SlideShare a Scribd company logo
Matrix and Tensor Tools 
FOR COMPUTER VISION 
ANDREWS C. SOBRAL 
ANDREWSSOBRAL@GMAIL.COM 
PH.D. STUDENT, COMPUTER VISION 
LAB. L3I –UNIV. DE LA ROCHELLE, FRANCE
Principal Component Analysis(PCA)
Principal Component Analysis 
PCA is a statistical procedure that uses orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. 
Dimensionality reduction 
Variants: Multilinear PCA, ICA, LDA, Kernel PCA, Nonlinear PCA, .... 
http://www.nlpca.org/pca_principal_component_analysis.html
Principal Component Analysishttp://store.elsevier.com/Introduction-to-Pattern-Recognition-A-Matlab-Approach/Sergios-Theodoridis/isbn-9780123744869/
Principal Component Analysishttp://store.elsevier.com/Introduction-to-Pattern-Recognition-A-Matlab-Approach/Sergios-Theodoridis/isbn-9780123744869/
SingularValue Decomposition(SVD)
Singular Value Decomposition 
Formally, the singular value decomposition of anm×nreal or complex matrixMis a factorization of the form: 
whereUis am×mreal or complexunitary matrix, Σ is anm×nrectangular diagonal matrixwith nonnegative real numbers on the diagonal, andV*(theconjugate transposeofV, or simply the transpose ofVifVis real) is ann×nreal or complexunitary matrix. The diagonal entries Σi,iof Σ are known as thesingular valuesofM. Themcolumns ofUand thencolumns ofVare called theleft-singular vectorsandright-singular vectorsofM, respectively. 
generalization of eigenvalue decomposition 
http://www.numtech.com/systems/
-3-2-10123-8-6-4-20246810X Z-3-2-10123-8-6-4-20246810Y ZZ 1020304051015202530354045-8-6-4-20246-4-2024-4-2024-10-50510ORIGINAL-4-2024-4-2024-10-50510Z =  1-4-2024-4-2024-10-50510Z =  1 +  2
RobustPCA (RPCA)
Robust PCA 
Sparse error matrix 
Shttp://perception.csl.illinois.edu/matrix-rank/home.html 
L 
Underlyinglow-rank matrix 
M 
Matrix of corrupted observations
Robust PCAhttp://perception.csl.illinois.edu/matrix-rank/home.html
Robust PCA 
OneeffectivewaytosolvePCPforthecaseoflargematricesistouseastandardaugmentedLagrangianmultipliermethod(ALM)(Bertsekas,1982). 
and then minimizing it iteratively by setting 
Where: 
More information: 
(Qiuand Vaswani, 2011), (Pope et al. 2011), (Rodríguez and Wohlberg, 2013)
Robust PCA 
For more information see: (Lin et al., 2010)http://perception.csl.illinois.edu/matrix- rank/sample_code.html
LOW-RANK REPRESENTATION (LRR)
Low-rank Representation (LRR) 
Subspaceclustering 
problem!
Low-rank Representation (LRR)
Low-rank Representation (LRR)
NON-NEGATIVE MATRIX FACTORIZATION (NMF)
Non-Negative Matrix Factorizations (NMF) 
Inmanyapplications,dataisnon-negative,oftenduetophysicalconsiderations. 
◦imagesaredescribedbypixelintensities; 
◦textsarerepresentedbyvectorsofwordcounts; 
Itisdesirabletoretainthenon-negativecharacteristicsoftheoriginaldata.
Non-Negative Matrix Factorizations (NMF) 
NMFprovidesanalternativeapproachtodecompositionthatassumesthatthedataandthecomponentsarenon- negative. 
Forinterpretationpurposes,onecanthinkofimposingnon-negativityconstraintsonthefactorUsothatbasiselementsbelongtothesamespaceastheoriginaldata. 
H>=0constraintsthebasiselementstobenonnegative.Moreover,inordertoforcethereconstructionofthebasiselementstobeadditive,onecanimposetheweightsWtobenonnegativeaswell,leadingtoapart-basedrepresentation. 
W>=0imposesanadditivereconstruction. 
References: 
The Why and How of Nonnegative Matrix Factorization (Nicolas Gillis, 2014) 
Nonnegative Matrix Factorization: Complexity, Algorithms and Applications (Nicolas Gillis, 2011),
Non-Negative Matrix Factorizations (NMF) 
Similartosparseandlow-rankmatrixdecompositions,e.g.RPCA,MahNMFrobustlyestimatesthelow-rankpartandthesparsepartofanon-negativematrixandthusperformseffectivelywhendataarecontaminatedbyoutliers. 
https://sites.google.com/site/nmfsolvers/
Introduction to tensors
Introduction to tensors 
Tensorsaresimplymathematicalobjectsthatcanbeusedtodescribephysicalproperties.Infacttensorsaremerelyageneralizationofscalars,vectorsandmatrices;ascalarisazeroranktensor,avectorisafirstranktensorandamatrixisthesecondranktensor.
Introduction to tensors 
Subarrays, tubesand slicesof a 3rd order tensor.
Introduction to tensors 
Matricizationof a 3rd order tensor.
1 
10 
19 
28 
37 
46 
51 
1 
9 
17 
25 
33 
41 
48 
1 
9 
17 
25 
33 
41 
48 
j k 
i 
1 
10 
19 
28 
37 
46 
51 
1 
9 
17 
25 
33 
41 
48 
1 
9 
17 
25 
33 
41 
48 
j k 
i 
1 
10 
19 
28 
37 
46 
51 
1 
9 
17 
25 
33 
41 
48 
1 
9 
17 
25 
33 
41 
48 
j k 
i 
1 
10 
19 
28 
37 
46 
51 
1 
9 
17 
25 
33 
41 
48 
1 
9 
17 
25 
33 
41 
48 
j k 
i 
1 
10 
19 
28 
37 
46 
51 
1 
9 
17 
25 
33 
41 
48 
1 
9 
17 
25 
33 
41 
48 
j k 
i 
Frontal Vertical Horizontal 
Horizontal, vertical and frontal slices from a 3rd order tensor
Introduction to tensors 
Unfoldinga 3rd order tensor.
Introduction to tensors 
Tensor transposition 
◦While there is only one way transpose a matrix there are an exponential number of ways to transpose an order-n tensor. 
The 3rd ordercase:
Tensor decompositionmethods 
Approaches: 
◦Tucker / HOSVD 
◦CANDECOMP-PARAFAC (CP) 
◦Hierarchical Tucker (HT) 
◦Tensor-Train decomposition (TT) 
◦NTF (Non-negative Tensor Factorization) 
◦NTD (Non-negative Tucker Decomposition) 
◦NCP (Non-negative CP Decomposition) 
References: 
Tensor Decompositionsand Applications (Kolda and Bader, 2008)
Matrix and Tensor Tools for Computer Vision
Tucker / HoSVD
CP 
TheCPmodelisaspecialcaseoftheTuckermodel,wherethecoretensorissuperdiagonalandthenumberofcomponentsinthefactormatricesisthesame. 
Solvingby ALS (alternatingleast squares) framework
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer Vision
Tensor decompositionmethods 
Softwares 
◦ThereareseveralMATLABtoolboxesavailablefordealingwithtensorsinCPandTuckerdecomposition,includingtheTensorToolbox,theN-waytoolbox,thePLSToolbox,andtheTensorlab.TheTT-ToolboxprovidesMATLABclassescoveringtensorsinTTandQTTdecomposition,aswellaslinearoperators.ThereisalsoaPythonimplementationoftheTT-toolboxcalledttpy.ThehtuckertoolboxprovidesaMATLABclassrepresentingatensorinHTdecomposition.
IncrementalSVD
IncrementalSVD 
Problem: 
