SlideShare a Scribd company logo
How To Collaboratively Manage Excel‐
How To Collaboratively M
H T C ll b ti l Manage Excel‐  E l
  Based Process Data in SQL Server
               Speaker: JB Kuppe
                Boardwalktech


        Silicon Valley SQL Server User Group
                      June 2011




           Mark Ginnebaugh, User Group Leader, 
                 mark@designmind.com
JB Kuppe
                                                     Jb.kuppe@boardwalktech.com




 Collaboratively Manage Excel‐Based 
   ll b    i l                l   d
      Process Data in SQL Server


Enabling companies to build and maintain competitive advantage through 
     business process innovation in the collaborative planning space
   Founded in 2004 ‐ HQ in Palo Alto, CA

   Origins in MCAD PDM

   Patented  Positional Database Technology
    Patented “Positional” Database Technology

   Product: The Boardwalk Collaboration Platform (BCP)

   Application Focus: Collaborative Planning Processes
The Elephant in the Room
       p
                                                             Enterprise Reality
           IT Perception
           IT Perception
                                                               Desktop Applications


                   Business                                           GAP
                 Intelligence
               Data Warehouse
  OLAP                             Reporting

               Specialty /Edge                                  Business Intelligence
                Applications
                Financials
         CRM                      SCM
                                                                     Edge Apps




                Core ERP

                                                                   Core ERP


                                        “80% of the work” 
X             Denormalized Tables         Business Intelligence


                                                             Business Focus
     Information             Reporting Cubes $$$
       collection
  Can’t contribute to                                      Iteration A: Cleansing and 
the Denormalized View                                      schema design
                         Mapping and Transformation
                                 EAI , BI $$$              Iteration B: Cleansing and 
                                                           schema changes
   Technology Focus

                                                                $$ Expensive Iterations


                         Normalized
                         Normalized        Normalized
                                           Normalized 
                           Table             Table
select cust.companyname, cust.contactname, orddet.quantity, ord.orderdate, 
prod.productname from customers cust inner join orders ord on cust.customerid = 
ord.customerid inner join [order details] orddet on ord.orderid = orddet.orderid inner 
j p
join products prod on orddet.productid = prod.productid where prod.productname =
              p               p            p   p                 p    p




    Backward looking 
    versus forward 
    looking..
Export to 
                                       Excel




                                                              Email to 
                                      Change                 everyone
                                      history




  Maintain data 
connection ‐ data 
location changes
location changes


              Merge in    Create multiple views    Create dependent 
             other data     for different users     data calculation
Create
 Define schema (create from Excel)

 Create a database schema, define entity relationship
   Create a database schema, define entity relationship
Manage
 Create UI in Excel to match database schema

 Create a J2EE or .Net data update layer

 Program ability to create new record from Excel

 Program access control and consolidation rules into every sheet 
   connected to RDBMS
 Versioning for all schemas has to be programmed
   Versioning for all schemas has to be programmed
 Change management has to be programmed 

 Formula support needs to be programmed

 Check‐out/in mechanism used to work on data

 Only “latest” change wins

Report
 For every report, run a SQL query to filter the data, paste it in Excel, 
       t i t           il    t
   create pivots, email reports
 Do process again if data changes/version “old” reports
OLAP
Rows of Data
•   Product
                                                                   Columns of Data
•   Customer
                                                                   •   Time
•   User
                                                                   •   Business variable




                                         How to Collaborate?
                                         How to Collaborate?

          Excel is a business process platform
    Emailing does not work
          •  Position of data drives business logic           Excel “Connectors” do not work
           •  Complex relationships (formulas)
    •   No change management                                  •   Rigid model pushed to spreadsheet
           •  Flexibility
    •   Versioning nightmaremanagement UI (colors
        Versioning nightmare
           •  Powerful data management UI (colors, 
              Powerful data                                   •   No persistence
                                                                  No persistence
    •         conditional format, picklists)
        No central version                                    •   No change/audit
           •  Offline environment/mature data         RDBMS
    •   No access control                                     •   No access control
           •  “Save‐as” local versioning=scenarios
    •   Data consistency                                      •   No positional integrity
Change values and formulas




                             V2 (R/C,U,T,Net Change)




                                    V1 (R/C,U,T)
•   Patent awarded 2008
          “Positional” Data Structure
                                                                       ‒ Positional cell data management
      Versions (R/C Position, Structure, Net Change, User, Time)       ‒ Range vs record transaction control

