SlideShare a Scribd company logo
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted
Data Management Trends
David Mauri Gómez
Cloud Platform Solution Architect – Oracle
April 10, 2018
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 2
Data Management Evolution
Transactional
Data Warehouse
SQL
Social, Web
Data Lake
IoT
Fast Data
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Decision Diagram
3
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
Concurrency
Complex Query Response Times
Single Record Read/Write
Performance
Bulk Write Performance
Privileged User Security
General User Security
Governance Tools
System per TB Cost
Backup per TB Cost
Skills Acquisition Cost
RDBMS
NoSQL DB
Hadoop
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
High-level Comparison
HDFS NoSQL RDBMS
Data Type Chunk Record Transaction
Write Type Synchronous Eventually Consistent ACID Compliant
Data Preparation No Parsing No Parsing Parsing and Validation
DR Type Second Cluster Node Replica Second RDBMS
DR Unit File Record Transaction
DR Timing Batch Record Transaction
Complex Analytics? Yes No Yes
Query Speed Slow Fast for simple questions Fast
# of Data Access Methods One (full table scan) One (index lookup) Many (Optimized)
4
IngestDRAcces
Affordable Scale Low Predictable Latency Flexible Performance
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Unified Data Management
Data of any type
Any data source
Analysis of any typeSQL GraphSpark Spatial
Machine
Learning
SQL
Access with any language
node.jsJavaREST Python ScalaR
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Big Data SQL
The Best of Both Worlds
6
SQL
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 7
Oracle Unified Data Management Solution
Conventional view of
Data Management
Emerging view of
Data Management
Oracle Big Data SQL
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Storage Layer
8
Big Data SQL: Another Hadoop Processing Engine
Filesystem (HDFS)
NoSQL Databases
(Oracle NoSQL DB, HBase)
Resource Management (YARN, cgroups)
Processing Layer
MapReduce
and Hive
Spark Impala Search
Big Data
SQL
Meta
data
Store
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Hive
DN
DN
DN
DN
ORACLE SQL Engine
Storage
Table Table
Big Data-enabled
Oracle Tables
Python GraphRnode.js JavaREST SQL
Data Local Processing
Big Data SQL Cells
Leverage Metadata
Big Data SQL Architecture
Oracle Big Data SQL
9
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Anatomy of a Big Data SQL Cell
10
Smart Scan
I/O Stream Data Transfer
Convert to
Oracle “block”
format
Apply
Smart Scan and
other optimizations
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Big Data SQL Goals
Easily access any data
across big data stores
Provides a unified security
model across the sources
Analyze all data using
Oracle’s rich SQL dialect
Fast performance using Big
Data SQL Smart Scan
11
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
I/O Elimination
• Storage index
• Hive partition pruning
• Predicate and column
pushdown parquet and ORC
12
Big Data SQL key features
Data Movement
Elimination
• Smart Scan performs final
filtering pass to ensure only
requested elements are sent
to Oracle Database
Security
• Apply Oracle Database
security policies on non-
Oracle data stores
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Big Data SQL Security Features
Hadoop Security
ACL’s | Sentry | HDFS Encryption | Encryption in Motion
13
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Big Data SQL Security Features
• Same security models apply
to a wider range of data
stores
• Advanced features such as
data redaction can now be
applied enabling joins
between disparate sources
• Oracle security layers on
top of existing Hadoop
functionality
Hadoop Security
ACL’s | Sentry | HDFS Encryption | Encryption in Motion
14
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Data Lifecycle Management & Query Offload
More data on-line and available at a lower cost
Move Partition to BDA
Oracle Big Data SQL
Rolling 13
months
Month 14-n
Big Data Rolling Windows
• Process
• Copy older partition to BDA
• Update views
• Drop older Exadata partition
• Offloaded data can be accessed
via Oracle & Hadoop
• No Application changes required
15
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Database Data in HDFS
16
Hybrid Partitioned Tables
…JAN 2014 FEB 2014 MAR 2014 OCT 2016 NOV 2016 DEC 2016
HDFS
Orders
Database
OCT 2016 NOV 2016 DEC 2016
JAN 2014 FEB 2014 MAR 2014
1 All Partitions are stored internally
2 Some Partitions are moved Externally
3 Mixed Storage for Partitions
No top level changes to Orders
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Archive Data: Big Data SQL Implementation Options
1. Table Storage Split Across Tiers 2. View Combines Data Sources
HDFS
HDFSDATABASE
VIEW
DATABASE
TABLE
HDFS
DATABASE
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Traditional vs. Oracle Machine Learning/Predictive Analytics
• Traditional— “Move the data” —“Don’t move the data!”
18
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Traditional vs. Oracle Machine Learning/Predictive Analytics
• Traditional— “Move the data” — “Move the algorithms”
19
Simpler, Smarter Data Management
+ Analytics / Machine Learning Architecture
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Data Science
Oracle Confidential – Internal/Restricted/Highly Restricted 20
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
• Strengths
– Powerful & Extensible
– Graphical & Extensive statistics
– Free—open source (CRAN + 9000 components)
– Standard for Data Scientist
• Challenges
– Memory constrained
– Single threaded
– Outer loop—slows down process
– Not Enterprise Oriented
R environment
R—Widely Popular
R is a statistics language similar to Base SAS or SPSS statistics
+ =
Enterprise
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted 22
Oracle Machine Learning Tools for Data Scientist
Oracle R Enterprise
Oracle Advanced Analytics
- On-premise Database Option
- Included in Cloud EE Database
Oracle R Advanced
Analytics for Hadoop
RStudio Notebooks
(Zepelin, Jupyter)
Oracle Data
Mining (ODM)
Interface
Hadoop based
- Option for BDA
- Included with BDCS
- Planned for BDC
Oracle Big Data
Spatial & Graph
Oracle Database
& Hadoop
Data Mining Enterprise AA4H BDSGSpatial &
Graph
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Oracle Advanced Analytics
• R-SQL Transparency Framework overloads R
functions for scalable in-database execution
• Function overload for data transforms,
statistical functions and advanced analytics
• Interactive display of graphical results and
flow control as in standard R
• Submit user-defined R functions for
execution at database server under control
of Oracle Database
• Scale to large datasets
• Access tables, views, and external tables, as
well as data through DB LINKS
• Leverage database SQL parallelism
• Leverage new and existing in-database
statistical and data mining capabilities
R Engine Other R
packages
Oracle R Enterprise packages
User R Engine on desktop
• Database can spawn multiple R engines for
database-managed parallelism
• Efficient data transfer to spawned R engines
• Emulate map-reduce style algorithms and