◦The matrix factorization step in SVD is computationally very expensive. 
Solution: 
◦Have a small pre-computed SVD model, and build upon this model incrementally using inexpensive techniques. 
Businger(1970) and Bunch and Nielsen (1978) are the first authors who have proposed to update SVD sequentially with the arrival of more samples, i.e. appending/removing a row/column. 
Subsequently various approaches have been proposed to update the SVD more efficiently and supporting new operations. 
References: 
Businger, P.A. Updatinga singularvalue decomposition. 1970 
Bunch, J.R.; Nielsen, C.P. Updatingthe singularvalue decomposition. 1978
IncrementalSVD 
F(t) 
F(t+1) 
F(t+2) 
F(t+3) 
F(t+4) 
F(t+5) 
[U, S, V] = SVD( [ F(t), …, F(t+2) ] ) 
[U’, S’, V’] = iSVD([F(t+3), …, F(t+5)], [U,S,V]) 
F(t) 
F(t+1) 
F(t+2) 
F(t+3) 
F(t+4) 
F(t+5) 
[U, S, V] = SVD( [ F(t), …, F(t+1) ] ) 
[U’, S’, V’] = iSVD([F(t+1), …, F(t+3)], [U,S,V]) 
F(t) 
F(t+1) 
F(t+2) 
F(t+3) 
F(t+4) 
F(t+5) 
[U, S, V] = SVD( [ F(t), …, F(t+2) ] ) 
[U’, S’, V’] = iSVD([F(t+1), …, F(t+3)], [U,S,V]) 
F(t) 
F(t+1) 
F(t+2) 
F(t+3) 
F(t+4) 
F(t+5) 
[U, S, V] = SVD( [ F(t), …, F(t+1) ] ) 
[U’, S’, V’] = iSVD([F(t+1), …, F(t+3)], [U,S,V])
IncrementalSVD 
Updating operation proposed by Sarwaret al. (2002): 
References: 
IncrementalSingularValue DecompositionAlgorithmsfor HighlyScalableRecommenderSystems(Sarwaret al., 2002)
IncrementalSVD 
Operations proposed by Matthew Brand (2006): 
References: 
Fastlow-rankmodifications of the thinsingularvalue decomposition(Matthew Brand, 2006)
IncrementalSVD 
Operations proposed by Melenchonand Martinez (2007): 
References: 
EfficientlyDowndating, Composingand SplittingSingularValue DecompositionsPreservingthe MeanInformation (Melenchónand Martínez, 2007)
IncrementalSVD algorithmsin Matlab 
By Christopher Baker (Baker et al., 2012) 
http://www.math.fsu.edu/~cbaker/IncPACK/ 
[Up,Sp,Vp] = SEQKL(A,k,t,[U S V]) 
Original version only supports the Updating operation 
Added exponential forgetting factor to support Downdatingoperation 
By David Ross (Ross et al., 2007) 
http://www.cs.toronto.edu/~dross/ivt/ 
[U, D, mu, n] = sklm(data, U0, D0, mu0, n0, ff, K) 
Supports mean-update, updatingand downdating 
By David Wingate (Matthew Brand, 2006) 
http://web.mit.edu/~wingated/www/index.html 
[Up,Sp,Vp] = svd_update(U,S,V,A,B,force_orth) 
update the SVD to be [X + A'*B]=Up*Sp*Vp' (a general matrix update). 
[Up,Sp,Vp] = addblock_svd_update(U,S,V,A,force_orth) 
update the SVD to be [X A] = Up*Sp*Vp' (add columns [ie, new data points]) 
size of Vpincreases 
Amust be square matrix 
[Up,Sp,Vp] = rank_one_svd_update(U,S,V,a,b,force_orth) 
update the SVD to be [X + a*b'] = Up*Sp*Vp' (that is, a general rank-one update. This can be used to add columns, zero columns, change columns, recenterthe matrix, etc. ).
IncrementalTensor Learning
Incrementaltensor learning 
Proposed by Sun et al. (2008) 
◦Dynamic Tensor Analysis (DTA) 
◦Streaming Tensor Analysis (STA) 
◦Window-based Tensor Analysis (WTA) 
References: 
Incrementaltensor analysis: Theoryand applications (Sun et al, 2008)
Incrementaltensor learning 
Dynamic Tensor Analysis (DTA) 
◦[T, C] = DTA(Xnew, R, C, alpha) 
◦ApproximatelyupdatestensorPCA,accordingtonewtensorXnew,oldvariancematricesinCandhespecifieddimensionsinvectorR.TheinputXnewisatensor.TheresultreturnedinTisatuckertensorandCisthecellarrayofnewvariancematrices.
Incrementaltensor learning 
Streaming Tensor Analysis(STA) 
◦[Tnew, S] = STA(Xnew, R, T, alpha, samplingPercent) 
◦ApproximatelyupdatestensorPCA,accordingtonewtensorXnew,oldtuckerdecompositionTandhespecifieddimensionsinvectorR.TheinputXnewisatensororsptensor.TheresultreturnedinTisanewtuckertensorforXnew,Shastheenergyvectoralongeachmode.
Incrementaltensor learning 
Window-basedTensor Analysis(WTA) 
◦[T, C] = WTA(Xnew, R, Xold, overlap, type, C) 
◦Computewindow-basedtensordecomposition,accordingtoXnew(Xold)thenew(old)tensorwindow,overlapisthenumberofoverlappingtensorsandCvariancematricesexceptforthetimemodeofprevioustensorwindowandthespecifieddimensionsin vectorR,typecanbe'tucker'(default)or'parafac'.TheinputXnew(Xold)isatensor,sptensor,wherethefirstmodeistime.TheresultreturnedinTisatuckerorkruskaltensordependingontypeandCisthecellarrayofnewvariancematrices.
Incrementaltensor learning 
Proposed by Hu et al. (2011) 
◦Incremental rank-(R1,R2,R3) tensor-based subspace learning 
◦IRTSA-GBM (grayscale) 
◦IRTSA-CBM (color) 
References: 
Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking (Hu et al., 2011) 
ApplyiSVD 
SKLM 
(Ross et al., 2007)
Incrementaltensor learning 
IRTSA architecture
Incrementalrank-(R1,R2,R3) tensor-basedsubspacelearning(Hu et al., 2011) 
streaming 
videodata 
Background Modeling 
ExponentialmovingaverageLK 
J(t+1) 
new sub-frame 
tensor 
Â(t) 
sub-tensorAPPLY STANDARD RANK-R SVDUNFOLDING MODE-1,2,3 
Set of N background images 
For first N frames 
low-rank 
sub-tensor 
model 
B(t+1) 
Newbackground 
sub-frame 
Â(t+1) 
B(t+1) 
drop last frameAPPLY INCREMENTAL SVD UNFOLDING MODE-1,2,3 
updatedsub-tensor 
foreground mask 
For the nextframes 
For the nextbackground sub-frame 
Â(t+1) 
updatedsub-tensorUPDATE 
SKLM 
(Ross et al., 2007) 
{bg|fg} = P( J[t+1] | U[1], U[2], V[3] ) 
ForegroundDetection 
Background Model 
Initialization 
Background Model 
Maintenance
Incremental and Multi-feature Tensor Subspace Learning applied for Background Modeling and Subtraction 
Performs feature extraction in the slidingblock 
Build or update the tensor model 
Store the last N frames in a slidingblock 
streaming 
videodata 
Performs the iHoSVDto buildor update the low-rank model 
foreground mask 
Performs the ForegroundDetection 
ℒ푡 
low-rank 
model 
values 
pixels 
features 
풯푡 
removethe last frame fromslidingblock 
add first frame coming from video stream 
풜푡 
… 
(a) 
(b) 
(c) 
(d) 
(e) 
More info: https://sites.google.com/site/ihosvd/ 
Highlights: 
* Proposes an incremental low-rank HoSVD(iHOSVD) for background modeling and subtraction. 
* A unified tensor model to represent the features extracted from the streaming video data. 
Proposed by Sobralet al. (2014)

