SlideShare a Scribd company logo
Migrating from RDBMS to MongoDB Atlas
Texas American Resources Company (TARC)
Reggie Crawford
mongodb@texasarc.com
Who Am I?
• I’ve worked in IT for 21 years
• Programming
• Python, Perl, C/C++, Java, R, Scala
• Systems Administration
• Linux/Unix, AS/400, Windows
• Database Administration
• MongoDB, SQL Server, Oracle, MariaDB, PostgreSQL, Neo4j
• Cloud Platforms
• Atlas, AWS, Azure, Google AppEngine
What Does TARC Do?
• Oil and Gas focused on Exploration and Production (Upstream)
Reasons for migration
Data silos
• Mostly caused by software choices
• Accounting (UniData)
• Production (UniData/Microsoft Access)*
• Geology (SAP SQLAnywhere)*
• Land (UniData)
• Reservoir Engineering (Microsoft
Access)*
• Way too many Microsoft Excel
spreadsheets
Reporting (Focusing on Production)
• No consistent data
• Oil and Gas tools are very expensive,
dated, and one size fits
• A desire for dashboarding and
automation
Legacy Architecture
First Attempt - 2011
Web Interface
PDF Document
Excel File
BOLO (UniData) Entrinsik Reporting Server
UniQuery
Second Attempt - 2012
Productiondata
Accountingdata
Landdata
Web Interface
PDF Document
Excel File
BOLO (UniData) Entrinsik Reporting Server
UniQuery
Reservoirdata
Acccess Database File SQL query
Third Attempt - 2012
Accountingdata
Landdata
Web Interface
PDF Document
Excel File
BOLO (UniData) Entrinsik Reporting Server
UniQuery
Reservoirdata
Acccess Database File SQL query
ProductionData
Production Database
SQL Server
Current Attempt
Production Data
(UniData/Restful API/
SOAP)
Accounting Data
(UniData)
Land Data
(UniData/Restful API)
Ascii Log Files
ETL
Data Sources
Secondary
Config
Primary
MongoDB
Why MongoDB?
• No Joins!!!
• JSON Documents
• Easy to scale
• Flexible schema
• Spatially aware
• No more lookup tables
Migration
Planning
Focus on production and
production reporting
Schema Design
 wells.json
 tanks.json
 meter.json
 gathering_system.json
 lease.json
 production.json
 runtickets.json
 gas_meter_readings.json
 economics.json
Data Migration
 Python to the Rescue
 ETL all use PyMongo/.NET
Drivers for IronPython
Production Reporting
and
Economic Forecasting
 Dashboarding for Executive
and managers
 Reservoir engineers can pull
from onedata source to
Results of Migration
• Cleaner and more accurate data
• Better understanding of our core data model
• A modern architecture
• Automated production reporting
• Reservoir Engineers can pull from on data source
Why MongoDB Atlas?
• Huge time savings on maintenance
• Follows the best practices for security
• Save on purchasing SSL certs
• Very minimal code rewrites, only needed to point to the Atlas
database.
• Scalability
• Monitoring
Summary and Insights
References
• MongoDB University
• M034: New Features and Tools in MongoDB 3.4
• M102: MongoDB for DBAs
• M123: Getting Started with MongoDB Atlas
• UD032: Data Wrangling with MongoDB (Udacity)

More Related Content

What's hot (20)

PPTX
Google Cloud and Data Pipeline Patterns
Lynn Langit
 
PPTX
Real-Time Analytics with Spark and MemSQL
SingleStore
 
PDF
Presto
Chen Chun
 
PPTX
Hello, Enterprise! Meet Presto. (Presto Boston Meetup 10062015)
Matt Fuller
 
PDF
Presto@Uber
Zhenxiao Luo
 
PDF
Data streaming-systems
imcpune
 
PDF
Streaming sql and druid
arupmalakar
 
PDF
Apache Iceberg - A Table Format for Hige Analytic Datasets
Alluxio, Inc.
 