applications
• Enables production deployment and
automated execution of R scripts
1
User tables
Oracle DatabaseSQL
Results
Database Compute Engine
2
R Engine Other R
packages
Oracle R Enterprise packages
R Engine(s) spawned by Oracle DB
R
Results
3
?x
R
Open Source
Oracle R Enterprise Compute Engines
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Oracle R Advanced Analytics for Hadoop
ORAAH = Oracle R Advanced Analytics for Hadoop, part of Big Data
Software Connectors Suite (Oracle Big Data Appliance Option)
• ORAAH transparency layer enables certain overloaded R functions to operate on Hive
tables using R syntax and behavior (transparently translating R to HiveQL)
• R interface for manipulating HDFS data and writing mapper and reducer functions in R –
where you can leverage open source CRAN packages – and invoke those Hadoop jobs
from R
• Provides a range of predictive algorithms that execute on the Hadoop cluster with data
in HDFS in a parallel/distributed manner.
Oracle Internal - Proprietary 24
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Hadoop Cluster
with Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop:
Using Hadoop and HIVE, plus R Engine and Open-Source R Packages
R Analytics
Oracle R Advanced
Analytics for Hadoop
R Client
• ORAAH Spark algorithms: Deep Neural, GLM, LM
• Spark MLlib algorithms: LM, GLM, LASSO, Ridge
Regression, Decision Trees, Random Forests, SVM,
k-Means, PCA
• Open-source R packages distributed via Map-Red
function in R
HQL Basic Statistics, Data
Prep, Joins and View creation
25
HQL
+
HDFS Access, Store, Load,
Data Prep and Transform.
SQL Developer
Other SQL Apps
SQL Client
Oracle Database Server
with Advanced Analytics option
BigDataSQL
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
• Classification
– Naïve Bayes
– Logistic Regression (GLM)
– Decision Tree
– Random Forest
– Neural Network
– Support Vector Machine
– Explicit Semantic Analysis
– Gaussian Mixture Models
• Clustering
– Hierarchical K-Means
– Hierarchical O-Cluster
– Expectation Maximization (EM)
• Anomaly Detection
– One-Class
Support Vector Machine (SVM)
• Regression
– Generalized Linear Model
– Support Vector Machine (SVM)
– Random Forest
– Linear Model
– Stepwise Linear regression
– LASSO
• Association Rules
– A priori
• Attribute Importance
– Minimum Description Length
– Principal Component Analysis (PCA)
– Unsupervised Pair-wise KL Divergence
• Predictive Queries
• Statistical Functions
– Basic statistics: median, stdev, t-test,
F-test, Pearson’s, Chi-sq, Anova, etc.
• Algorithm Support for Text
– Algorithms support text type
– Tokenization and theme extraction
– Explicit Semantic Analysis (ESA) for
document similarity
• Feature Extraction
– Principal Component Analysis (PCA)
– Non-negative Matrix Factorization
– Singular Value Decomposition (SVD)
• Time Series
– Single Exponential Smoothing
– Double Exponential Smoothing
• Open Source ML Algorithms
– CRAN R Algorithm Packages through
Embedded R Execution
– Spark MLlib algorithm integration
Oracle’s Adv. Analytics Machine Learning Algorithms
A1 A2 A3 A4 A5 A6
A7
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Oracle Spatial Analysis
• Análisis de proximidad y
contención
• Datos de localización
enriquecidos
• Preparación de datos
raster y vectoriales
27
Oracle Graph Analysis
• Gráficos de propiedades
• Análisis de relaciones
• Análisis de valor (churn)
• Ciberseguridad
• Reconocimiento de objetos
Oracle’s Spatial and Graph
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | CVC Spatial Update for DWR
Enable Spatial and Graph use cases on every platform
Oracle’s Spatial and Graph Strategy
NoSQL
Oracle Big Data Spatial and Graph Spatial and Graph in
Cloud Offerings
Oracle Database
Spatial and Graph
Big Data:
Single Model Data Store
Database 12c:
Polyglot (Multi-model)
Data Store
Oracle Big Data Cloud Service
Oracle Database Cloud Service
• Enterprise Edition High Performance
• Enterprise Edition Extreme Performance
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Overview of Graph
• What is a graph?
– A set of vertices and edges (with optional properties)
– A graph is simply linked data
• Why do we care?
– Graphs are everywhere
• Road networks, power grids, biological networks
• Social networks/Social Web (Facebook, Linkedin, Twitter, Baidu, Google+,…)
• Knowledge graphs (RDF, OWL)
– Graphs are intuitive and flexible
• Easy to navigate, easy to form a path, natural to visualize
• Do not require a predefined schema
E
A D
C B
F
2
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Graph Analysis Examples
Reachability
Quickly identify multi-hop
relations between (a set
of) vertices and how they
are connected under
various constraints.
Anomaly Detection
Analyze the link
relationships between
data entities to detect
subsets of data that are
different from others.
Centrality Analysis
Analyze the topology of the
network, in addition to data
values, in order to identify
data entities that are more
important than others.
Link Prediction
Inspect similarities
between data entities
under overall network
structure, and predict
potential future links.
e.g. product
recommendation
e.g. security breach
trace
e.g. influencer
identificatione.g. Fraud detection
Confidential – Oracle Internal 30
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Rich set of built-in parallel graph algorithms … and parallel graph mutation operations
Computational Analytics: Built-in Package
40+ built-in algorithms, highly parallelized, highly performant
Detecting Components and
Communities
Tarjan’s, Kosaraju’s,
Weakly Connected
Components, Label
Propagation (w/ variants),
Soman and Narang’s
Spacification
Ranking and Walking
Pagerank, Personalized Pagerank,
Betwenness Centrality (w/ variants),
Closeness Centrality, Degree
Centrality,
Eigenvector Centrality, HITS,
Random walking and sampling (w/
variants)
Evaluating Community Structures
∑ ∑
Conductance,
Modularity
Clustering Coefficient
(Triangle Counting)
Adamic-Adar
Path-Finding
Hop-Distance (BFS)
Dijkstra’s,
Bi-directional Dijkstra’s
Bellman-Ford’s
Link Prediction SALSA
(Twitter’s Who-to-follow)
Other Classics Vertex Cover
Minimum Spanning-Tree
(Prim’s)
a
d
b e
g
c i
f
h
The original graph
a
d
b e
g
c i
f
h
Create Undirected
Graph
Simplify Graph
a
d
b e
g
c i
f
h
Left Set: “a,b,e”
a d
b
e
g
c
i
Create Bipartite
Graph
ge b d i a f c h
Sort-By-Degree (Renumbering)
Filtered
Subgraph
d
b
g
i
e
31
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Information Management Reference Architecture
32
Actionable
Events
Streaming Engine Data Lake Enterprise Data & Reporting
Discovery Lab
Actionable
Metrics
Actionable
Data Sets
Input
Events
Execution
Innovation
Discovery
Output
Data
Structured
Enterprise
Data
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |
Big Data SQL Simplifies Analyses
33
Streaming Engine Data Lake Enterprise Data & Reporting
Discovery Lab
Input
Events
Execution
Innovation
Discovery
Output
Data
Structured
Enterprise
Data
Notebooks/Analytic Services
Big Data SQL
Object Store Hadoop/HDFS
Your Application
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted 34
Meetup Oracle Database BCN: 2.1 Data Management Trends
Ad