More Related Content

What's hot (20)

はじめてのパターン認識 第8章 サポートベクトルマシン
はじめてのパターン認識 第8章 サポートベクトルマシンはじめてのパターン認識 第8章 サポートベクトルマシン
はじめてのパターン認識 第8章 サポートベクトルマシン
Motoya Wakiyama
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
hirokazutanaka
 
強化学習その3
強化学習その3強化学習その3
強化学習その3
nishio
 
Word2Vec
Word2VecWord2Vec
Word2Vec
hyunyoung Lee
 
第10回 配信講義 計算科学技術特論A(2021)
第10回 配信講義 計算科学技術特論A(2021)第10回 配信講義 計算科学技術特論A(2021)
第10回 配信講義 計算科学技術特論A(2021)
RCCSRENKEI
 
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision TransformersEmerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Sungchul Kim
 
A3C解説
A3C解説A3C解説
A3C解説
harmonylab
 
クラシックな機械学習の入門  11.評価方法
クラシックな機械学習の入門  11.評価方法クラシックな機械学習の入門  11.評価方法
クラシックな機械学習の入門  11.評価方法
Hiroshi Nakagawa
 
ブラックボックス最適化とその応用
ブラックボックス最適化とその応用ブラックボックス最適化とその応用
ブラックボックス最適化とその応用
gree_tech
 
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
Itaru Otomaru
 
Variational AutoEncoder
Variational AutoEncoderVariational AutoEncoder
Variational AutoEncoder
Kazuki Nitta
 
Nlp toolkits and_preprocessing_techniques
Nlp toolkits and_preprocessing_techniquesNlp toolkits and_preprocessing_techniques
Nlp toolkits and_preprocessing_techniques
ankit_ppt
 
数式からみるWord2Vec
数式からみるWord2Vec数式からみるWord2Vec
数式からみるWord2Vec
Okamoto Laboratory, The University of Electro-Communications
 
2014.01.23 prml勉強会4.2確率的生成モデル
2014.01.23 prml勉強会4.2確率的生成モデル2014.01.23 prml勉強会4.2確率的生成モデル
2014.01.23 prml勉強会4.2確率的生成モデル
Takeshi Sakaki
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワークDeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
hirono kawashima
 
Artificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningArtificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep Learning
Sujit Pal
 
07 regularization
07 regularization07 regularization
07 regularization
Ronald Teo
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
hirokazutanaka
 
はじめてのパターン認識 第8章 サポートベクトルマシン
はじめてのパターン認識 第8章 サポートベクトルマシンはじめてのパターン認識 第8章 サポートベクトルマシン
はじめてのパターン認識 第8章 サポートベクトルマシン
Motoya Wakiyama
 
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
東京都市大学 データ解析入門 6 回帰分析とモデル選択 1
hirokazutanaka
 
強化学習その3
強化学習その3強化学習その3
強化学習その3
nishio
 
第10回 配信講義 計算科学技術特論A(2021)
第10回 配信講義 計算科学技術特論A(2021)第10回 配信講義 計算科学技術特論A(2021)
第10回 配信講義 計算科学技術特論A(2021)
RCCSRENKEI
 
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision TransformersEmerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Sungchul Kim
 
クラシックな機械学習の入門  11.評価方法
クラシックな機械学習の入門  11.評価方法クラシックな機械学習の入門  11.評価方法
クラシックな機械学習の入門  11.評価方法
Hiroshi Nakagawa
 
ブラックボックス最適化とその応用
ブラックボックス最適化とその応用ブラックボックス最適化とその応用
ブラックボックス最適化とその応用
gree_tech
 
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
[PRML勉強会資料] パターン認識と機械学習 第3章 線形回帰モデル (章頭-3.1.5)(p.135-145)
Itaru Otomaru
 
Variational AutoEncoder
Variational AutoEncoderVariational AutoEncoder
Variational AutoEncoder
Kazuki Nitta
 
Nlp toolkits and_preprocessing_techniques
Nlp toolkits and_preprocessing_techniquesNlp toolkits and_preprocessing_techniques
Nlp toolkits and_preprocessing_techniques
ankit_ppt
 
2014.01.23 prml勉強会4.2確率的生成モデル
2014.01.23 prml勉強会4.2確率的生成モデル2014.01.23 prml勉強会4.2確率的生成モデル
2014.01.23 prml勉強会4.2確率的生成モデル
Takeshi Sakaki
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワークDeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
hirono kawashima
 
Artificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningArtificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep Learning
Sujit Pal
 
07 regularization
07 regularization07 regularization
07 regularization
Ronald Teo
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII
 
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
東京都市大学 データ解析入門 5 スパース性と圧縮センシング 2
hirokazutanaka
 

Viewers also liked (20)

Recent advances on low-rank and sparse decomposition for moving object detection
Recent advances on low-rank and sparse decomposition for moving object detectionRecent advances on low-rank and sparse decomposition for moving object detection
Recent advances on low-rank and sparse decomposition for moving object detection
Andrews Cordolino Sobral
 
tensor-decomposition
tensor-decompositiontensor-decomposition
tensor-decomposition
Kenta Oono
 
Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and Applications
Kohei Hayashi
 
Incremental and Multi-feature Tensor Subspace Learning applied for Background...
Incremental and Multi-feature Tensor Subspace Learning applied for Background...Incremental and Multi-feature Tensor Subspace Learning applied for Background...
Incremental and Multi-feature Tensor Subspace Learning applied for Background...
Andrews Cordolino Sobral
 
SPPRA'2013 Paper Presentation
SPPRA'2013 Paper PresentationSPPRA'2013 Paper Presentation
SPPRA'2013 Paper Presentation
Andrews Cordolino Sobral
 
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix FormatComputing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
Thomas Mach
 
Online Stochastic Tensor Decomposition for Background Subtraction in Multispe...
Online Stochastic Tensor Decomposition for Background Subtraction in Multispe...Online Stochastic Tensor Decomposition for Background Subtraction in Multispe...
Online Stochastic Tensor Decomposition for Background Subtraction in Multispe...
Andrews Cordolino Sobral
 
Sparsity and Compressed Sensing
Sparsity and Compressed SensingSparsity and Compressed Sensing
Sparsity and Compressed Sensing
Gabriel Peyré
 
2. tensor algebra jan 2013
2. tensor algebra jan 20132. tensor algebra jan 2013
2. tensor algebra jan 2013
Olowosulu Emmanuel
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Method
aapx
 
The low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspaceThe low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspace
Tasuku Soma
 
QualityConference
QualityConferenceQualityConference
QualityConference
Helen Hodsdon FCMI, FHEA
 
N20160601 al 07
N20160601 al 07N20160601 al 07
N20160601 al 07
Rsm San Martín
 
Tarea 1 diapositivas
Tarea 1 diapositivasTarea 1 diapositivas
Tarea 1 diapositivas
SergioCardenas_4
 
Andrew Wickham Resume 210515
Andrew Wickham Resume 210515Andrew Wickham Resume 210515
Andrew Wickham Resume 210515
Andrew Wickham
 
Trabajo SIG - CC - Cidec TICS- Equipo 2
Trabajo   SIG - CC - Cidec TICS- Equipo 2Trabajo   SIG - CC - Cidec TICS- Equipo 2
Trabajo SIG - CC - Cidec TICS- Equipo 2
juliojosepaez
 
