Given at the MLOps. Summit 2020 - I cover the origins of MLOps in 2018, how MLOps has evolved from 2018 to 2020, and what I expect for the future of MLOps
MLflow is an MLOps tool that enables data scientist to quickly productionize their Machine Learning projects. To achieve this, MLFlow has four major components which are Tracking, Projects, Models, and Registry. MLflow lets you train, reuse, and deploy models with any library and package them into reproducible steps. MLflow is designed to work with any machine learning library and require minimal changes to integrate into an existing codebase. In this session, we will cover the common pain points of machine learning developers such as tracking experiments, reproducibility, deployment tool and model versioning. Ready to get your hands dirty by doing quick ML project using mlflow and release to production to understand the ML-Ops lifecycle.
Machine Learning operations brings data science to the world of devops. Data scientists create models on their workstations. MLOps adds automation, validation and monitoring to any environment including machine learning on kubernetes. In this session you hear about latest developments and see it in action.
The document provides an overview of seamless MLOps using Seldon and MLflow. It discusses how MLOps is challenging due to the wide range of requirements across the ML lifecycle. MLflow helps with training by allowing experiment tracking and model versioning. Seldon Core helps with deployment by providing servers to containerize models and infrastructure for monitoring, A/B testing, and feedback. The demo shows training models with MLflow, deploying them to Seldon for A/B testing, and collecting feedback to optimize models.
1) Databricks provides a machine learning platform for MLOps that includes tools for data ingestion, model training, runtime environments, and monitoring.
2) It offers a collaborative data science workspace for data engineers, data scientists, and ML engineers to work together on projects using notebooks.
3) The platform provides end-to-end governance for machine learning including experiment tracking, reproducibility, and model governance.
ML-Ops how to bring your data science to productionHerman Wu
This document discusses end-to-end machine learning (ML) workflows and operations (MLOps) on Azure. It provides an overview of the ML lifecycle including developing and training models, validating models, deploying models, packaging models, and monitoring models. It also discusses how Azure services like Azure Machine Learning and Azure DevOps can be used to implement MLOps practices for continuous integration, delivery, and deployment of ML models. Real-world examples of automating energy demand forecasting and computer vision models are also presented.
This document discusses MLOps, which is applying DevOps practices and principles to machine learning to enable continuous delivery of ML models. It explains that ML models need continuous improvement through retraining but data scientists currently lack tools for quick iteration, versioning, and deployment. MLOps addresses this by providing ML pipelines, model management, monitoring, and retraining in a reusable workflow similar to how software is developed. Implementing even a basic CI/CD pipeline for ML can help iterate models more quickly than having no pipeline at all. The document encourages building responsible AI through practices like ensuring model performance and addressing bias.
MLOps (a compound of “machine learning” and “operations”) is a practice for collaboration and communication between data scientists and operations professionals to help manage the production machine learning lifecycle. Similar to the DevOps term in the software development world, MLOps looks to increase automation and improve the quality of production ML while also focusing on business and regulatory requirements. MLOps applies to the entire ML lifecycle - from integrating with model generation (software development lifecycle, continuous integration/continuous delivery), orchestration, and deployment, to health, diagnostics, governance, and business metrics.
To watch the full presentation click here: https://info.cnvrg.io/mlopsformachinelearning
In this webinar, we’ll discuss core practices in MLOps that will help data science teams scale to the enterprise level. You’ll learn the primary functions of MLOps, and what tasks are suggested to accelerate your teams machine learning pipeline. Join us in a discussion with cnvrg.io Solutions Architect, Aaron Schneider, and learn how teams use MLOps for more productive machine learning workflows.
- Reduce friction between science and engineering
- Deploy your models to production faster
- Health, diagnostics and governance of ML models
- Kubernetes as a core platform for MLOps
- Support advanced use-cases like continual learning with MLOps
The document discusses moving from data science to MLOps. It defines MLOps as extending DevOps methodology to include machine learning, data science, and data engineering assets. Key concepts of MLOps include iterative development, automation, continuous integration and delivery, versioning, testing, reproducibility, monitoring, source control, and model/feature stores. MLOps helps address challenges of moving models to production like the deployment gap by establishing best practices and tools for testing, deploying, managing, and monitoring models.
MLOps Bridging the gap between Data Scientists and Ops.Knoldus Inc.
Through this session we're going to introduce the MLOps lifecycle and discuss the hidden loopholes that can affect the MLProject. Then we are going to discuss the ML Model lifecycle and discuss the problem with training. We're going to introduce the MLFlow Tracking module in order to track the experiments.