More Related Content

What's hot (20)

Rajeev kumar apache_spark & scala developer
Rajeev kumar apache_spark & scala developerRajeev kumar apache_spark & scala developer
Rajeev kumar apache_spark & scala developer
Rajeev Kumar
 
Apache Hive 2.0: SQL, Speed, Scale
Apache Hive 2.0: SQL, Speed, ScaleApache Hive 2.0: SQL, Speed, Scale
Apache Hive 2.0: SQL, Speed, Scale
DataWorks Summit/Hadoop Summit
 
Enterprise large scale graph analytics and computing base on distribute graph...
Enterprise large scale graph analytics and computing base on distribute graph...Enterprise large scale graph analytics and computing base on distribute graph...
Enterprise large scale graph analytics and computing base on distribute graph...
DataWorks Summit
 
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Agile Testing Alliance
 
Solving Performance Problems on Hadoop
Solving Performance Problems on HadoopSolving Performance Problems on Hadoop
Solving Performance Problems on Hadoop
Tyler Mitchell
 
Big Data Simplified - Is all about Ab'strakSHeN
Big Data Simplified - Is all about Ab'strakSHeNBig Data Simplified - Is all about Ab'strakSHeN
Big Data Simplified - Is all about Ab'strakSHeN
DataWorks Summit
 
Building Information Platform - Integration of Hadoop with SAP HANA and HANA ...
Building Information Platform - Integration of Hadoop with SAP HANA and HANA ...Building Information Platform - Integration of Hadoop with SAP HANA and HANA ...
Building Information Platform - Integration of Hadoop with SAP HANA and HANA ...
DataWorks Summit/Hadoop Summit
 
Apache spark - Architecture , Overview & libraries
Apache spark - Architecture , Overview & librariesApache spark - Architecture , Overview & libraries
Apache spark - Architecture , Overview & libraries
Walaa Hamdy Assy
 
High Performance Spatial-Temporal Trajectory Analysis with Spark
High Performance Spatial-Temporal Trajectory Analysis with Spark High Performance Spatial-Temporal Trajectory Analysis with Spark
High Performance Spatial-Temporal Trajectory Analysis with Spark
DataWorks Summit/Hadoop Summit
 
Bridging the gap: achieving fast data synchronization from SAP HANA by levera...
Bridging the gap: achieving fast data synchronization from SAP HANA by levera...Bridging the gap: achieving fast data synchronization from SAP HANA by levera...
Bridging the gap: achieving fast data synchronization from SAP HANA by levera...
DataWorks Summit
 
Lessons learned processing 70 billion data points a day using the hybrid cloud
Lessons learned processing 70 billion data points a day using the hybrid cloudLessons learned processing 70 billion data points a day using the hybrid cloud
Lessons learned processing 70 billion data points a day using the hybrid cloud
DataWorks Summit
 
Hadoop and other animals
Hadoop and other animalsHadoop and other animals
Hadoop and other animals
DataWorks Summit/Hadoop Summit
 
Scaling Deep Learning on Hadoop at LinkedIn
Scaling Deep Learning on Hadoop at LinkedInScaling Deep Learning on Hadoop at LinkedIn
Scaling Deep Learning on Hadoop at LinkedIn
DataWorks Summit
 
Insights into Real World Data Management Challenges
Insights into Real World Data Management ChallengesInsights into Real World Data Management Challenges
Insights into Real World Data Management Challenges
DataWorks Summit
 
High Performance Predictive Analytics in R and Hadoop
High Performance Predictive Analytics in R and HadoopHigh Performance Predictive Analytics in R and Hadoop
High Performance Predictive Analytics in R and Hadoop
DataWorks Summit
 
Filling the Data Lake
Filling the Data LakeFilling the Data Lake
Filling the Data Lake
DataWorks Summit/Hadoop Summit
 
Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014
Rajan Kanitkar
 
Paris FOD Meetup #5 Hortonworks Presentation
Paris FOD Meetup #5 Hortonworks PresentationParis FOD Meetup #5 Hortonworks Presentation
Paris FOD Meetup #5 Hortonworks Presentation
Abdelkrim Hadjidj
 
Big Data, Fast Data @ PayPal (YOW 2018)
Big Data, Fast Data @ PayPal (YOW 2018)Big Data, Fast Data @ PayPal (YOW 2018)
Big Data, Fast Data @ PayPal (YOW 2018)
Sid Anand
 
TDC2016SP - Trilha NoSQL
TDC2016SP - Trilha NoSQLTDC2016SP - Trilha NoSQL
TDC2016SP - Trilha NoSQL
tdc-globalcode
 
Rajeev kumar apache_spark & scala developer
Rajeev kumar apache_spark & scala developerRajeev kumar apache_spark & scala developer
Rajeev kumar apache_spark & scala developer
Rajeev Kumar
 
Enterprise large scale graph analytics and computing base on distribute graph...
Enterprise large scale graph analytics and computing base on distribute graph...Enterprise large scale graph analytics and computing base on distribute graph...
Enterprise large scale graph analytics and computing base on distribute graph...
DataWorks Summit
 
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Agile Testing Alliance
 
Solving Performance Problems on Hadoop
Solving Performance Problems on HadoopSolving Performance Problems on Hadoop
Solving Performance Problems on Hadoop
Tyler Mitchell
 
Big Data Simplified - Is all about Ab'strakSHeN
Big Data Simplified - Is all about Ab'strakSHeNBig Data Simplified - Is all about Ab'strakSHeN
Big Data Simplified - Is all about Ab'strakSHeN
DataWorks Summit
 
Building Information Platform - Integration of Hadoop with SAP HANA and HANA ...
Building Information Platform - Integration of Hadoop with SAP HANA and HANA ...Building Information Platform - Integration of Hadoop with SAP HANA and HANA ...
Building Information Platform - Integration of Hadoop with SAP HANA and HANA ...
DataWorks Summit/Hadoop Summit
 
Apache spark - Architecture , Overview & libraries
Apache spark - Architecture , Overview & librariesApache spark - Architecture , Overview & libraries
Apache spark - Architecture , Overview & libraries
Walaa Hamdy Assy
 
High Performance Spatial-Temporal Trajectory Analysis with Spark
High Performance Spatial-Temporal Trajectory Analysis with Spark High Performance Spatial-Temporal Trajectory Analysis with Spark
High Performance Spatial-Temporal Trajectory Analysis with Spark
DataWorks Summit/Hadoop Summit
 
Bridging the gap: achieving fast data synchronization from SAP HANA by levera...
Bridging the gap: achieving fast data synchronization from SAP HANA by levera...Bridging the gap: achieving fast data synchronization from SAP HANA by levera...
Bridging the gap: achieving fast data synchronization from SAP HANA by levera...
DataWorks Summit
 
Lessons learned processing 70 billion data points a day using the hybrid cloud
Lessons learned processing 70 billion data points a day using the hybrid cloudLessons learned processing 70 billion data points a day using the hybrid cloud
Lessons learned processing 70 billion data points a day using the hybrid cloud
DataWorks Summit
 