Mapuche. parte 1
Mapuche. parte 1Mapuche. parte 1
Mapuche. parte 1
Ignacio Apablaza Fernandez
 
Regedit (editor de registro)
Regedit (editor de registro)Regedit (editor de registro)
Regedit (editor de registro)
Tecnologia Durango
 
Empleadas de hogar
Empleadas de hogarEmpleadas de hogar
Empleadas de hogar
vgp212
 
Your Biggest Hidden cost saving
Your Biggest Hidden cost savingYour Biggest Hidden cost saving
Your Biggest Hidden cost saving
Canon Belgium
 
Recent advances on low-rank and sparse decomposition for moving object detection
Recent advances on low-rank and sparse decomposition for moving object detectionRecent advances on low-rank and sparse decomposition for moving object detection
Recent advances on low-rank and sparse decomposition for moving object detection
Andrews Cordolino Sobral
 
tensor-decomposition
tensor-decompositiontensor-decomposition
tensor-decomposition
Kenta Oono
 
Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and Applications
Kohei Hayashi
 
Incremental and Multi-feature Tensor Subspace Learning applied for Background...
Incremental and Multi-feature Tensor Subspace Learning applied for Background...Incremental and Multi-feature Tensor Subspace Learning applied for Background...
Incremental and Multi-feature Tensor Subspace Learning applied for Background...
Andrews Cordolino Sobral
 
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix FormatComputing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
Thomas Mach
 
Online Stochastic Tensor Decomposition for Background Subtraction in Multispe...
Online Stochastic Tensor Decomposition for Background Subtraction in Multispe...Online Stochastic Tensor Decomposition for Background Subtraction in Multispe...
Online Stochastic Tensor Decomposition for Background Subtraction in Multispe...
Andrews Cordolino Sobral
 
Sparsity and Compressed Sensing
Sparsity and Compressed SensingSparsity and Compressed Sensing
Sparsity and Compressed Sensing
Gabriel Peyré
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Method
aapx
 
The low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspaceThe low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspace
Tasuku Soma
 
Andrew Wickham Resume 210515
Andrew Wickham Resume 210515Andrew Wickham Resume 210515
Andrew Wickham Resume 210515
Andrew Wickham
 
Trabajo SIG - CC - Cidec TICS- Equipo 2
Trabajo   SIG - CC - Cidec TICS- Equipo 2Trabajo   SIG - CC - Cidec TICS- Equipo 2
Trabajo SIG - CC - Cidec TICS- Equipo 2
juliojosepaez
 
Empleadas de hogar
Empleadas de hogarEmpleadas de hogar
Empleadas de hogar
vgp212
 
Your Biggest Hidden cost saving
Your Biggest Hidden cost savingYour Biggest Hidden cost saving
Your Biggest Hidden cost saving
Canon Belgium
 
Ad

Similar to Matrix and Tensor Tools for Computer Vision (20)

EiB Seminar from Esteban Vegas, Ph.D.
EiB Seminar from Esteban Vegas, Ph.D. EiB Seminar from Esteban Vegas, Ph.D.
EiB Seminar from Esteban Vegas, Ph.D.
Statistics and Bioinformatics (EiB-UB)
 
And Then There Are Algorithms - Danilo Poccia - Codemotion Rome 2018
And Then There Are Algorithms - Danilo Poccia - Codemotion Rome 2018And Then There Are Algorithms - Danilo Poccia - Codemotion Rome 2018
And Then There Are Algorithms - Danilo Poccia - Codemotion Rome 2018
Codemotion
 
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
RR 2013 - Montali - Verification and Synthesis in Description Logic Based Dyn...
Faculty of Computer Science - Free University of Bozen-Bolzano
 
Image Fusion Ehancement using DT-CWT Technique
Image Fusion Ehancement using DT-CWT TechniqueImage Fusion Ehancement using DT-CWT Technique
Image Fusion Ehancement using DT-CWT Technique
IRJET Journal
 
MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION...
MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION...MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION...
MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION...
cscpconf
 
Medical diagnosis classification
Medical diagnosis classificationMedical diagnosis classification
Medical diagnosis classification
csandit
 
Machine Learning.pdf
Machine Learning.pdfMachine Learning.pdf
Machine Learning.pdf
BeyaNasr1
 
Gene's law
Gene's lawGene's law
Gene's law
Hoopeer Hoopeer
 
PCA and LDA in machine learning
PCA and LDA in machine learningPCA and LDA in machine learning
PCA and LDA in machine learning
Akhilesh Joshi
 
An Efficient Frame Embedding Using Haar Wavelet Coefficients And Orthogonal C...
An Efficient Frame Embedding Using Haar Wavelet Coefficients And Orthogonal C...An Efficient Frame Embedding Using Haar Wavelet Coefficients And Orthogonal C...
An Efficient Frame Embedding Using Haar Wavelet Coefficients And Orthogonal C...
IJERA Editor
 
Predicting Employee Attrition
Predicting Employee AttritionPredicting Employee Attrition
Predicting Employee Attrition
Shruti Mohan
 
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
ijcsit
 
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
Happiest Minds Technologies
 
Ijariie1117 volume 1-issue 1-page-25-27
Ijariie1117 volume 1-issue 1-page-25-27Ijariie1117 volume 1-issue 1-page-25-27
Ijariie1117 volume 1-issue 1-page-25-27
IJARIIE JOURNAL
 
FAST AND EFFICIENT IMAGE COMPRESSION BASED ON PARALLEL COMPUTING USING MATLAB
FAST AND EFFICIENT IMAGE COMPRESSION BASED ON PARALLEL COMPUTING USING MATLABFAST AND EFFICIENT IMAGE COMPRESSION BASED ON PARALLEL COMPUTING USING MATLAB
FAST AND EFFICIENT IMAGE COMPRESSION BASED ON PARALLEL COMPUTING USING MATLAB
Journal For Research
 
Missing-Value Handling in Dynamic Model Estimation using IMPL
Missing-Value Handling in Dynamic Model Estimation using IMPL Missing-Value Handling in Dynamic Model Estimation using IMPL
Missing-Value Handling in Dynamic Model Estimation using IMPL
Alkis Vazacopoulos
 
Accelerated life testing
Accelerated life testingAccelerated life testing
Accelerated life testing
Steven Li
 
Higgs Boson Challenge
Higgs Boson ChallengeHiggs Boson Challenge
Higgs Boson Challenge
Raouf KESKES
 
Bdu -stream_processing_with_smack_final
Bdu  -stream_processing_with_smack_finalBdu  -stream_processing_with_smack_final
Bdu -stream_processing_with_smack_final
manishduttpurohit
 
Bh36352357
Bh36352357Bh36352357
Bh36352357
IJERA Editor
 
And Then There Are Algorithms - Danilo Poccia - Codemotion Rome 2018
And Then There Are Algorithms - Danilo Poccia - Codemotion Rome 2018And Then There Are Algorithms - Danilo Poccia - Codemotion Rome 2018
And Then There Are Algorithms - Danilo Poccia - Codemotion Rome 2018
Codemotion
 
Image Fusion Ehancement using DT-CWT Technique
Image Fusion Ehancement using DT-CWT TechniqueImage Fusion Ehancement using DT-CWT Technique
Image Fusion Ehancement using DT-CWT Technique
IRJET Journal
 
MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION...
MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION...MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION...
MEDICAL DIAGNOSIS CLASSIFICATION USING MIGRATION BASED DIFFERENTIAL EVOLUTION...
cscpconf
 