             Columns                                                   ‒ Single flexible schema
                                                                   •   Excel range creates/drives shareable 
                                                                       database model
                                                                       database model
        User Access 1
                                               Data
Row     User Access 2      Data
                                              Range2
                                                                   •   Scalable multi‐user collaboration
        User Access 3     Range1
                                                                       ‒ Work “off‐line,” no check‐in/out
                                                                       ‒ Dynamic access control
                                                                          y
                                                                       ‒ “Submit/Refresh” sharing
 Business               Column
  Logic                                                                ‒ Centrally manage collaborative data
                                                                       ‒ Net‐change versions vs. overwrite
                                                                       ‒ Cell‐level change tracking

                 Other App/DB
                                                                   •   Integration with any App/DB
                                                                   •   Application flexibility
                                                                       ‒ One platform, many solutions
                                                                              l f             l
   Addressability to Business Objects (Table, Row, Column)

   Data Ordering (Row, Column)

   Referential Integrity limits growth
    Referential Integrity limits growth

   No Locking – High Concurrency

   No Data Overwrite ‐ Versioning

   Persistent Transactions 
    Persistent Transactions

   WYSWYG Data Update
Sharing data & 
                               formulas
                  Manager                          Rep




        Refresh                               Submit



                                                         Firewall

Other ERP…
Form Interface Model                               Tabular User Interface Model and Business Logic

     Communication Technology        Communication Technology     Communication Technology             Communication Technology



                 Centralized Business Model and Logic                                 Positional Data Management

             Relational                          Relational                   Relational                        Relational



                           Rigid Data Models                                          Abstract Tabular Data Model


       Persistence w/o history          Persistence w/o history        Persistence with history          Persistence with history


1.   Business person defines requirements                         1.     Business person expresses requirements in a 
2.   Each technology layer looses information                            Tabular model
3.   Each layer introduces rigidity                               2.     The Model is translated WYSIWYG to the tabular 
4.          y
     Each layer adds cost                                                database so no loss of information
5.   Each layer adds latency to change                            3.     Changes in the Model at UI layer directly drive the 
                                                                         flexible tabular database
6.   Every one confirms to centralized model and logic
                                                                  4.     Cost of change is zero
7.   Business Person at the top has no control over the 
     Data Models                                                  5.     There is no latency to change
                                                                  6.     Business Logic is embedded in the UI and doesn’t 
                                                                         require conformance by all parties
                                                                  7.     Business person is in full control over the data 
                                                                         model and is fully empowered
The Cuboid Powered Enterprise 
                        p
Enterprise
Collaboration
•   General forecasting                     •    Tax platform
    o   Periodic shift
        Periodic shift                           o    Multi entity tax environment (corporate, partnership)
                                                      Multi‐entity tax environment (corporate, partnership)
    o   Aggregation/disaggregation               o    SME template authoring, management, and 
    o   Re‐alignment                                  propagation 
    o   Exceptions                               o    Tax formula library
    o   Notifications
        N tifi ti                                o    Tax business rules library
                                                      Tax business rules library
    o   Scenario planning                        o    Dynamic taxonomy management
•   New product introductions                    o    Rollover services
                                                 o    Tax item allocation and consolidation
    o   Product attribute
                                                 o    Project tax data consolidation
    o   Phase in/out
                                                 o    Document management integration
    o   Plan‐o‐gram driven forecasting
                                                 o    External data query/integration
    o   Product master management
•   EDI collaboration
    EDI collaboration
    o   Outsourced retail supply planning
    o   Supplier collaboration




                                            Page 17
BCP Powered Enterprise Solutions
                 p
Demand Planning/Supply Planning




                                                          Sales manager adjustments can be done
                                                            at the customer/SKU level or at the
                                                              aggregate region/territory l
                                                                      t    i /t it       level
                                                                                             l




          Spreadsheet-based measures &
                   calculations




  Measures & applicable SKUs from
           planning SOR
                                                                              Cell-level, two-way
                                                                                 collaboration


                                         Access control
Microsoft SQL Server - How to Collaboratively Manage Excel Data
To learn more or inquire about speaking opportunities, please contact:

                Mark Ginnebaugh, User Group Leader
                Mark Ginnebaugh User Group Leader
                      mark@designmind.com

More Related Content

What's hot (20)