Scaling Deep Learning on Hadoop at LinkedIn
Scaling Deep Learning on Hadoop at LinkedInScaling Deep Learning on Hadoop at LinkedIn
Scaling Deep Learning on Hadoop at LinkedIn
DataWorks Summit
 
Insights into Real World Data Management Challenges
Insights into Real World Data Management ChallengesInsights into Real World Data Management Challenges
Insights into Real World Data Management Challenges
DataWorks Summit
 
High Performance Predictive Analytics in R and Hadoop
High Performance Predictive Analytics in R and HadoopHigh Performance Predictive Analytics in R and Hadoop
High Performance Predictive Analytics in R and Hadoop
DataWorks Summit
 
Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014
Rajan Kanitkar
 
Paris FOD Meetup #5 Hortonworks Presentation
Paris FOD Meetup #5 Hortonworks PresentationParis FOD Meetup #5 Hortonworks Presentation
Paris FOD Meetup #5 Hortonworks Presentation
Abdelkrim Hadjidj
 
Big Data, Fast Data @ PayPal (YOW 2018)
Big Data, Fast Data @ PayPal (YOW 2018)Big Data, Fast Data @ PayPal (YOW 2018)
Big Data, Fast Data @ PayPal (YOW 2018)
Sid Anand
 
TDC2016SP - Trilha NoSQL
TDC2016SP - Trilha NoSQLTDC2016SP - Trilha NoSQL
TDC2016SP - Trilha NoSQL
tdc-globalcode
 

Similar to Meetup Oracle Database BCN: 2.1 Data Management Trends (20)

Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
avanttic Consultoría Tecnológica
 
Intelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff PollockIntelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff Pollock
Jeffrey T. Pollock
 
2017 OpenWorld Keynote for Data Integration
2017 OpenWorld Keynote for Data Integration2017 OpenWorld Keynote for Data Integration
2017 OpenWorld Keynote for Data Integration
Jeffrey T. Pollock
 
2013 05 Oracle big_dataapplianceoverview
2013 05 Oracle big_dataapplianceoverview2013 05 Oracle big_dataapplianceoverview
2013 05 Oracle big_dataapplianceoverview
jdijcks
 
Novinky v Oracle Database 18c
Novinky v Oracle Database 18cNovinky v Oracle Database 18c
Novinky v Oracle Database 18c
MarketingArrowECS_CZ
 
Big Data Analytics with Hadoop, MongoDB and SQL Server
Big Data Analytics with Hadoop, MongoDB and SQL ServerBig Data Analytics with Hadoop, MongoDB and SQL Server
Big Data Analytics with Hadoop, MongoDB and SQL Server
Mark Kromer
 
Oracle Data Integration - Overview
Oracle Data Integration - OverviewOracle Data Integration - Overview
Oracle Data Integration - Overview
Jeffrey T. Pollock
 
Oracle Unified Information Architeture + Analytics by Example
Oracle Unified Information Architeture + Analytics by ExampleOracle Unified Information Architeture + Analytics by Example
Oracle Unified Information Architeture + Analytics by Example
Harald Erb
 
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
Debraj GuhaThakurta
 
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
Debraj GuhaThakurta
 
Presentation big dataappliance-overview_oow_v3
Presentation   big dataappliance-overview_oow_v3Presentation   big dataappliance-overview_oow_v3
Presentation big dataappliance-overview_oow_v3
xKinAnx
 
The practice of big data - making big data approachable
The practice of big data - making big data approachableThe practice of big data - making big data approachable
The practice of big data - making big data approachable
kcmallu
 
Big Data Analytics Presentation on the resourcefulness of Big data
Big Data Analytics Presentation on the resourcefulness of Big dataBig Data Analytics Presentation on the resourcefulness of Big data
Big Data Analytics Presentation on the resourcefulness of Big data
nextstep013
 
Oracle big data appliance and solutions
Oracle big data appliance and solutionsOracle big data appliance and solutions
Oracle big data appliance and solutions
solarisyougood
 
What are Hadoop Components? Hadoop Ecosystem and Architecture | Edureka
What are Hadoop Components? Hadoop Ecosystem and Architecture | EdurekaWhat are Hadoop Components? Hadoop Ecosystem and Architecture | Edureka
What are Hadoop Components? Hadoop Ecosystem and Architecture | Edureka
Edureka!
 
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio..."Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
Dataconomy Media
 
Hadoop and NoSQL joining forces by Dale Kim of MapR
Hadoop and NoSQL joining forces by Dale Kim of MapRHadoop and NoSQL joining forces by Dale Kim of MapR
Hadoop and NoSQL joining forces by Dale Kim of MapR
Data Con LA
 
Oracle Big Data Appliance and Big Data SQL for advanced analytics
Oracle Big Data Appliance and Big Data SQL for advanced analyticsOracle Big Data Appliance and Big Data SQL for advanced analytics
Oracle Big Data Appliance and Big Data SQL for advanced analytics
jdijcks
 
Modernize Your Existing EDW with IBM Big SQL & Hortonworks Data Platform
Modernize Your Existing EDW with IBM Big SQL & Hortonworks Data PlatformModernize Your Existing EDW with IBM Big SQL & Hortonworks Data Platform
Modernize Your Existing EDW with IBM Big SQL & Hortonworks Data Platform
Hortonworks
 
SQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for ImpalaSQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for Impala
markgrover
 
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
avanttic Consultoría Tecnológica
 
Intelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff PollockIntelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff Pollock
Jeffrey T. Pollock
 
2017 OpenWorld Keynote for Data Integration
2017 OpenWorld Keynote for Data Integration2017 OpenWorld Keynote for Data Integration
2017 OpenWorld Keynote for Data Integration
Jeffrey T. Pollock
 
2013 05 Oracle big_dataapplianceoverview
2013 05 Oracle big_dataapplianceoverview2013 05 Oracle big_dataapplianceoverview
2013 05 Oracle big_dataapplianceoverview
jdijcks
 
Big Data Analytics with Hadoop, MongoDB and SQL Server
Big Data Analytics with Hadoop, MongoDB and SQL ServerBig Data Analytics with Hadoop, MongoDB and SQL Server
Big Data Analytics with Hadoop, MongoDB and SQL Server
Mark Kromer
 
Oracle Data Integration - Overview
Oracle Data Integration - OverviewOracle Data Integration - Overview
Oracle Data Integration - Overview
Jeffrey T. Pollock
 
Oracle Unified Information Architeture + Analytics by Example
Oracle Unified Information Architeture + Analytics by ExampleOracle Unified Information Architeture + Analytics by Example
Oracle Unified Information Architeture + Analytics by Example
Harald Erb
 
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
Debraj GuhaThakurta
 
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
Debraj GuhaThakurta
 
Presentation big dataappliance-overview_oow_v3
Presentation   big dataappliance-overview_oow_v3Presentation   big dataappliance-overview_oow_v3
Presentation big dataappliance-overview_oow_v3
xKinAnx
 
The practice of big data - making big data approachable
The practice of big data - making big data approachableThe practice of big data - making big data approachable
The practice of big data - making big data approachable
kcmallu
 
Big Data Analytics Presentation on the resourcefulness of Big data
Big Data Analytics Presentation on the resourcefulness of Big dataBig Data Analytics Presentation on the resourcefulness of Big data
Big Data Analytics Presentation on the resourcefulness of Big data
nextstep013
 
Oracle big data appliance and solutions
Oracle big data appliance and solutionsOracle big data appliance and solutions
Oracle big data appliance and solutions
solarisyougood
 
What are Hadoop Components? Hadoop Ecosystem and Architecture | Edureka
What are Hadoop Components? Hadoop Ecosystem and Architecture | EdurekaWhat are Hadoop Components? Hadoop Ecosystem and Architecture | Edureka
What are Hadoop Components? Hadoop Ecosystem and Architecture | Edureka
Edureka!
 