Medical diagnosis classification
Medical diagnosis classificationMedical diagnosis classification
Medical diagnosis classification
csandit
 
Machine Learning.pdf
Machine Learning.pdfMachine Learning.pdf
Machine Learning.pdf
BeyaNasr1
 
PCA and LDA in machine learning
PCA and LDA in machine learningPCA and LDA in machine learning
PCA and LDA in machine learning
Akhilesh Joshi
 
An Efficient Frame Embedding Using Haar Wavelet Coefficients And Orthogonal C...
An Efficient Frame Embedding Using Haar Wavelet Coefficients And Orthogonal C...An Efficient Frame Embedding Using Haar Wavelet Coefficients And Orthogonal C...
An Efficient Frame Embedding Using Haar Wavelet Coefficients And Orthogonal C...
IJERA Editor
 
Predicting Employee Attrition
Predicting Employee AttritionPredicting Employee Attrition
Predicting Employee Attrition
Shruti Mohan
 
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
COMPARISON OF WAVELET NETWORK AND LOGISTIC REGRESSION IN PREDICTING ENTERPRIS...
ijcsit
 
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
An Approach to Mixed Dataset Clustering and Validation with ART-2 Artificial ...
Happiest Minds Technologies
 
Ijariie1117 volume 1-issue 1-page-25-27
Ijariie1117 volume 1-issue 1-page-25-27Ijariie1117 volume 1-issue 1-page-25-27
Ijariie1117 volume 1-issue 1-page-25-27
IJARIIE JOURNAL
 
FAST AND EFFICIENT IMAGE COMPRESSION BASED ON PARALLEL COMPUTING USING MATLAB
FAST AND EFFICIENT IMAGE COMPRESSION BASED ON PARALLEL COMPUTING USING MATLABFAST AND EFFICIENT IMAGE COMPRESSION BASED ON PARALLEL COMPUTING USING MATLAB
FAST AND EFFICIENT IMAGE COMPRESSION BASED ON PARALLEL COMPUTING USING MATLAB
Journal For Research
 
Missing-Value Handling in Dynamic Model Estimation using IMPL
Missing-Value Handling in Dynamic Model Estimation using IMPL Missing-Value Handling in Dynamic Model Estimation using IMPL
Missing-Value Handling in Dynamic Model Estimation using IMPL
Alkis Vazacopoulos
 
Accelerated life testing
Accelerated life testingAccelerated life testing
Accelerated life testing
Steven Li
 
Higgs Boson Challenge
Higgs Boson ChallengeHiggs Boson Challenge
Higgs Boson Challenge
Raouf KESKES
 
Bdu -stream_processing_with_smack_final
Bdu  -stream_processing_with_smack_finalBdu  -stream_processing_with_smack_final
Bdu -stream_processing_with_smack_final
manishduttpurohit
 
Ad

More from Andrews Cordolino Sobral (6)

ENGENHARIA DE COMPUTAÇÃO E INTELIGÊNCIA ARTIFICIAL
ENGENHARIA DE COMPUTAÇÃO E INTELIGÊNCIA ARTIFICIALENGENHARIA DE COMPUTAÇÃO E INTELIGÊNCIA ARTIFICIAL
ENGENHARIA DE COMPUTAÇÃO E INTELIGÊNCIA ARTIFICIAL
Andrews Cordolino Sobral
 
Machine Learning for Dummies (without mathematics)
Machine Learning for Dummies (without mathematics)Machine Learning for Dummies (without mathematics)
Machine Learning for Dummies (without mathematics)
Andrews Cordolino Sobral
 
PhD Thesis Defense Presentation: Robust Low-rank and Sparse Decomposition for...
PhD Thesis Defense Presentation: Robust Low-rank and Sparse Decomposition for...PhD Thesis Defense Presentation: Robust Low-rank and Sparse Decomposition for...
PhD Thesis Defense Presentation: Robust Low-rank and Sparse Decomposition for...
Andrews Cordolino Sobral
 
Comparison of Matrix Completion Algorithms for Background Initialization in V...
Comparison of Matrix Completion Algorithms for Background Initialization in V...Comparison of Matrix Completion Algorithms for Background Initialization in V...
Comparison of Matrix Completion Algorithms for Background Initialization in V...
Andrews Cordolino Sobral
 
Double-constrained RPCA based on Saliency Maps for Foreground Detection in Au...
Double-constrained RPCA based on Saliency Maps for Foreground Detection in Au...Double-constrained RPCA based on Saliency Maps for Foreground Detection in Au...
Double-constrained RPCA based on Saliency Maps for Foreground Detection in Au...
Andrews Cordolino Sobral
 
Classificação Automática do Estado do Trânsito Utilizando Propriedades Holíst...
Classificação Automática do Estado do Trânsito Utilizando Propriedades Holíst...Classificação Automática do Estado do Trânsito Utilizando Propriedades Holíst...
Classificação Automática do Estado do Trânsito Utilizando Propriedades Holíst...
Andrews Cordolino Sobral
 
ENGENHARIA DE COMPUTAÇÃO E INTELIGÊNCIA ARTIFICIAL
ENGENHARIA DE COMPUTAÇÃO E INTELIGÊNCIA ARTIFICIALENGENHARIA DE COMPUTAÇÃO E INTELIGÊNCIA ARTIFICIAL
ENGENHARIA DE COMPUTAÇÃO E INTELIGÊNCIA ARTIFICIAL
Andrews Cordolino Sobral
 
Machine Learning for Dummies (without mathematics)
Machine Learning for Dummies (without mathematics)Machine Learning for Dummies (without mathematics)
Machine Learning for Dummies (without mathematics)
Andrews Cordolino Sobral
 
PhD Thesis Defense Presentation: Robust Low-rank and Sparse Decomposition for...
PhD Thesis Defense Presentation: Robust Low-rank and Sparse Decomposition for...PhD Thesis Defense Presentation: Robust Low-rank and Sparse Decomposition for...
PhD Thesis Defense Presentation: Robust Low-rank and Sparse Decomposition for...
Andrews Cordolino Sobral
 
Comparison of Matrix Completion Algorithms for Background Initialization in V...
Comparison of Matrix Completion Algorithms for Background Initialization in V...Comparison of Matrix Completion Algorithms for Background Initialization in V...
Comparison of Matrix Completion Algorithms for Background Initialization in V...
Andrews Cordolino Sobral
 
Double-constrained RPCA based on Saliency Maps for Foreground Detection in Au...
Double-constrained RPCA based on Saliency Maps for Foreground Detection in Au...Double-constrained RPCA based on Saliency Maps for Foreground Detection in Au...
Double-constrained RPCA based on Saliency Maps for Foreground Detection in Au...
Andrews Cordolino Sobral
 
Classificação Automática do Estado do Trânsito Utilizando Propriedades Holíst...
Classificação Automática do Estado do Trânsito Utilizando Propriedades Holíst...Classificação Automática do Estado do Trânsito Utilizando Propriedades Holíst...
Classificação Automática do Estado do Trânsito Utilizando Propriedades Holíst...
Andrews Cordolino Sobral
 

Recently uploaded (20)

Compound Microscope with working principle
Compound Microscope with working principleCompound Microscope with working principle
Compound Microscope with working principle
RahulRajai
 
barr body11111111111111111111111111111111111111111111111111
barr body11111111111111111111111111111111111111111111111111barr body11111111111111111111111111111111111111111111111111
barr body11111111111111111111111111111111111111111111111111
akbary12650
 
chapter 2 Prepare for administration of medications.pdf
chapter  2 Prepare for administration of medications.pdfchapter  2 Prepare for administration of medications.pdf
chapter 2 Prepare for administration of medications.pdf
Berhe4
 