DOC
AAO BI Resume
Al Ottley
 
PDF
ICG: Blazon Enterprise
Nicole_Kensicki
 
PDF
SAP and BOBJ Decision Tree Guidelines
dcd2z
 
PDF
Database Change Management | Embarcadero Change Manager
Michael Findling
 
PPTX
Sql server 2012 smart dive presentation 20120126
Andrew Mauch
 
PDF
SAP BOBJ Architectural Options
dcd2z
 
PPTX
Introducing Open XDX Technology for Open Data API development
Bizagi Inc
 
PDF
Mapping Manager Product Overview
Rakesh Kumar
 
PDF
SQL-H a new way to enable SQL analytics
DataWorks Summit
 
PDF
Mas 90-and-mas-200-crystal-reports-manual
mtsisolutions
 
PDF
Sap sap so h 2013
deepersnet
 
DOCX
Ira d. kleiner, ms, mba, 2013 1
Ira Kleiner
 
PPTX
Axug
Brandon Kirby
 
PDF
Sap bi roadmap overview 2010 sap inside track stl
sjohannes
 
PPTX
Jaspersoft BI Suite Overview 2012
Mike Boyarski
 
PPTX
Jaspersoft Dashboards Webinar Feb 2013
Mike Boyarski
 
PPTX
2011 Sharepoint Summit - Microsoft's vision and strategy for the future of bu...
MSHOWTO Bilisim Toplulugu
 
PDF
C8 Whats New In Versions 3 And 4
dfwcug
 
PPTX
Autoservicio de inteligencia de negocios
Eduardo Castro
 
PDF
Understanding Oracle ADF and its role in Oracle Fusion Middleware
Refundation
 
AAO BI Resume
Al Ottley
 
ICG: Blazon Enterprise
Nicole_Kensicki
 
SAP and BOBJ Decision Tree Guidelines
dcd2z
 
Database Change Management | Embarcadero Change Manager
Michael Findling
 
Sql server 2012 smart dive presentation 20120126
Andrew Mauch
 
SAP BOBJ Architectural Options
dcd2z
 
Introducing Open XDX Technology for Open Data API development
Bizagi Inc
 
Mapping Manager Product Overview
Rakesh Kumar
 
SQL-H a new way to enable SQL analytics
DataWorks Summit
 
Mas 90-and-mas-200-crystal-reports-manual
mtsisolutions
 
Sap sap so h 2013
deepersnet
 
Ira d. kleiner, ms, mba, 2013 1
Ira Kleiner
 
Sap bi roadmap overview 2010 sap inside track stl
sjohannes
 
Jaspersoft BI Suite Overview 2012
Mike Boyarski
 
Jaspersoft Dashboards Webinar Feb 2013
Mike Boyarski
 
2011 Sharepoint Summit - Microsoft's vision and strategy for the future of bu...
MSHOWTO Bilisim Toplulugu
 
C8 Whats New In Versions 3 And 4
dfwcug
 
Autoservicio de inteligencia de negocios
Eduardo Castro
 
Understanding Oracle ADF and its role in Oracle Fusion Middleware
Refundation
 

Similar to Microsoft SQL Server - How to Collaboratively Manage Excel Data (20)

PPTX
Sap Business Objects solutioning Framework architecture
Sandeep Sharma IIMK Smart City,IoT,Bigdata,Cloud,BI,DW
 
PDF
Self service BI with sql server 2008 R2 and microsoft power pivot short
Eduardo Castro
 
PDF
Initial Kautilya Brochure Doc
Saket Rai
 
PPTX
Microsoft Breakthrough Insights
Jeroen ter Heerdt
 
PPTX
Go Beyond the Numbers - Data Visualization in SharePoint 2010
Chris McNulty
 
PPTX
Introduction to Microsoft’s Master Data Services (MDS)
James Serra
 
KEY
Processing Big Data
cwensel
 
PPTX
Introduction to Microsoft SQL Server 2008 R2 Analysis Service
Quang Nguyễn Bá
 
PDF
Building a business intelligence architecture fit for the 21st century by Jon...
Mark Tapley
 
PPTX
Evolved BI with SQL Server 2012
Andrew Brust
 
PPTX
Software architecture & design patterns for MS CRM Developers
sebedatalabs
 
PPTX
Architecting for Massive Scalability - St. Louis Day of .NET 2011 - Aug 6, 2011
Eric D. Boyd
 
PDF
The Business Value of Business Intelligence
Senturus
 
PDF
What's New with BI in SQL Server Denali (SQL11)
Dan English
 
PDF
21st Century Service Oriented Architecture
Bob Rhubart
 
PPTX
Extending the reach of your Microsoft Dynamics AX Application with the next-g...
Microsoft Developer Network (MSDN) - Belgium and Luxembourg
 