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio..."Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
Dataconomy Media
 
Hadoop and NoSQL joining forces by Dale Kim of MapR
Hadoop and NoSQL joining forces by Dale Kim of MapRHadoop and NoSQL joining forces by Dale Kim of MapR
Hadoop and NoSQL joining forces by Dale Kim of MapR
Data Con LA
 
Oracle Big Data Appliance and Big Data SQL for advanced analytics
Oracle Big Data Appliance and Big Data SQL for advanced analyticsOracle Big Data Appliance and Big Data SQL for advanced analytics
Oracle Big Data Appliance and Big Data SQL for advanced analytics
jdijcks
 
Modernize Your Existing EDW with IBM Big SQL & Hortonworks Data Platform
Modernize Your Existing EDW with IBM Big SQL & Hortonworks Data PlatformModernize Your Existing EDW with IBM Big SQL & Hortonworks Data Platform
Modernize Your Existing EDW with IBM Big SQL & Hortonworks Data Platform
Hortonworks
 
SQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for ImpalaSQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for Impala
markgrover
 
Ad

More from avanttic Consultoría Tecnológica (20)

#avanttic_webinar: SPARC/Solaris, una plataforma con futuro
#avanttic_webinar: SPARC/Solaris, una plataforma con futuro#avanttic_webinar: SPARC/Solaris, una plataforma con futuro
#avanttic_webinar: SPARC/Solaris, una plataforma con futuro
avanttic Consultoría Tecnológica
 
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (3/3) "Conducción...
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (3/3) "Conducción...Ciclo webinars avanttic - Actualiza tu base de datos Oracle (3/3) "Conducción...
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (3/3) "Conducción...
avanttic Consultoría Tecnológica
 
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (1/3) "Full equi...
Ciclo webinars avanttic  - Actualiza tu base de datos Oracle (1/3) "Full equi...Ciclo webinars avanttic  - Actualiza tu base de datos Oracle (1/3) "Full equi...
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (1/3) "Full equi...
avanttic Consultoría Tecnológica
 
Avanttic tech dates - de la monitorización a la 'observabilidad'
Avanttic tech dates - de la monitorización a la 'observabilidad'Avanttic tech dates - de la monitorización a la 'observabilidad'
Avanttic tech dates - de la monitorización a la 'observabilidad'
avanttic Consultoría Tecnológica
 
avanttic #BreakTechs Oracle service bus, simplifica y centraliza tus integrac...
avanttic #BreakTechs Oracle service bus, simplifica y centraliza tus integrac...avanttic #BreakTechs Oracle service bus, simplifica y centraliza tus integrac...
avanttic #BreakTechs Oracle service bus, simplifica y centraliza tus integrac...
avanttic Consultoría Tecnológica
 
avanttic Tech Dates - Facilidad contratación Oracle a través de acuerdos marc...
avanttic Tech Dates - Facilidad contratación Oracle a través de acuerdos marc...avanttic Tech Dates - Facilidad contratación Oracle a través de acuerdos marc...
avanttic Tech Dates - Facilidad contratación Oracle a través de acuerdos marc...
avanttic Consultoría Tecnológica
 
#avanttic_webinar: Seguridad en Oracle Cloud Infrastructure
#avanttic_webinar: Seguridad en Oracle Cloud Infrastructure#avanttic_webinar: Seguridad en Oracle Cloud Infrastructure
#avanttic_webinar: Seguridad en Oracle Cloud Infrastructure
avanttic Consultoría Tecnológica
 
#avanttic_webinar: Actualiza tu Oracle Exadata
  #avanttic_webinar: Actualiza tu Oracle Exadata  #avanttic_webinar: Actualiza tu Oracle Exadata
#avanttic_webinar: Actualiza tu Oracle Exadata
avanttic Consultoría Tecnológica
 
Avanttic evento virtual apificacion_oracle_cloud
Avanttic evento virtual apificacion_oracle_cloudAvanttic evento virtual apificacion_oracle_cloud
Avanttic evento virtual apificacion_oracle_cloud
avanttic Consultoría Tecnológica
 
@avanttic_meetup Oracle Technology MAD_BCN: Oracle Cloud API Platform evoluc...
@avanttic_meetup Oracle Technology MAD_BCN:  Oracle Cloud API Platform evoluc...@avanttic_meetup Oracle Technology MAD_BCN:  Oracle Cloud API Platform evoluc...
@avanttic_meetup Oracle Technology MAD_BCN: Oracle Cloud API Platform evoluc...
avanttic Consultoría Tecnológica
 
#avanttic_webinar Migración de Discoverer a Oracle Analytics
#avanttic_webinar Migración de Discoverer a Oracle Analytics#avanttic_webinar Migración de Discoverer a Oracle Analytics
#avanttic_webinar Migración de Discoverer a Oracle Analytics
avanttic Consultoría Tecnológica
 
#avanttic_webinar Modernización de WebLogic en Oracle Cloud Infrastructure
#avanttic_webinar Modernización de WebLogic en Oracle Cloud Infrastructure#avanttic_webinar Modernización de WebLogic en Oracle Cloud Infrastructure
#avanttic_webinar Modernización de WebLogic en Oracle Cloud Infrastructure
avanttic Consultoría Tecnológica
 
#avanttic_webinar Oracle Analytics Cloud: características y migración desde O...
#avanttic_webinar Oracle Analytics Cloud: características y migración desde O...#avanttic_webinar Oracle Analytics Cloud: características y migración desde O...
#avanttic_webinar Oracle Analytics Cloud: características y migración desde O...
avanttic Consultoría Tecnológica
 
#avanttic_webinar: Oracle Cloud Infrastructure, la nueva nube para las cargas...
#avanttic_webinar: Oracle Cloud Infrastructure, la nueva nube para las cargas...#avanttic_webinar: Oracle Cloud Infrastructure, la nueva nube para las cargas...
#avanttic_webinar: Oracle Cloud Infrastructure, la nueva nube para las cargas...
avanttic Consultoría Tecnológica
 
#avanttic_webinar Desarrollo con Oracle Content and Experience
#avanttic_webinar Desarrollo con Oracle Content and Experience#avanttic_webinar Desarrollo con Oracle Content and Experience
#avanttic_webinar Desarrollo con Oracle Content and Experience
avanttic Consultoría Tecnológica
 
