <!-- --> で囲むか,一番先頭の --- --- 間に書き込む事で設定可能

また,それぞれの属性の頭にアンダースコア _ を付けることで,指定したページ限定
で有効になる(このスライドのコードを参照)
paginate
theme
header
footer
size 

...etc
Doc:https://github.com/marp-team/marpit/blob/main/docs/directives.md
header
画像の挿入
![](画像のパス) で画像を挿入できる.[ ]内でサイズを変えたり,フィルタを掛けたり
できる( https://marpit.marp.app/image-syntax )

Marpの問題点として,画像の中央揃えが出来ないので,CSSで実装する必要がある
8
画像の挿入
style: |

img[alt~="center"] {

display: block;

margin: 0 auto;

}

[ ]内でcenterと指定することで,中央揃えになる

![center](<img_path>) 

9
Background
正直あまり使わない

![bg](画像のパス) で挿入

複数の画像を縦・横に並べることも可能
10
Background
左右分割も可能

Doc: https://marpit.marp.app/image-
syntax?id=slide-backgrounds
11
fontsizeとfontcolor
時としてフォントのサイズと色を変えたい場合があるが,Marpはネイティブで対応し
ていないので,HTMLのstyleで指定する必要がある.
HTMLタグを使用するための設定
VSCodeの「設定」から,「marp html」を検索し,「Marp: Enable HTML」に
12
fontsizeとfontcolor
HTMLのstyle要素を使用することで,フォントサイズや色を指定可能
<span style="font-size:フォントサイズ">文字</span>

<span style="color:色;">文字</span>

fontsize
small
big
28pt
fontcolor
red
blue
orange
13
以上がMarpの基本的な使い方です.

pptxの出力やMarp Cliの使用方法はNotionに書いてあります.

また,CSSを用いたカスタムテーマの作成方法は別途ナレッジを書く予定です.
14
参考になる記事とか
Marp
Marpit
Marp Cli
GitHub Repo
【VS Code + Marp】Markdownから爆速・自由自在なデザインで、プレゼンスラ
イドを作る
15
Ad

More Related Content

What's hot (20)

勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは
Takuya Akiba
 
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
NTT DATA Technology & Innovation
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
ナレッジグラフ入門
ナレッジグラフ入門ナレッジグラフ入門
ナレッジグラフ入門
KnowledgeGraph
 
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
Preferred Networks
 
Python 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそうPython 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそう
Ryuji Tsutsui
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西
Keigo Nishida
 
分散システムの限界について知ろう
分散システムの限界について知ろう分散システムの限界について知ろう
分散システムの限界について知ろう
Shingo Omura
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
Yusuke Uchida
 
Raft
RaftRaft
Raft
Preferred Networks
 
初心者向けMongoDBのキホン!
初心者向けMongoDBのキホン!初心者向けMongoDBのキホン!
初心者向けMongoDBのキホン!
Tetsutaro Watanabe
 
BuildKitによる高速でセキュアなイメージビルド
BuildKitによる高速でセキュアなイメージビルドBuildKitによる高速でセキュアなイメージビルド
BuildKitによる高速でセキュアなイメージビルド
Akihiro Suda
 
メタプログラミングって何だろう
メタプログラミングって何だろうメタプログラミングって何だろう
メタプログラミングって何だろう
Kota Mizushima
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
Deep Learning JP
 
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Preferred Networks
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
cvpaper. challenge
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII
 
勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは
Takuya Akiba
 
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
NTT DATA Technology & Innovation
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
ナレッジグラフ入門
ナレッジグラフ入門ナレッジグラフ入門
ナレッジグラフ入門
KnowledgeGraph
 
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
Preferred Networks
 
Python 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそうPython 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそう
Ryuji Tsutsui
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西
Keigo Nishida
 
分散システムの限界について知ろう
分散システムの限界について知ろう分散システムの限界について知ろう
分散システムの限界について知ろう
Shingo Omura
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
Yusuke Uchida
 
初心者向けMongoDBのキホン!
初心者向けMongoDBのキホン!初心者向けMongoDBのキホン!
初心者向けMongoDBのキホン!
Tetsutaro Watanabe
 
BuildKitによる高速でセキュアなイメージビルド
BuildKitによる高速でセキュアなイメージビルドBuildKitによる高速でセキュアなイメージビルド
BuildKitによる高速でセキュアなイメージビルド
Akihiro Suda
 
メタプログラミングって何だろう
メタプログラミングって何だろうメタプログラミングって何だろう
メタプログラミングって何だろう
Kota Mizushima
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
Deep Learning JP
 
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Preferred Networks
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII
 

Marp Tutorial