PDF
Sybase Complex Event Processing
Sybase Türkiye
 
DOCX
Informatica
mukharji
 
PDF
Resume_Parthiban_Ranganathan
Parthiban Ranganathan
 
Sap Business Objects solutioning Framework architecture
Sandeep Sharma IIMK Smart City,IoT,Bigdata,Cloud,BI,DW
 
Self service BI with sql server 2008 R2 and microsoft power pivot short
Eduardo Castro
 
Initial Kautilya Brochure Doc
Saket Rai
 
Microsoft Breakthrough Insights
Jeroen ter Heerdt
 
Go Beyond the Numbers - Data Visualization in SharePoint 2010
Chris McNulty
 
Introduction to Microsoft’s Master Data Services (MDS)
James Serra
 
Processing Big Data
cwensel
 
Introduction to Microsoft SQL Server 2008 R2 Analysis Service
Quang Nguyễn Bá
 
Building a business intelligence architecture fit for the 21st century by Jon...
Mark Tapley
 
Evolved BI with SQL Server 2012
Andrew Brust
 
Software architecture & design patterns for MS CRM Developers
sebedatalabs
 
Architecting for Massive Scalability - St. Louis Day of .NET 2011 - Aug 6, 2011
Eric D. Boyd
 
The Business Value of Business Intelligence
Senturus
 
What's New with BI in SQL Server Denali (SQL11)
Dan English
 
21st Century Service Oriented Architecture
Bob Rhubart
 
Extending the reach of your Microsoft Dynamics AX Application with the next-g...
Microsoft Developer Network (MSDN) - Belgium and Luxembourg
 
Sybase Complex Event Processing
Sybase Türkiye
 
Informatica
mukharji
 
Resume_Parthiban_Ranganathan
Parthiban Ranganathan
 
Ad

More from Mark Ginnebaugh (20)

PDF
Automating Microsoft Power BI Creations 2015
Mark Ginnebaugh
 
PDF
Microsoft SQL Server Analysis Services (SSAS) - A Practical Introduction
Mark Ginnebaugh
 
PDF
Platfora - An Analytics Sandbox In A World Of Big Data
Mark Ginnebaugh
 
PDF
Microsoft SQL Server Relational Databases and Primary Keys
Mark Ginnebaugh
 
PDF
DesignMind Microsoft Business Intelligence SQL Server
Mark Ginnebaugh
 
PDF
San Francisco Bay Area SQL Server July 2013 meetings
Mark Ginnebaugh
 
PDF
Silicon Valley SQL Server User Group June 2013
Mark Ginnebaugh
 
PDF
Microsoft SQL Server Continuous Integration
Mark Ginnebaugh
 
PDF
Hortonworks Big Data & Hadoop
Mark Ginnebaugh
 
PDF
Microsoft SQL Server Physical Join Operators
Mark Ginnebaugh
 
PDF
Microsoft Data Warehouse Business Intelligence Lifecycle - The Kimball Approach
Mark Ginnebaugh
 
PDF
Fusion-io Memory Flash for Microsoft SQL Server 2012
Mark Ginnebaugh
 
PDF
Microsoft Data Mining 2012
Mark Ginnebaugh
 
PDF
Microsoft SQL Server PASS News August 2012
Mark Ginnebaugh
 
PDF
Business Intelligence Dashboard Design Best Practices
Mark Ginnebaugh
 
PDF
Microsoft Mobile Business Intelligence
Mark Ginnebaugh
 
PDF
Microsoft SQL Server 2012 Cloud Ready
Mark Ginnebaugh
 
PDF
Microsoft SQL Server 2012 Master Data Services
Mark Ginnebaugh
 
PDF
Microsoft SQL Server PowerPivot
Mark Ginnebaugh
 
PDF
Microsoft SQL Server Testing Frameworks
Mark Ginnebaugh
 
Automating Microsoft Power BI Creations 2015
Mark Ginnebaugh
 
Microsoft SQL Server Analysis Services (SSAS) - A Practical Introduction
Mark Ginnebaugh
 