#avanttic_webinar Supervisa tus sistemas, aplicaciones y servicios con Oracle...
#avanttic_webinar Supervisa tus sistemas, aplicaciones y servicios con Oracle...#avanttic_webinar Supervisa tus sistemas, aplicaciones y servicios con Oracle...
#avanttic_webinar Supervisa tus sistemas, aplicaciones y servicios con Oracle...
avanttic Consultoría Tecnológica
 
#avanttic_webinar Continuidad de los desarrollos con Oracle Forms & Reports
#avanttic_webinar Continuidad de los desarrollos con Oracle Forms & Reports#avanttic_webinar Continuidad de los desarrollos con Oracle Forms & Reports
#avanttic_webinar Continuidad de los desarrollos con Oracle Forms & Reports
avanttic Consultoría Tecnológica
 
Evento virtual avanttic - Oracle Exadata: Cloud Service y “at Customer”. Desc...
Evento virtual avanttic - Oracle Exadata: Cloud Service y “at Customer”. Desc...Evento virtual avanttic - Oracle Exadata: Cloud Service y “at Customer”. Desc...
Evento virtual avanttic - Oracle Exadata: Cloud Service y “at Customer”. Desc...
avanttic Consultoría Tecnológica
 
Webinar - Apifica tus servicios en Oracle Cloud
Webinar - Apifica tus servicios en Oracle CloudWebinar - Apifica tus servicios en Oracle Cloud
Webinar - Apifica tus servicios en Oracle Cloud
avanttic Consultoría Tecnológica
 
Webinar - Extiende tus sistemas on-premise con oracle cloud infrastructure
Webinar - Extiende tus sistemas on-premise con oracle cloud infrastructureWebinar - Extiende tus sistemas on-premise con oracle cloud infrastructure
Webinar - Extiende tus sistemas on-premise con oracle cloud infrastructure
avanttic Consultoría Tecnológica
 
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (3/3) "Conducción...
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (3/3) "Conducción...Ciclo webinars avanttic - Actualiza tu base de datos Oracle (3/3) "Conducción...
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (3/3) "Conducción...
avanttic Consultoría Tecnológica
 
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (1/3) "Full equi...
Ciclo webinars avanttic  - Actualiza tu base de datos Oracle (1/3) "Full equi...Ciclo webinars avanttic  - Actualiza tu base de datos Oracle (1/3) "Full equi...
Ciclo webinars avanttic - Actualiza tu base de datos Oracle (1/3) "Full equi...
avanttic Consultoría Tecnológica
 
Avanttic tech dates - de la monitorización a la 'observabilidad'
Avanttic tech dates - de la monitorización a la 'observabilidad'Avanttic tech dates - de la monitorización a la 'observabilidad'
Avanttic tech dates - de la monitorización a la 'observabilidad'
avanttic Consultoría Tecnológica
 
avanttic #BreakTechs Oracle service bus, simplifica y centraliza tus integrac...
avanttic #BreakTechs Oracle service bus, simplifica y centraliza tus integrac...avanttic #BreakTechs Oracle service bus, simplifica y centraliza tus integrac...
avanttic #BreakTechs Oracle service bus, simplifica y centraliza tus integrac...
avanttic Consultoría Tecnológica
 
avanttic Tech Dates - Facilidad contratación Oracle a través de acuerdos marc...
avanttic Tech Dates - Facilidad contratación Oracle a través de acuerdos marc...avanttic Tech Dates - Facilidad contratación Oracle a través de acuerdos marc...
avanttic Tech Dates - Facilidad contratación Oracle a través de acuerdos marc...
avanttic Consultoría Tecnológica
 
@avanttic_meetup Oracle Technology MAD_BCN: Oracle Cloud API Platform evoluc...
@avanttic_meetup Oracle Technology MAD_BCN:  Oracle Cloud API Platform evoluc...@avanttic_meetup Oracle Technology MAD_BCN:  Oracle Cloud API Platform evoluc...
@avanttic_meetup Oracle Technology MAD_BCN: Oracle Cloud API Platform evoluc...
avanttic Consultoría Tecnológica
 
#avanttic_webinar Modernización de WebLogic en Oracle Cloud Infrastructure
#avanttic_webinar Modernización de WebLogic en Oracle Cloud Infrastructure#avanttic_webinar Modernización de WebLogic en Oracle Cloud Infrastructure
#avanttic_webinar Modernización de WebLogic en Oracle Cloud Infrastructure
avanttic Consultoría Tecnológica
 
#avanttic_webinar Oracle Analytics Cloud: características y migración desde O...
#avanttic_webinar Oracle Analytics Cloud: características y migración desde O...#avanttic_webinar Oracle Analytics Cloud: características y migración desde O...
#avanttic_webinar Oracle Analytics Cloud: características y migración desde O...
avanttic Consultoría Tecnológica
 
#avanttic_webinar: Oracle Cloud Infrastructure, la nueva nube para las cargas...
#avanttic_webinar: Oracle Cloud Infrastructure, la nueva nube para las cargas...#avanttic_webinar: Oracle Cloud Infrastructure, la nueva nube para las cargas...
#avanttic_webinar: Oracle Cloud Infrastructure, la nueva nube para las cargas...
avanttic Consultoría Tecnológica
 
#avanttic_webinar Desarrollo con Oracle Content and Experience
#avanttic_webinar Desarrollo con Oracle Content and Experience#avanttic_webinar Desarrollo con Oracle Content and Experience
#avanttic_webinar Desarrollo con Oracle Content and Experience
avanttic Consultoría Tecnológica
 
#avanttic_webinar Supervisa tus sistemas, aplicaciones y servicios con Oracle...
#avanttic_webinar Supervisa tus sistemas, aplicaciones y servicios con Oracle...#avanttic_webinar Supervisa tus sistemas, aplicaciones y servicios con Oracle...
#avanttic_webinar Supervisa tus sistemas, aplicaciones y servicios con Oracle...
avanttic Consultoría Tecnológica
 
#avanttic_webinar Continuidad de los desarrollos con Oracle Forms & Reports
#avanttic_webinar Continuidad de los desarrollos con Oracle Forms & Reports#avanttic_webinar Continuidad de los desarrollos con Oracle Forms & Reports
#avanttic_webinar Continuidad de los desarrollos con Oracle Forms & Reports
avanttic Consultoría Tecnológica
 
Evento virtual avanttic - Oracle Exadata: Cloud Service y “at Customer”. Desc...
Evento virtual avanttic - Oracle Exadata: Cloud Service y “at Customer”. Desc...Evento virtual avanttic - Oracle Exadata: Cloud Service y “at Customer”. Desc...
Evento virtual avanttic - Oracle Exadata: Cloud Service y “at Customer”. Desc...
avanttic Consultoría Tecnológica
 
Webinar - Extiende tus sistemas on-premise con oracle cloud infrastructure
Webinar - Extiende tus sistemas on-premise con oracle cloud infrastructureWebinar - Extiende tus sistemas on-premise con oracle cloud infrastructure
Webinar - Extiende tus sistemas on-premise con oracle cloud infrastructure
avanttic Consultoría Tecnológica
 