The Role of Visualization in Genomics Data Analysis Workflows: The Interviews
The Role of Visualization in Genomics Data Analysis Workflows: The InterviewsThe Role of Visualization in Genomics Data Analysis Workflows: The Interviews
The Role of Visualization in Genomics Data Analysis Workflows: The Interviews
sehilyi
 
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
HannoPoeschl
 
Thermodynamic concepts of zinc availability in soil and recent advances.pptx
Thermodynamic concepts of zinc availability in soil and recent advances.pptxThermodynamic concepts of zinc availability in soil and recent advances.pptx
Thermodynamic concepts of zinc availability in soil and recent advances.pptx
Archana Verma
 
Talk at INFN CCR Workshop on "Quantum Computing Simulation on FPGA"
Talk at INFN CCR Workshop on "Quantum Computing Simulation on FPGA"Talk at INFN CCR Workshop on "Quantum Computing Simulation on FPGA"
Talk at INFN CCR Workshop on "Quantum Computing Simulation on FPGA"
Mirko Mariotti
 
Aliphatic-Hydrocarbons-Q1-CON-CHEMs.pptx
Aliphatic-Hydrocarbons-Q1-CON-CHEMs.pptxAliphatic-Hydrocarbons-Q1-CON-CHEMs.pptx
Aliphatic-Hydrocarbons-Q1-CON-CHEMs.pptx
onram453
 
Exotic Species of Meghalaya by 10th class
Exotic Species of Meghalaya by 10th classExotic Species of Meghalaya by 10th class
Exotic Species of Meghalaya by 10th class
a32057862
 
An Efficient and Reliable Method to Determine SpO2 in Rodents.pdf
An Efficient and Reliable Method to Determine SpO2 in Rodents.pdfAn Efficient and Reliable Method to Determine SpO2 in Rodents.pdf
An Efficient and Reliable Method to Determine SpO2 in Rodents.pdf
Scintica Instrumentation
 
Next Generation Sequencing.pptx important
Next Generation Sequencing.pptx importantNext Generation Sequencing.pptx important
Next Generation Sequencing.pptx important
Muqaddasjamil5
 
The scientific heritage No 161 (161) (2025)
The scientific heritage No 161 (161) (2025)The scientific heritage No 161 (161) (2025)
The scientific heritage No 161 (161) (2025)
The scientific heritage
 
Infrared Spectroscopy - Chemistry Fundamental
Infrared Spectroscopy - Chemistry  FundamentalInfrared Spectroscopy - Chemistry  Fundamental
Infrared Spectroscopy - Chemistry Fundamental
MajidAhmadi34
 
Learnable and Expressive Visualization Authoring through Blended Interfaces
Learnable and Expressive Visualization Authoring through Blended InterfacesLearnable and Expressive Visualization Authoring through Blended Interfaces
Learnable and Expressive Visualization Authoring through Blended Interfaces
sehilyi
 
International Journal of Pharmacological Sciences (IJPS)
International Journal of Pharmacological Sciences (IJPS)International Journal of Pharmacological Sciences (IJPS)
International Journal of Pharmacological Sciences (IJPS)
journalijps98
 
Forensic-Photography-Preliminary Module.pptx
Forensic-Photography-Preliminary Module.pptxForensic-Photography-Preliminary Module.pptx
Forensic-Photography-Preliminary Module.pptx
JayarrLlagas1
 
APPLIED VETEINARY ANATOMy presentation in veterinary
APPLIED VETEINARY ANATOMy presentation in veterinaryAPPLIED VETEINARY ANATOMy presentation in veterinary
APPLIED VETEINARY ANATOMy presentation in veterinary
mythi170320000
 
Fetal Monitoring of 2nd yr ncm109 .pptx
Fetal Monitoring of 2nd yr ncm109  .pptxFetal Monitoring of 2nd yr ncm109  .pptx
Fetal Monitoring of 2nd yr ncm109 .pptx
JullianaPatriceAngel
 
The COCONUT Natural Products Database, Talk at ICCS 2025
The COCONUT Natural Products Database, Talk at ICCS 2025The COCONUT Natural Products Database, Talk at ICCS 2025
The COCONUT Natural Products Database, Talk at ICCS 2025
Christoph Steinbeck
 
Cytoskeleton__with_anno_1683089530723.pdf
Cytoskeleton__with_anno_1683089530723.pdfCytoskeleton__with_anno_1683089530723.pdf
Cytoskeleton__with_anno_1683089530723.pdf
raorajveer1612
 
Compound Microscope with working principle
Compound Microscope with working principleCompound Microscope with working principle
Compound Microscope with working principle
RahulRajai
 
barr body11111111111111111111111111111111111111111111111111
barr body11111111111111111111111111111111111111111111111111barr body11111111111111111111111111111111111111111111111111
barr body11111111111111111111111111111111111111111111111111
akbary12650
 
chapter 2 Prepare for administration of medications.pdf
chapter  2 Prepare for administration of medications.pdfchapter  2 Prepare for administration of medications.pdf
chapter 2 Prepare for administration of medications.pdf
Berhe4
 
The Role of Visualization in Genomics Data Analysis Workflows: The Interviews
The Role of Visualization in Genomics Data Analysis Workflows: The InterviewsThe Role of Visualization in Genomics Data Analysis Workflows: The Interviews
The Role of Visualization in Genomics Data Analysis Workflows: The Interviews
sehilyi
 
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
_OceanofPDF.com_Qualitative_Research_Analyzing_Life_-_Johnny_Saldana.pdf
HannoPoeschl
 
Thermodynamic concepts of zinc availability in soil and recent advances.pptx
Thermodynamic concepts of zinc availability in soil and recent advances.pptxThermodynamic concepts of zinc availability in soil and recent advances.pptx
Thermodynamic concepts of zinc availability in soil and recent advances.pptx
Archana Verma
 
Talk at INFN CCR Workshop on "Quantum Computing Simulation on FPGA"
Talk at INFN CCR Workshop on "Quantum Computing Simulation on FPGA"Talk at INFN CCR Workshop on "Quantum Computing Simulation on FPGA"
Talk at INFN CCR Workshop on "Quantum Computing Simulation on FPGA"
Mirko Mariotti
 
Aliphatic-Hydrocarbons-Q1-CON-CHEMs.pptx
Aliphatic-Hydrocarbons-Q1-CON-CHEMs.pptxAliphatic-Hydrocarbons-Q1-CON-CHEMs.pptx
Aliphatic-Hydrocarbons-Q1-CON-CHEMs.pptx
onram453
 
Exotic Species of Meghalaya by 10th class
Exotic Species of Meghalaya by 10th classExotic Species of Meghalaya by 10th class
Exotic Species of Meghalaya by 10th class
a32057862
 
An Efficient and Reliable Method to Determine SpO2 in Rodents.pdf
An Efficient and Reliable Method to Determine SpO2 in Rodents.pdfAn Efficient and Reliable Method to Determine SpO2 in Rodents.pdf
An Efficient and Reliable Method to Determine SpO2 in Rodents.pdf
Scintica Instrumentation
 
Next Generation Sequencing.pptx important
Next Generation Sequencing.pptx importantNext Generation Sequencing.pptx important
Next Generation Sequencing.pptx important
Muqaddasjamil5
 
The scientific heritage No 161 (161) (2025)
The scientific heritage No 161 (161) (2025)The scientific heritage No 161 (161) (2025)
The scientific heritage No 161 (161) (2025)
The scientific heritage
 
Infrared Spectroscopy - Chemistry Fundamental
Infrared Spectroscopy - Chemistry  FundamentalInfrared Spectroscopy - Chemistry  Fundamental
Infrared Spectroscopy - Chemistry Fundamental
MajidAhmadi34
 