ODP
Oss as a competitive advantage
Regunath B
 
PPTX
Hadoop and friends
Chandan Rajah
 
PDF
Presto: Fast SQL-on-Anything (including Delta Lake, Snowflake, Elasticsearch ...
Databricks
 
PDF
How Sysbee Manages Infrastructures and Provides Advanced Monitoring by Using ...
InfluxData
 
PPTX
Bullet: A Real Time Data Query Engine
DataWorks Summit
 
PPTX
How Kafka and Modern Databases Benefit Apps and Analytics
SingleStore
 
PDF
RealTime Recommendations @Netflix - Spark
Nitin S
 
PDF
Aesop change data propagation
Regunath B
 
PDF
Presto Summit 2018 - 08 - FINRA
kbajda
 
PDF
How a Data Mesh is Driving our Platform | Trey Hicks, Gloo
HostedbyConfluent
 
PDF
Building Robust Production Data Pipelines with Databricks Delta
Databricks
 
Google Cloud and Data Pipeline Patterns
Lynn Langit
 
Real-Time Analytics with Spark and MemSQL
SingleStore
 
Presto
Chen Chun
 
Hello, Enterprise! Meet Presto. (Presto Boston Meetup 10062015)
Matt Fuller
 
Presto@Uber
Zhenxiao Luo
 
Data streaming-systems
imcpune
 
Streaming sql and druid
arupmalakar
 
Apache Iceberg - A Table Format for Hige Analytic Datasets
Alluxio, Inc.
 
Oss as a competitive advantage
Regunath B
 
Hadoop and friends
Chandan Rajah
 
Presto: Fast SQL-on-Anything (including Delta Lake, Snowflake, Elasticsearch ...
Databricks
 
How Sysbee Manages Infrastructures and Provides Advanced Monitoring by Using ...
InfluxData
 
Bullet: A Real Time Data Query Engine
DataWorks Summit
 
How Kafka and Modern Databases Benefit Apps and Analytics
SingleStore
 
RealTime Recommendations @Netflix - Spark
Nitin S
 
Aesop change data propagation
Regunath B
 
Presto Summit 2018 - 08 - FINRA
kbajda
 
How a Data Mesh is Driving our Platform | Trey Hicks, Gloo
HostedbyConfluent
 
Building Robust Production Data Pipelines with Databricks Delta
Databricks
 

Similar to Migrating from RDBMS to MongoDB Atlas - Texas American Resources Company (TARC) (20)

PPTX
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
MongoDB
 
PDF
Build robust streaming data pipelines with MongoDB and Kafka P2
Ashnikbiz
 
PDF
Tugdual Grall - From SQL to NoSQL in less than 40 min - NoSQL matters Paris 2015
NoSQLmatters
 
PDF
Enabling Telco to Build and Run Modern Applications
Tugdual Grall
 
PDF
MongoDB 4.0 새로운 기능 소개
Ha-Yang(White) Moon
 
PDF
Mongo db 3.4 Overview
Norberto Leite
 
PDF
Overcoming Today's Data Challenges with MongoDB
MongoDB
 
PPTX
3 Ways Modern Databases Drive Revenue
MongoDB
 
PPTX
Webinar: How to Drive Business Value in Financial Services with MongoDB
MongoDB
 
PPTX
MongoDB on Financial Services Sector
Norberto Leite
 
PDF
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA
 
PPTX
Webinar: Migrating from RDBMS to MongoDB
MongoDB
 
PPTX
La nuova architettura di classe enterprise
MongoDB
 
PPTX
Business Jumpstart: The Right (and Wrong) Use Cases for MongoDB
MongoDB
 
KEY
Mongo Seattle - The Business of MongoDB
Justin Smestad
 
PPTX
Webinar: An Enterprise Architect’s View of MongoDB
MongoDB
 
PDF
Final_CloudEventFrankfurt2017 (1).pdf
MongoDB
 
PDF
MongoDB Basics
Sarang Shravagi
 
PPTX
MongoDB Evenings Toronto - Monolithic to Microservices with MongoDB
MongoDB
 
PPTX
Migrating from RDBMS to MongoDB
MongoDB
 
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
MongoDB
 
Build robust streaming data pipelines with MongoDB and Kafka P2
Ashnikbiz
 
Tugdual Grall - From SQL to NoSQL in less than 40 min - NoSQL matters Paris 2015
NoSQLmatters
 