Platfora - An Analytics Sandbox In A World Of Big Data
Mark Ginnebaugh
 
Microsoft SQL Server Relational Databases and Primary Keys
Mark Ginnebaugh
 
DesignMind Microsoft Business Intelligence SQL Server
Mark Ginnebaugh
 
San Francisco Bay Area SQL Server July 2013 meetings
Mark Ginnebaugh
 
Silicon Valley SQL Server User Group June 2013
Mark Ginnebaugh
 
Microsoft SQL Server Continuous Integration
Mark Ginnebaugh
 
Hortonworks Big Data & Hadoop
Mark Ginnebaugh
 
Microsoft SQL Server Physical Join Operators
Mark Ginnebaugh
 
Microsoft Data Warehouse Business Intelligence Lifecycle - The Kimball Approach
Mark Ginnebaugh
 
Fusion-io Memory Flash for Microsoft SQL Server 2012
Mark Ginnebaugh
 
Microsoft Data Mining 2012
Mark Ginnebaugh
 
Microsoft SQL Server PASS News August 2012
Mark Ginnebaugh
 
Business Intelligence Dashboard Design Best Practices
Mark Ginnebaugh
 
Microsoft Mobile Business Intelligence
Mark Ginnebaugh
 
Microsoft SQL Server 2012 Cloud Ready
Mark Ginnebaugh
 
Microsoft SQL Server 2012 Master Data Services
Mark Ginnebaugh
 
Microsoft SQL Server PowerPivot
Mark Ginnebaugh
 
Microsoft SQL Server Testing Frameworks
Mark Ginnebaugh
 
Ad

Recently uploaded (20)

PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
Staying Human in a Machine- Accelerated World
Catalin Jora
 
PPTX
COMPARISON OF RASTER ANALYSIS TOOLS OF QGIS AND ARCGIS
Sharanya Sarkar
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
What Makes Contify’s News API Stand Out: Key Features at a Glance
Contify
 
PDF
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PPTX
Future Tech Innovations 2025 – A TechLists Insight
TechLists
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
LOOPS in C Programming Language - Technology
RishabhDwivedi43
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
Staying Human in a Machine- Accelerated World
Catalin Jora
 
COMPARISON OF RASTER ANALYSIS TOOLS OF QGIS AND ARCGIS
Sharanya Sarkar
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
What Makes Contify’s News API Stand Out: Key Features at a Glance
Contify
 
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Future Tech Innovations 2025 – A TechLists Insight
TechLists
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 