Learnable and Expressive Visualization Authoring through Blended Interfaces
Learnable and Expressive Visualization Authoring through Blended InterfacesLearnable and Expressive Visualization Authoring through Blended Interfaces
Learnable and Expressive Visualization Authoring through Blended Interfaces
sehilyi
 
International Journal of Pharmacological Sciences (IJPS)
International Journal of Pharmacological Sciences (IJPS)International Journal of Pharmacological Sciences (IJPS)
International Journal of Pharmacological Sciences (IJPS)
journalijps98
 
Forensic-Photography-Preliminary Module.pptx
Forensic-Photography-Preliminary Module.pptxForensic-Photography-Preliminary Module.pptx
Forensic-Photography-Preliminary Module.pptx
JayarrLlagas1
 
APPLIED VETEINARY ANATOMy presentation in veterinary
APPLIED VETEINARY ANATOMy presentation in veterinaryAPPLIED VETEINARY ANATOMy presentation in veterinary
APPLIED VETEINARY ANATOMy presentation in veterinary
mythi170320000
 
Fetal Monitoring of 2nd yr ncm109 .pptx
Fetal Monitoring of 2nd yr ncm109  .pptxFetal Monitoring of 2nd yr ncm109  .pptx
Fetal Monitoring of 2nd yr ncm109 .pptx
JullianaPatriceAngel
 
The COCONUT Natural Products Database, Talk at ICCS 2025
The COCONUT Natural Products Database, Talk at ICCS 2025The COCONUT Natural Products Database, Talk at ICCS 2025
The COCONUT Natural Products Database, Talk at ICCS 2025
Christoph Steinbeck
 
Cytoskeleton__with_anno_1683089530723.pdf
Cytoskeleton__with_anno_1683089530723.pdfCytoskeleton__with_anno_1683089530723.pdf
Cytoskeleton__with_anno_1683089530723.pdf
raorajveer1612
 