Ad

Recently uploaded (20)

Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical DebtBuckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Lynda Kane
 
Leading AI Innovation As A Product Manager - Michael Jidael
Leading AI Innovation As A Product Manager - Michael JidaelLeading AI Innovation As A Product Manager - Michael Jidael
Leading AI Innovation As A Product Manager - Michael Jidael
Michael Jidael
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Learn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step GuideLearn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step Guide
Marcel David
 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical DebtBuckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Lynda Kane
 
Leading AI Innovation As A Product Manager - Michael Jidael
Leading AI Innovation As A Product Manager - Michael JidaelLeading AI Innovation As A Product Manager - Michael Jidael
Leading AI Innovation As A Product Manager - Michael Jidael
Michael Jidael
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Learn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step GuideLearn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step Guide
Marcel David
 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
 

Meetup Oracle Database BCN: 2.1 Data Management Trends

  • 1. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted Data Management Trends David Mauri Gómez Cloud Platform Solution Architect – Oracle April 10, 2018
  • 2. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 2 Data Management Evolution Transactional Data Warehouse SQL Social, Web Data Lake IoT Fast Data
  • 3. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Decision Diagram 3 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 Concurrency Complex Query Response Times Single Record Read/Write Performance Bulk Write Performance Privileged User Security General User Security Governance Tools System per TB Cost Backup per TB Cost Skills Acquisition Cost RDBMS NoSQL DB Hadoop
  • 4. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | High-level Comparison HDFS NoSQL RDBMS Data Type Chunk Record Transaction Write Type Synchronous Eventually Consistent ACID Compliant Data Preparation No Parsing No Parsing Parsing and Validation DR Type Second Cluster Node Replica Second RDBMS DR Unit File Record Transaction DR Timing Batch Record Transaction Complex Analytics? Yes No Yes Query Speed Slow Fast for simple questions Fast # of Data Access Methods One (full table scan) One (index lookup) Many (Optimized) 4 IngestDRAcces Affordable Scale Low Predictable Latency Flexible Performance
  • 5. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Unified Data Management Data of any type Any data source Analysis of any typeSQL GraphSpark Spatial Machine Learning SQL Access with any language node.jsJavaREST Python ScalaR
  • 6. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Big Data SQL The Best of Both Worlds 6 SQL
  • 7. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 7 Oracle Unified Data Management Solution Conventional view of Data Management Emerging view of Data Management Oracle Big Data SQL
  • 8. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Storage Layer 8 Big Data SQL: Another Hadoop Processing Engine Filesystem (HDFS) NoSQL Databases (Oracle NoSQL DB, HBase) Resource Management (YARN, cgroups) Processing Layer MapReduce and Hive Spark Impala Search Big Data SQL Meta data Store
  • 9. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Hive DN DN DN DN ORACLE SQL Engine Storage Table Table Big Data-enabled Oracle Tables Python GraphRnode.js JavaREST SQL Data Local Processing Big Data SQL Cells Leverage Metadata Big Data SQL Architecture Oracle Big Data SQL 9
  • 10. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Anatomy of a Big Data SQL Cell 10 Smart Scan I/O Stream Data Transfer Convert to Oracle “block” format Apply Smart Scan and other optimizations
  • 11. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Big Data SQL Goals Easily access any data across big data stores Provides a unified security model across the sources Analyze all data using Oracle’s rich SQL dialect Fast performance using Big Data SQL Smart Scan 11
  • 12. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | I/O Elimination • Storage index • Hive partition pruning • Predicate and column pushdown parquet and ORC 12 Big Data SQL key features Data Movement Elimination • Smart Scan performs final filtering pass to ensure only requested elements are sent to Oracle Database Security • Apply Oracle Database security policies on non- Oracle data stores
  • 13. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Big Data SQL Security Features Hadoop Security ACL’s | Sentry | HDFS Encryption | Encryption in Motion 13
  • 14. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Big Data SQL Security Features • Same security models apply to a wider range of data stores • Advanced features such as data redaction can now be applied enabling joins between disparate sources • Oracle security layers on top of existing Hadoop functionality Hadoop Security ACL’s | Sentry | HDFS Encryption | Encryption in Motion 14
  • 15. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Data Lifecycle Management & Query Offload More data on-line and available at a lower cost Move Partition to BDA Oracle Big Data SQL Rolling 13 months Month 14-n Big Data Rolling Windows • Process • Copy older partition to BDA • Update views • Drop older Exadata partition • Offloaded data can be accessed via Oracle & Hadoop • No Application changes required 15
  • 16. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Database Data in HDFS 16 Hybrid Partitioned Tables …JAN 2014 FEB 2014 MAR 2014 OCT 2016 NOV 2016 DEC 2016 HDFS Orders Database OCT 2016 NOV 2016 DEC 2016 JAN 2014 FEB 2014 MAR 2014 1 All Partitions are stored internally 2 Some Partitions are moved Externally 3 Mixed Storage for Partitions No top level changes to Orders
  • 17. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Archive Data: Big Data SQL Implementation Options 1. Table Storage Split Across Tiers 2. View Combines Data Sources HDFS HDFSDATABASE VIEW DATABASE TABLE HDFS DATABASE
  • 18. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Traditional vs. Oracle Machine Learning/Predictive Analytics • Traditional— “Move the data” —“Don’t move the data!” 18
  • 19. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Traditional vs. Oracle Machine Learning/Predictive Analytics • Traditional— “Move the data” — “Move the algorithms” 19 Simpler, Smarter Data Management + Analytics / Machine Learning Architecture
  • 20. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Data Science Oracle Confidential – Internal/Restricted/Highly Restricted 20
  • 21. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | • Strengths – Powerful & Extensible – Graphical & Extensive statistics – Free—open source (CRAN + 9000 components) – Standard for Data Scientist • Challenges – Memory constrained – Single threaded – Outer loop—slows down process – Not Enterprise Oriented R environment R—Widely Popular R is a statistics language similar to Base SAS or SPSS statistics + = Enterprise
  • 22. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted 22 Oracle Machine Learning Tools for Data Scientist Oracle R Enterprise Oracle Advanced Analytics - On-premise Database Option - Included in Cloud EE Database Oracle R Advanced Analytics for Hadoop RStudio Notebooks (Zepelin, Jupyter) Oracle Data Mining (ODM) Interface Hadoop based - Option for BDA - Included with BDCS - Planned for BDC Oracle Big Data Spatial & Graph Oracle Database & Hadoop Data Mining Enterprise AA4H BDSGSpatial & Graph