Enabling Telco to Build and Run Modern Applications
Tugdual Grall
 
MongoDB 4.0 새로운 기능 소개
Ha-Yang(White) Moon
 
Mongo db 3.4 Overview
Norberto Leite
 
Overcoming Today's Data Challenges with MongoDB
MongoDB
 
3 Ways Modern Databases Drive Revenue
MongoDB
 
Webinar: How to Drive Business Value in Financial Services with MongoDB
MongoDB
 
MongoDB on Financial Services Sector
Norberto Leite
 
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA
 
Webinar: Migrating from RDBMS to MongoDB
MongoDB
 
La nuova architettura di classe enterprise
MongoDB
 
Business Jumpstart: The Right (and Wrong) Use Cases for MongoDB
MongoDB
 
Mongo Seattle - The Business of MongoDB
Justin Smestad
 
Webinar: An Enterprise Architect’s View of MongoDB
MongoDB
 
Final_CloudEventFrankfurt2017 (1).pdf
MongoDB
 
MongoDB Basics
Sarang Shravagi
 
MongoDB Evenings Toronto - Monolithic to Microservices with MongoDB
MongoDB
 
Migrating from RDBMS to MongoDB
MongoDB
 
Ad

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
Ad

Recently uploaded (20)

PDF
Digger Solo: Semantic search and maps for your local files
seanpedersen96
 
PPTX
Homogeneity of Variance Test Options IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
PDF
The 5 Reasons for IT Maintenance - Arna Softech
Arna Softech
 
PPTX
Milwaukee Marketo User Group - Summer Road Trip: Mapping and Personalizing Yo...
bbedford2
 
PPTX
OpenChain @ OSS NA - In From the Cold: Open Source as Part of Mainstream Soft...
Shane Coughlan
 
PDF
Open Chain Q2 Steering Committee Meeting - 2025-06-25
Shane Coughlan
 
PPTX
Comprehensive Risk Assessment Module for Smarter Risk Management
EHA Soft Solutions
 
PPTX
AEM User Group: India Chapter Kickoff Meeting
jennaf3
 
PDF
TheFutureIsDynamic-BoxLang witch Luis Majano.pdf
Ortus Solutions, Corp
 
PDF
AOMEI Partition Assistant Crack 10.8.2 + WinPE Free Downlaod New Version 2025
bashirkhan333g
 
PDF
Empower Your Tech Vision- Why Businesses Prefer to Hire Remote Developers fro...
logixshapers59
 
PDF
MiniTool Power Data Recovery 8.8 With Crack New Latest 2025
bashirkhan333g
 
PDF
ERP Consulting Services and Solutions by Contetra Pvt Ltd
jayjani123
 
PDF
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
PPTX
In From the Cold: Open Source as Part of Mainstream Software Asset Management
Shane Coughlan
 
PDF
Odoo CRM vs Zoho CRM: Honest Comparison 2025
Odiware Technologies Private Limited
 
PDF
Generic or Specific? Making sensible software design decisions
Bert Jan Schrijver
 
PDF
NEW-Viral>Wondershare Filmora 14.5.18.12900 Crack Free
sherryg1122g
 
PDF
유니티에서 Burst Compiler+ThreadedJobs+SIMD 적용사례
Seongdae Kim
 
PDF
Wondershare PDFelement Pro Crack for MacOS New Version Latest 2025
bashirkhan333g
 
Digger Solo: Semantic search and maps for your local files
seanpedersen96
 
Homogeneity of Variance Test Options IBM SPSS Statistics Version 31.pptx
Version 1 Analytics
 
The 5 Reasons for IT Maintenance - Arna Softech
Arna Softech
 
Milwaukee Marketo User Group - Summer Road Trip: Mapping and Personalizing Yo...
bbedford2
 
OpenChain @ OSS NA - In From the Cold: Open Source as Part of Mainstream Soft...
Shane Coughlan
 
Open Chain Q2 Steering Committee Meeting - 2025-06-25
Shane Coughlan
 
Comprehensive Risk Assessment Module for Smarter Risk Management
EHA Soft Solutions
 
AEM User Group: India Chapter Kickoff Meeting
jennaf3
 
TheFutureIsDynamic-BoxLang witch Luis Majano.pdf
Ortus Solutions, Corp
 
AOMEI Partition Assistant Crack 10.8.2 + WinPE Free Downlaod New Version 2025
bashirkhan333g
 