Matrix and Tensor Tools for Computer Vision

  • 1. Matrix and Tensor Tools FOR COMPUTER VISION ANDREWS C. SOBRAL [email protected] PH.D. STUDENT, COMPUTER VISION LAB. L3I –UNIV. DE LA ROCHELLE, FRANCE
  • 3. Principal Component Analysis PCA is a statistical procedure that uses orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. Dimensionality reduction Variants: Multilinear PCA, ICA, LDA, Kernel PCA, Nonlinear PCA, .... http://www.nlpca.org/pca_principal_component_analysis.html
  • 7. Singular Value Decomposition Formally, the singular value decomposition of anm×nreal or complex matrixMis a factorization of the form: whereUis am×mreal or complexunitary matrix, Σ is anm×nrectangular diagonal matrixwith nonnegative real numbers on the diagonal, andV*(theconjugate transposeofV, or simply the transpose ofVifVis real) is ann×nreal or complexunitary matrix. The diagonal entries Σi,iof Σ are known as thesingular valuesofM. Themcolumns ofUand thencolumns ofVare called theleft-singular vectorsandright-singular vectorsofM, respectively. generalization of eigenvalue decomposition http://www.numtech.com/systems/
  • 8. -3-2-10123-8-6-4-20246810X Z-3-2-10123-8-6-4-20246810Y ZZ 1020304051015202530354045-8-6-4-20246-4-2024-4-2024-10-50510ORIGINAL-4-2024-4-2024-10-50510Z =  1-4-2024-4-2024-10-50510Z =  1 +  2
  • 10. Robust PCA Sparse error matrix Shttp://perception.csl.illinois.edu/matrix-rank/home.html L Underlyinglow-rank matrix M Matrix of corrupted observations
  • 12. Robust PCA OneeffectivewaytosolvePCPforthecaseoflargematricesistouseastandardaugmentedLagrangianmultipliermethod(ALM)(Bertsekas,1982). and then minimizing it iteratively by setting Where: More information: (Qiuand Vaswani, 2011), (Pope et al. 2011), (Rodríguez and Wohlberg, 2013)
  • 13. Robust PCA For more information see: (Lin et al., 2010)http://perception.csl.illinois.edu/matrix- rank/sample_code.html
  • 15. Low-rank Representation (LRR) Subspaceclustering problem!
  • 19. Non-Negative Matrix Factorizations (NMF) Inmanyapplications,dataisnon-negative,oftenduetophysicalconsiderations. ◦imagesaredescribedbypixelintensities; ◦textsarerepresentedbyvectorsofwordcounts; Itisdesirabletoretainthenon-negativecharacteristicsoftheoriginaldata.
  • 20. Non-Negative Matrix Factorizations (NMF) NMFprovidesanalternativeapproachtodecompositionthatassumesthatthedataandthecomponentsarenon- negative. Forinterpretationpurposes,onecanthinkofimposingnon-negativityconstraintsonthefactorUsothatbasiselementsbelongtothesamespaceastheoriginaldata. H>=0constraintsthebasiselementstobenonnegative.Moreover,inordertoforcethereconstructionofthebasiselementstobeadditive,onecanimposetheweightsWtobenonnegativeaswell,leadingtoapart-basedrepresentation. W>=0imposesanadditivereconstruction. References: The Why and How of Nonnegative Matrix Factorization (Nicolas Gillis, 2014) Nonnegative Matrix Factorization: Complexity, Algorithms and Applications (Nicolas Gillis, 2011),
  • 21. Non-Negative Matrix Factorizations (NMF) Similartosparseandlow-rankmatrixdecompositions,e.g.RPCA,MahNMFrobustlyestimatesthelow-rankpartandthesparsepartofanon-negativematrixandthusperformseffectivelywhendataarecontaminatedbyoutliers. https://sites.google.com/site/nmfsolvers/
  • 23. Introduction to tensors Tensorsaresimplymathematicalobjectsthatcanbeusedtodescribephysicalproperties.Infacttensorsaremerelyageneralizationofscalars,vectorsandmatrices;ascalarisazeroranktensor,avectorisafirstranktensorandamatrixisthesecondranktensor.
  • 24. Introduction to tensors Subarrays, tubesand slicesof a 3rd order tensor.
  • 25. Introduction to tensors Matricizationof a 3rd order tensor.
  • 26. 1 10 19 28 37 46 51 1 9 17 25 33 41 48 1 9 17 25 33 41 48 j k i 1 10 19 28 37 46 51 1 9 17 25 33 41 48 1 9 17 25 33 41 48 j k i 1 10 19 28 37 46 51 1 9 17 25 33 41 48 1 9 17 25 33 41 48 j k i 1 10 19 28 37 46 51 1 9 17 25 33 41 48 1 9 17 25 33 41 48 j k i 1 10 19 28 37 46 51 1 9 17 25 33 41 48 1 9 17 25 33 41 48 j k i Frontal Vertical Horizontal Horizontal, vertical and frontal slices from a 3rd order tensor
  • 27. Introduction to tensors Unfoldinga 3rd order tensor.
  • 28. Introduction to tensors Tensor transposition ◦While there is only one way transpose a matrix there are an exponential number of ways to transpose an order-n tensor. The 3rd ordercase:
  • 29. Tensor decompositionmethods Approaches: ◦Tucker / HOSVD ◦CANDECOMP-PARAFAC (CP) ◦Hierarchical Tucker (HT) ◦Tensor-Train decomposition (TT) ◦NTF (Non-negative Tensor Factorization) ◦NTD (Non-negative Tucker Decomposition) ◦NCP (Non-negative CP Decomposition) References: Tensor Decompositionsand Applications (Kolda and Bader, 2008)
  • 35. Tensor decompositionmethods Softwares ◦ThereareseveralMATLABtoolboxesavailablefordealingwithtensorsinCPandTuckerdecomposition,includingtheTensorToolbox,theN-waytoolbox,thePLSToolbox,andtheTensorlab.TheTT-ToolboxprovidesMATLABclassescoveringtensorsinTTandQTTdecomposition,aswellaslinearoperators.ThereisalsoaPythonimplementationoftheTT-toolboxcalledttpy.ThehtuckertoolboxprovidesaMATLABclassrepresentingatensorinHTdecomposition.
  • 37. IncrementalSVD Problem: ◦The matrix factorization step in SVD is computationally very expensive. Solution: ◦Have a small pre-computed SVD model, and build upon this model incrementally using inexpensive techniques. Businger(1970) and Bunch and Nielsen (1978) are the first authors who have proposed to update SVD sequentially with the arrival of more samples, i.e. appending/removing a row/column. Subsequently various approaches have been proposed to update the SVD more efficiently and supporting new operations. References: Businger, P.A. Updatinga singularvalue decomposition. 1970 Bunch, J.R.; Nielsen, C.P. Updatingthe singularvalue decomposition. 1978
  • 38. IncrementalSVD F(t) F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) [U, S, V] = SVD( [ F(t), …, F(t+2) ] ) [U’, S’, V’] = iSVD([F(t+3), …, F(t+5)], [U,S,V]) F(t) F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) [U, S, V] = SVD( [ F(t), …, F(t+1) ] ) [U’, S’, V’] = iSVD([F(t+1), …, F(t+3)], [U,S,V]) F(t) F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) [U, S, V] = SVD( [ F(t), …, F(t+2) ] ) [U’, S’, V’] = iSVD([F(t+1), …, F(t+3)], [U,S,V]) F(t) F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) [U, S, V] = SVD( [ F(t), …, F(t+1) ] ) [U’, S’, V’] = iSVD([F(t+1), …, F(t+3)], [U,S,V])
  • 39. IncrementalSVD Updating operation proposed by Sarwaret al. (2002): References: IncrementalSingularValue DecompositionAlgorithmsfor HighlyScalableRecommenderSystems(Sarwaret al., 2002)
  • 40. IncrementalSVD Operations proposed by Matthew Brand (2006): References: Fastlow-rankmodifications of the thinsingularvalue decomposition(Matthew Brand, 2006)
  • 41. IncrementalSVD Operations proposed by Melenchonand Martinez (2007): References: EfficientlyDowndating, Composingand SplittingSingularValue DecompositionsPreservingthe MeanInformation (Melenchónand Martínez, 2007)
  • 42. IncrementalSVD algorithmsin Matlab By Christopher Baker (Baker et al., 2012) http://www.math.fsu.edu/~cbaker/IncPACK/ [Up,Sp,Vp] = SEQKL(A,k,t,[U S V]) Original version only supports the Updating operation Added exponential forgetting factor to support Downdatingoperation By David Ross (Ross et al., 2007) http://www.cs.toronto.edu/~dross/ivt/ [U, D, mu, n] = sklm(data, U0, D0, mu0, n0, ff, K) Supports mean-update, updatingand downdating By David Wingate (Matthew Brand, 2006) http://web.mit.edu/~wingated/www/index.html [Up,Sp,Vp] = svd_update(U,S,V,A,B,force_orth) update the SVD to be [X + A'*B]=Up*Sp*Vp' (a general matrix update). [Up,Sp,Vp] = addblock_svd_update(U,S,V,A,force_orth) update the SVD to be [X A] = Up*Sp*Vp' (add columns [ie, new data points]) size of Vpincreases Amust be square matrix [Up,Sp,Vp] = rank_one_svd_update(U,S,V,a,b,force_orth) update the SVD to be [X + a*b'] = Up*Sp*Vp' (that is, a general rank-one update. This can be used to add columns, zero columns, change columns, recenterthe matrix, etc. ).
  • 44. Incrementaltensor learning Proposed by Sun et al. (2008) ◦Dynamic Tensor Analysis (DTA) ◦Streaming Tensor Analysis (STA) ◦Window-based Tensor Analysis (WTA) References: Incrementaltensor analysis: Theoryand applications (Sun et al, 2008)
  • 45. Incrementaltensor learning Dynamic Tensor Analysis (DTA) ◦[T, C] = DTA(Xnew, R, C, alpha) ◦ApproximatelyupdatestensorPCA,accordingtonewtensorXnew,oldvariancematricesinCandhespecifieddimensionsinvectorR.TheinputXnewisatensor.TheresultreturnedinTisatuckertensorandCisthecellarrayofnewvariancematrices.
  • 46. Incrementaltensor learning Streaming Tensor Analysis(STA) ◦[Tnew, S] = STA(Xnew, R, T, alpha, samplingPercent) ◦ApproximatelyupdatestensorPCA,accordingtonewtensorXnew,oldtuckerdecompositionTandhespecifieddimensionsinvectorR.TheinputXnewisatensororsptensor.TheresultreturnedinTisanewtuckertensorforXnew,Shastheenergyvectoralongeachmode.
  • 47. Incrementaltensor learning Window-basedTensor Analysis(WTA) ◦[T, C] = WTA(Xnew, R, Xold, overlap, type, C) ◦Computewindow-basedtensordecomposition,accordingtoXnew(Xold)thenew(old)tensorwindow,overlapisthenumberofoverlappingtensorsandCvariancematricesexceptforthetimemodeofprevioustensorwindowandthespecifieddimensionsin vectorR,typecanbe'tucker'(default)or'parafac'.TheinputXnew(Xold)isatensor,sptensor,wherethefirstmodeistime.TheresultreturnedinTisatuckerorkruskaltensordependingontypeandCisthecellarrayofnewvariancematrices.
  • 48. Incrementaltensor learning Proposed by Hu et al. (2011) ◦Incremental rank-(R1,R2,R3) tensor-based subspace learning ◦IRTSA-GBM (grayscale) ◦IRTSA-CBM (color) References: Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking (Hu et al., 2011) ApplyiSVD SKLM (Ross et al., 2007)
  • 50. Incrementalrank-(R1,R2,R3) tensor-basedsubspacelearning(Hu et al., 2011) streaming videodata Background Modeling ExponentialmovingaverageLK J(t+1) new sub-frame tensor Â(t) sub-tensorAPPLY STANDARD RANK-R SVDUNFOLDING MODE-1,2,3 Set of N background images For first N frames low-rank sub-tensor model B(t+1) Newbackground sub-frame Â(t+1) B(t+1) drop last frameAPPLY INCREMENTAL SVD UNFOLDING MODE-1,2,3 updatedsub-tensor foreground mask For the nextframes For the nextbackground sub-frame Â(t+1) updatedsub-tensorUPDATE SKLM (Ross et al., 2007) {bg|fg} = P( J[t+1] | U[1], U[2], V[3] ) ForegroundDetection Background Model Initialization Background Model Maintenance
  • 51. Incremental and Multi-feature Tensor Subspace Learning applied for Background Modeling and Subtraction Performs feature extraction in the slidingblock Build or update the tensor model Store the last N frames in a slidingblock streaming videodata Performs the iHoSVDto buildor update the low-rank model foreground mask Performs the ForegroundDetection ℒ푡 low-rank model values pixels features 풯푡 removethe last frame fromslidingblock add first frame coming from video stream 풜푡 … (a) (b) (c) (d) (e) More info: https://sites.google.com/site/ihosvd/ Highlights: * Proposes an incremental low-rank HoSVD(iHOSVD) for background modeling and subtraction. * A unified tensor model to represent the features extracted from the streaming video data. Proposed by Sobralet al. (2014)