  • 23. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Oracle Advanced Analytics • R-SQL Transparency Framework overloads R functions for scalable in-database execution • Function overload for data transforms, statistical functions and advanced analytics • Interactive display of graphical results and flow control as in standard R • Submit user-defined R functions for execution at database server under control of Oracle Database • Scale to large datasets • Access tables, views, and external tables, as well as data through DB LINKS • Leverage database SQL parallelism • Leverage new and existing in-database statistical and data mining capabilities R Engine Other R packages Oracle R Enterprise packages User R Engine on desktop • Database can spawn multiple R engines for database-managed parallelism • Efficient data transfer to spawned R engines • Emulate map-reduce style algorithms and applications • Enables production deployment and automated execution of R scripts 1 User tables Oracle DatabaseSQL Results Database Compute Engine 2 R Engine Other R packages Oracle R Enterprise packages R Engine(s) spawned by Oracle DB R Results 3 ?x R Open Source Oracle R Enterprise Compute Engines
  • 24. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Oracle R Advanced Analytics for Hadoop ORAAH = Oracle R Advanced Analytics for Hadoop, part of Big Data Software Connectors Suite (Oracle Big Data Appliance Option) • ORAAH transparency layer enables certain overloaded R functions to operate on Hive tables using R syntax and behavior (transparently translating R to HiveQL) • R interface for manipulating HDFS data and writing mapper and reducer functions in R – where you can leverage open source CRAN packages – and invoke those Hadoop jobs from R • Provides a range of predictive algorithms that execute on the Hadoop cluster with data in HDFS in a parallel/distributed manner. Oracle Internal - Proprietary 24
  • 25. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Hadoop Cluster with Oracle R Advanced Analytics for Hadoop Oracle R Advanced Analytics for Hadoop: Using Hadoop and HIVE, plus R Engine and Open-Source R Packages R Analytics Oracle R Advanced Analytics for Hadoop R Client • ORAAH Spark algorithms: Deep Neural, GLM, LM • Spark MLlib algorithms: LM, GLM, LASSO, Ridge Regression, Decision Trees, Random Forests, SVM, k-Means, PCA • Open-source R packages distributed via Map-Red function in R HQL Basic Statistics, Data Prep, Joins and View creation 25 HQL + HDFS Access, Store, Load, Data Prep and Transform. SQL Developer Other SQL Apps SQL Client Oracle Database Server with Advanced Analytics option BigDataSQL
  • 26. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | • Classification – Naïve Bayes – Logistic Regression (GLM) – Decision Tree – Random Forest – Neural Network – Support Vector Machine – Explicit Semantic Analysis – Gaussian Mixture Models • Clustering – Hierarchical K-Means – Hierarchical O-Cluster – Expectation Maximization (EM) • Anomaly Detection – One-Class Support Vector Machine (SVM) • Regression – Generalized Linear Model – Support Vector Machine (SVM) – Random Forest – Linear Model – Stepwise Linear regression – LASSO • Association Rules – A priori • Attribute Importance – Minimum Description Length – Principal Component Analysis (PCA) – Unsupervised Pair-wise KL Divergence • Predictive Queries • Statistical Functions – Basic statistics: median, stdev, t-test, F-test, Pearson’s, Chi-sq, Anova, etc. • Algorithm Support for Text – Algorithms support text type – Tokenization and theme extraction – Explicit Semantic Analysis (ESA) for document similarity • Feature Extraction – Principal Component Analysis (PCA) – Non-negative Matrix Factorization – Singular Value Decomposition (SVD) • Time Series – Single Exponential Smoothing – Double Exponential Smoothing • Open Source ML Algorithms – CRAN R Algorithm Packages through Embedded R Execution – Spark MLlib algorithm integration Oracle’s Adv. Analytics Machine Learning Algorithms A1 A2 A3 A4 A5 A6 A7
  • 27. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Oracle Spatial Analysis • Análisis de proximidad y contención • Datos de localización enriquecidos • Preparación de datos raster y vectoriales 27 Oracle Graph Analysis • Gráficos de propiedades • Análisis de relaciones • Análisis de valor (churn) • Ciberseguridad • Reconocimiento de objetos Oracle’s Spatial and Graph
  • 28. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | CVC Spatial Update for DWR Enable Spatial and Graph use cases on every platform Oracle’s Spatial and Graph Strategy NoSQL Oracle Big Data Spatial and Graph Spatial and Graph in Cloud Offerings Oracle Database Spatial and Graph Big Data: Single Model Data Store Database 12c: Polyglot (Multi-model) Data Store Oracle Big Data Cloud Service Oracle Database Cloud Service • Enterprise Edition High Performance • Enterprise Edition Extreme Performance
  • 29. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Overview of Graph • What is a graph? – A set of vertices and edges (with optional properties) – A graph is simply linked data • Why do we care? – Graphs are everywhere • Road networks, power grids, biological networks • Social networks/Social Web (Facebook, Linkedin, Twitter, Baidu, Google+,…) • Knowledge graphs (RDF, OWL) – Graphs are intuitive and flexible • Easy to navigate, easy to form a path, natural to visualize • Do not require a predefined schema E A D C B F 2
  • 30. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Graph Analysis Examples Reachability Quickly identify multi-hop relations between (a set of) vertices and how they are connected under various constraints. Anomaly Detection Analyze the link relationships between data entities to detect subsets of data that are different from others. Centrality Analysis Analyze the topology of the network, in addition to data values, in order to identify data entities that are more important than others. Link Prediction Inspect similarities between data entities under overall network structure, and predict potential future links. e.g. product recommendation e.g. security breach trace e.g. influencer identificatione.g. Fraud detection Confidential – Oracle Internal 30
  • 31. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Rich set of built-in parallel graph algorithms … and parallel graph mutation operations Computational Analytics: Built-in Package 40+ built-in algorithms, highly parallelized, highly performant Detecting Components and Communities Tarjan’s, Kosaraju’s, Weakly Connected Components, Label Propagation (w/ variants), Soman and Narang’s Spacification Ranking and Walking Pagerank, Personalized Pagerank, Betwenness Centrality (w/ variants), Closeness Centrality, Degree Centrality, Eigenvector Centrality, HITS, Random walking and sampling (w/ variants) Evaluating Community Structures ∑ ∑ Conductance, Modularity Clustering Coefficient (Triangle Counting) Adamic-Adar Path-Finding Hop-Distance (BFS) Dijkstra’s, Bi-directional Dijkstra’s Bellman-Ford’s Link Prediction SALSA (Twitter’s Who-to-follow) Other Classics Vertex Cover Minimum Spanning-Tree (Prim’s) a d b e g c i f h The original graph a d b e g c i f h Create Undirected Graph Simplify Graph a d b e g c i f h Left Set: “a,b,e” a d b e g c i Create Bipartite Graph ge b d i a f c h Sort-By-Degree (Renumbering) Filtered Subgraph d b g i e 31
  • 32. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Information Management Reference Architecture 32 Actionable Events Streaming Engine Data Lake Enterprise Data & Reporting Discovery Lab Actionable Metrics Actionable Data Sets Input Events Execution Innovation Discovery Output Data Structured Enterprise Data
  • 33. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Big Data SQL Simplifies Analyses 33 Streaming Engine Data Lake Enterprise Data & Reporting Discovery Lab Input Events Execution Innovation Discovery Output Data Structured Enterprise Data Notebooks/Analytic Services Big Data SQL Object Store Hadoop/HDFS Your Application
  • 34. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted 34