Empower Your Tech Vision- Why Businesses Prefer to Hire Remote Developers fro...
logixshapers59
 
MiniTool Power Data Recovery 8.8 With Crack New Latest 2025
bashirkhan333g
 
ERP Consulting Services and Solutions by Contetra Pvt Ltd
jayjani123
 
How to Hire AI Developers_ Step-by-Step Guide in 2025.pdf
DianApps Technologies
 
In From the Cold: Open Source as Part of Mainstream Software Asset Management
Shane Coughlan
 
Odoo CRM vs Zoho CRM: Honest Comparison 2025
Odiware Technologies Private Limited
 
Generic or Specific? Making sensible software design decisions
Bert Jan Schrijver
 
NEW-Viral>Wondershare Filmora 14.5.18.12900 Crack Free
sherryg1122g
 
유니티에서 Burst Compiler+ThreadedJobs+SIMD 적용사례
Seongdae Kim
 
Wondershare PDFelement Pro Crack for MacOS New Version Latest 2025
bashirkhan333g
 

Migrating from RDBMS to MongoDB Atlas - Texas American Resources Company (TARC)

  • 1. Migrating from RDBMS to MongoDB Atlas Texas American Resources Company (TARC) Reggie Crawford [email protected]
  • 2. Who Am I? • I’ve worked in IT for 21 years • Programming • Python, Perl, C/C++, Java, R, Scala • Systems Administration • Linux/Unix, AS/400, Windows • Database Administration • MongoDB, SQL Server, Oracle, MariaDB, PostgreSQL, Neo4j • Cloud Platforms • Atlas, AWS, Azure, Google AppEngine
  • 3. What Does TARC Do? • Oil and Gas focused on Exploration and Production (Upstream)
  • 4. Reasons for migration Data silos • Mostly caused by software choices • Accounting (UniData) • Production (UniData/Microsoft Access)* • Geology (SAP SQLAnywhere)* • Land (UniData) • Reservoir Engineering (Microsoft Access)* • Way too many Microsoft Excel spreadsheets Reporting (Focusing on Production) • No consistent data • Oil and Gas tools are very expensive, dated, and one size fits • A desire for dashboarding and automation
  • 6. First Attempt - 2011 Web Interface PDF Document Excel File BOLO (UniData) Entrinsik Reporting Server UniQuery
  • 7. Second Attempt - 2012 Productiondata Accountingdata Landdata Web Interface PDF Document Excel File BOLO (UniData) Entrinsik Reporting Server UniQuery Reservoirdata Acccess Database File SQL query
  • 8. Third Attempt - 2012 Accountingdata Landdata Web Interface PDF Document Excel File BOLO (UniData) Entrinsik Reporting Server UniQuery Reservoirdata Acccess Database File SQL query ProductionData Production Database SQL Server
  • 9. Current Attempt Production Data (UniData/Restful API/ SOAP) Accounting Data (UniData) Land Data (UniData/Restful API) Ascii Log Files ETL Data Sources Secondary Config Primary MongoDB
  • 10. Why MongoDB? • No Joins!!! • JSON Documents • Easy to scale • Flexible schema • Spatially aware • No more lookup tables
  • 11. Migration Planning Focus on production and production reporting Schema Design  wells.json  tanks.json  meter.json  gathering_system.json  lease.json  production.json  runtickets.json  gas_meter_readings.json  economics.json Data Migration  Python to the Rescue  ETL all use PyMongo/.NET Drivers for IronPython Production Reporting and Economic Forecasting  Dashboarding for Executive and managers  Reservoir engineers can pull from onedata source to
  • 12. Results of Migration • Cleaner and more accurate data • Better understanding of our core data model • A modern architecture • Automated production reporting • Reservoir Engineers can pull from on data source
  • 13. Why MongoDB Atlas? • Huge time savings on maintenance • Follows the best practices for security • Save on purchasing SSL certs • Very minimal code rewrites, only needed to point to the Atlas database. • Scalability • Monitoring
  • 15. References • MongoDB University • M034: New Features and Tools in MongoDB 3.4 • M102: MongoDB for DBAs • M123: Getting Started with MongoDB Atlas • UD032: Data Wrangling with MongoDB (Udacity)