Using MLOps to Bring ML to Production/The Promise of MLOpsWeaveworks
In this final Weave Online User Group of 2019, David Aronchick asks: have you ever struggled with having different environments to build, train and serve ML models, and how to orchestrate between them? While DevOps and GitOps have made huge traction in recent years, many customers struggle to apply these practices to ML workloads. This talk will focus on the ways MLOps has helped to effectively infuse AI into production-grade applications through establishing practices around model reproducibility, validation, versioning/tracking, and safe/compliant deployment. We will also talk about the direction for MLOps as an industry, and how we can use it to move faster, with more stability, than ever before.
The recording of this session is on our YouTube Channel here: https://youtu.be/twsxcwgB0ZQ
Speaker: David Aronchick, Head of Open Source ML Strategy, Microsoft
Bio: David leads Open Source Machine Learning Strategy at Azure. This means he spends most of his time helping humans to convince machines to be smarter. He is only moderately successful at this. Previously, David led product management for Kubernetes at Google, launched GKE, and co-founded the Kubeflow project. David has also worked at Microsoft, Amazon and Chef and co-founded three startups.
Sign up for a free Machine Learning Ops Workshop: http://bit.ly/MLOps_Workshop_List
Weaveworks will cover concepts such as GitOps (operations by pull request), Progressive Delivery (canary, A/B, blue-green), and how to apply those approaches to your machine learning operations to mitigate risk.
This document discusses MLOps, which aims to standardize and streamline machine learning model development and deployment through continuous delivery. MLOps applies agile principles to machine learning projects and treats models and datasets as first-class citizens within CI/CD systems. The document outlines three levels of MLOps implementation from manual to fully automated pipelines. It also describes common MLOps platform tools for data management, modeling, and operationalization, including tools for data labeling, versioning, experiment tracking, hyperparameter optimization, model deployment, and monitoring.
MLOps and Data Quality: Deploying Reliable ML Models in ProductionProvectus
Looking to build a robust machine learning infrastructure to streamline MLOps? Learn from Provectus experts how to ensure the success of your MLOps initiative by implementing Data QA components in your ML infrastructure.
For most organizations, the development of multiple machine learning models, their deployment and maintenance in production are relatively new tasks. Join Provectus as we explain how to build an end-to-end infrastructure for machine learning, with a focus on data quality and metadata management, to standardize and streamline machine learning life cycle management (MLOps).
Agenda
- Data Quality and why it matters
- Challenges and solutions of Data Testing
- Challenges and solutions of Model Testing
- MLOps pipelines and why they matter
- How to expand validation pipelines for Data Quality
This document provides an agenda and overview for an MLOps workshop hosted by Amazon Web Services. The agenda includes introductions to Amazon AI, MLOps, Amazon SageMaker, machine learning pipelines, and a hands-on exercise to build an MLOps pipeline. It discusses key concepts like personas in MLOps, the CRISP-DM process, microservices deployment, and challenges of MLOps. It also provides overviews of Amazon SageMaker for machine learning and AWS services for continuous integration/delivery.
How to use Azure Machine Learning service to manage the lifecycle of your models. Azure Machine Learning uses a Machine Learning Operations (MLOps) approach, which improves the quality and consistency of your machine learning solutions.
The catalyst for the success of automobiles came not through the invention of the car but rather through the establishment of an innovative assembly line. History shows us that the ability to mass produce and distribute a product is the key to driving adoption of any innovation, and machine learning is no different. MLOps is the assembly line of Machine Learning and in this presentation we will discuss the core capabilities your organization should be focused on to implement a successful MLOps system.
MLOps Virtual Event | Building Machine Learning Platforms for the Full LifecycleDatabricks
This document summarizes a webinar on building machine learning platforms. It discusses how operating ML models is complex, requiring tasks like monitoring performance, handling data drift, and ensuring governance and security. It then outlines common components of ML platforms, including data management, model management, and code/deployment management. The webinar will demonstrate how different organizations handle these components and include demos from four companies. It will also cover Databricks' approach to providing an ML platform that integrates various tools and simplifies the full ML lifecycle from data preparation to deployment.
“Houston, we have a model...” Introduction to MLOpsRui Quintino
The document introduces MLOps (Machine Learning Operations) and the need to operationalize machine learning models beyond just model deployment. It discusses challenges like data and model drift, retraining models, software dependencies, monitoring models in production, and the need for automation, testing, and reproducibility across the full machine learning lifecycle from data to deployment. An example MLOps workflow is shown using GitHub and Azure ML to enable experiment tracking, automation, and continuous integration and delivery of models.
This session is continuation of “Automated Production Ready ML at Scale” in last Spark AI Summit at Europe. In this session you will learn about how H&M evolves reference architecture covering entire MLOps stack addressing a few common challenges in AI and Machine learning product, like development efficiency, end to end traceability, speed to production, etc.