Microsoft SQL Server - How to Collaboratively Manage Excel Data

  • 1. How To Collaboratively Manage Excel‐ How To Collaboratively M H T C ll b ti l Manage Excel‐ E l Based Process Data in SQL Server Speaker: JB Kuppe Boardwalktech Silicon Valley SQL Server User Group June 2011 Mark Ginnebaugh, User Group Leader,  [email protected]
  • 2. JB Kuppe [email protected] Collaboratively Manage Excel‐Based  ll b i l l d Process Data in SQL Server Enabling companies to build and maintain competitive advantage through  business process innovation in the collaborative planning space
  • 3. Founded in 2004 ‐ HQ in Palo Alto, CA  Origins in MCAD PDM  Patented  Positional Database Technology Patented “Positional” Database Technology  Product: The Boardwalk Collaboration Platform (BCP)  Application Focus: Collaborative Planning Processes
  • 4. The Elephant in the Room p Enterprise Reality IT Perception IT Perception Desktop Applications Business  GAP Intelligence Data Warehouse OLAP Reporting Specialty /Edge  Business Intelligence Applications Financials CRM SCM Edge Apps Core ERP Core ERP “80% of the work” 
  • 5. X Denormalized Tables Business Intelligence Business Focus Information  Reporting Cubes $$$ collection Can’t contribute to  Iteration A: Cleansing and  the Denormalized View schema design Mapping and Transformation EAI , BI $$$ Iteration B: Cleansing and  schema changes Technology Focus $$ Expensive Iterations Normalized Normalized  Normalized Normalized  Table Table
  • 6. select cust.companyname, cust.contactname, orddet.quantity, ord.orderdate,  prod.productname from customers cust inner join orders ord on cust.customerid =  ord.customerid inner join [order details] orddet on ord.orderid = orddet.orderid inner  j p join products prod on orddet.productid = prod.productid where prod.productname = p p p p p p Backward looking  versus forward  looking..
  • 7. Export to  Excel Email to  Change  everyone history Maintain data  connection ‐ data  location changes location changes Merge in  Create multiple views  Create dependent  other data for different users data calculation
  • 8. Create  Define schema (create from Excel)  Create a database schema, define entity relationship Create a database schema, define entity relationship Manage  Create UI in Excel to match database schema  Create a J2EE or .Net data update layer  Program ability to create new record from Excel  Program access control and consolidation rules into every sheet  connected to RDBMS  Versioning for all schemas has to be programmed Versioning for all schemas has to be programmed  Change management has to be programmed   Formula support needs to be programmed  Check‐out/in mechanism used to work on data  Only “latest” change wins Report  For every report, run a SQL query to filter the data, paste it in Excel,  t i t il t create pivots, email reports  Do process again if data changes/version “old” reports
  • 10. Rows of Data • Product Columns of Data • Customer • Time • User • Business variable How to Collaborate? How to Collaborate? Excel is a business process platform Emailing does not work • Position of data drives business logic Excel “Connectors” do not work • Complex relationships (formulas) • No change management • Rigid model pushed to spreadsheet • Flexibility • Versioning nightmaremanagement UI (colors Versioning nightmare • Powerful data management UI (colors,  Powerful data • No persistence No persistence • conditional format, picklists) No central version • No change/audit • Offline environment/mature data RDBMS • No access control • No access control • “Save‐as” local versioning=scenarios • Data consistency • No positional integrity
  • 11. Change values and formulas V2 (R/C,U,T,Net Change) V1 (R/C,U,T)
  • 12. Patent awarded 2008 “Positional” Data Structure ‒ Positional cell data management Versions (R/C Position, Structure, Net Change, User, Time) ‒ Range vs record transaction control Columns ‒ Single flexible schema • Excel range creates/drives shareable  database model database model User Access 1 Data Row User Access 2 Data Range2 • Scalable multi‐user collaboration User Access 3 Range1 ‒ Work “off‐line,” no check‐in/out ‒ Dynamic access control y ‒ “Submit/Refresh” sharing Business  Column Logic ‒ Centrally manage collaborative data ‒ Net‐change versions vs. overwrite ‒ Cell‐level change tracking Other App/DB • Integration with any App/DB • Application flexibility ‒ One platform, many solutions l f l
  • 13. Addressability to Business Objects (Table, Row, Column)  Data Ordering (Row, Column)  Referential Integrity limits growth Referential Integrity limits growth  No Locking – High Concurrency  No Data Overwrite ‐ Versioning  Persistent Transactions  Persistent Transactions  WYSWYG Data Update
  • 14. Sharing data &  formulas Manager Rep Refresh Submit Firewall Other ERP…
  • 15. Form Interface Model Tabular User Interface Model and Business Logic Communication Technology Communication Technology Communication Technology Communication Technology Centralized Business Model and Logic Positional Data Management Relational Relational Relational Relational Rigid Data Models Abstract Tabular Data Model Persistence w/o history Persistence w/o history Persistence with history Persistence with history 1. Business person defines requirements  1. Business person expresses requirements in a  2. Each technology layer looses information Tabular model 3. Each layer introduces rigidity 2. The Model is translated WYSIWYG to the tabular  4. y Each layer adds cost database so no loss of information 5. Each layer adds latency to change 3. Changes in the Model at UI layer directly drive the  flexible tabular database 6. Every one confirms to centralized model and logic 4. Cost of change is zero 7. Business Person at the top has no control over the  Data Models 5. There is no latency to change 6. Business Logic is embedded in the UI and doesn’t  require conformance by all parties 7. Business person is in full control over the data  model and is fully empowered
  • 16. The Cuboid Powered Enterprise  p Enterprise Collaboration
  • 17. General forecasting • Tax platform o Periodic shift Periodic shift o Multi entity tax environment (corporate, partnership) Multi‐entity tax environment (corporate, partnership) o Aggregation/disaggregation o SME template authoring, management, and  o Re‐alignment propagation  o Exceptions o Tax formula library o Notifications N tifi ti o Tax business rules library Tax business rules library o Scenario planning o Dynamic taxonomy management • New product introductions o Rollover services o Tax item allocation and consolidation o Product attribute o Project tax data consolidation o Phase in/out o Document management integration o Plan‐o‐gram driven forecasting o External data query/integration o Product master management • EDI collaboration EDI collaboration o Outsourced retail supply planning o Supplier collaboration Page 17
  • 18. BCP Powered Enterprise Solutions p Demand Planning/Supply Planning Sales manager adjustments can be done at the customer/SKU level or at the aggregate region/territory l t i /t it level l Spreadsheet-based measures & calculations Measures & applicable SKUs from planning SOR Cell-level, two-way collaboration Access control
  • 20. To learn more or inquire about speaking opportunities, please contact: Mark Ginnebaugh, User Group Leader Mark Ginnebaugh User Group Leader [email protected]