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...DataWorks Summit
Specialized tools for machine learning development and model governance are becoming essential. MlFlow is an open source platform for managing the machine learning lifecycle. Just by adding a few lines of code in the function or script that trains their model, data scientists can log parameters, metrics, artifacts (plots, miscellaneous files, etc.) and a deployable packaging of the ML model. Every time that function or script is run, the results will be logged automatically as a byproduct of those lines of code being added, even if the party doing the training run makes no special effort to record the results. MLflow application programming interfaces (APIs) are available for the Python, R and Java programming languages, and MLflow sports a language-agnostic REST API as well. Over a relatively short time period, MLflow has garnered more than 3,300 stars on GitHub , almost 500,000 monthly downloads and 80 contributors from more than 40 companies. Most significantly, more than 200 companies are now using MLflow. We will demo MlFlow Tracking , Project and Model components with Azure Machine Learning (AML) Services and show you how easy it is to get started with MlFlow on-prem or in the cloud.
mlflow: Accelerating the End-to-End ML lifecycleDatabricks
Building and deploying a machine learning model can be difficult to do once. Enabling other data scientists (or yourself, one month later) to reproduce your pipeline, to compare the results of different versions, to track what’s running where, and to redeploy and rollback updated models is much harder.
In this talk, I’ll introduce MLflow, a new open source project from Databricks that simplifies the machine learning lifecycle. MLflow provides APIs for tracking experiment runs between multiple users within a reproducible environment, and for managing the deployment of models to production. MLflow is designed to be an open, modular platform, in the sense that you can use it with any existing ML library and development process. MLflow was launched in June 2018 and has already seen significant community contributions, with over 50 contributors and new features including language APIs, integrations with popular ML libraries, and storage backends. I’ll show how MLflow works and explain how to get started with MLflow.
H&M uses machine learning for various use cases including logistics, production, sales, marketing, and design/buying. MLOps principles like model versioning, reproducibility, scalability, and automated training are applied to manage the machine learning lifecycle. The technical stack includes Kubernetes, Docker, Azure Databricks for interactive development, Airflow for automated training, and Seldon for model serving. The goal is to apply MLOps at scale for various prediction scenarios through a continuous integration/continuous delivery pipeline.
Команда Data Phoenix Events приглашает всех, 17 августа в 19:00, на первый вебинар из серии "The A-Z of Data", который будет посвящен MLOps. В рамках вводного вебинара, мы рассмотрим, что такое MLOps, основные принципы и практики, лучшие инструменты и возможные архитектуры. Мы начнем с простого жизненного цикла разработки ML решений и закончим сложным, максимально автоматизированным, циклом, который нам позволяет реализовать MLOps.
https://dataphoenix.info/the-a-z-of-data/
https://dataphoenix.info/the-a-z-of-data-introduction-to-mlops/
For the full video of this presentation, please visit: https://www.edge-ai-vision.com/2022/09/mlops-managing-data-and-workflows-for-efficient-model-development-and-deployment-a-presentation-from-airbus/
Konstantinos Balafas, Head of AI Data, and Carlo Dal Mutto, Director of Engineering, both of Airbus, present the “MLOps: Managing Data and Workflows for Efficient Model Development and Deployment” tutorial at the May 2022 Embedded Vision Summit.
Machine learning operations (MLOps) is the engineering field focused on techniques for developing and deploying machine learning solutions at scale. As the name suggests, MLOps is a combination of machine learning development (“ML”) and software/IT operations (“Ops”). Blending these two words is particularly complex, given their diverse nature. ML development is characterized by research and experimental components, dealing with large amounts of data and complex operations, while software and IT operations aim at streamlining software deployment in products.
Typical problems addressed by MLOps include data management (labeling, organization, storage), ML model and pipeline training repeatability, error analysis, model integration and deployment and model monitoring. In this talk, Dal Mutto and Balafas present practical MLOps techniques useful for tackling a variety of MLOps needs. They illustrate these techniques with real-world examples from their work developing autonomous flying capabilities as part of the Wayfinder team at Acubed, the Silicon Valley innovation center of Airbus.
Introdution to Dataops and AIOps (or MLOps)Adrien Blind
This presentation introduces the audience to the DataOps and AIOps practices. It deals with organizational & tech aspects, and provide hints to start you data journey.
This document discusses MLOps and Kubeflow. It begins with an introduction to the speaker and defines MLOps as addressing the challenges of independently autoscaling machine learning pipeline stages, choosing different tools for each stage, and seamlessly deploying models across environments. It then introduces Kubeflow as an open source project that uses Kubernetes to minimize MLOps efforts by enabling composability, scalability, and portability of machine learning workloads. The document outlines key MLOps capabilities in Kubeflow like Jupyter notebooks, hyperparameter tuning with Katib, and model serving with KFServing and Seldon Core. It describes the typical machine learning process and how Kubeflow supports experimental and production phases.
The document discusses challenges for machine learning data storage and management. It notes that machine learning workloads involve large and growing data sizes and types. Proper data governance is also essential for ensuring trustworthy machine learning systems, through mechanisms like data lineage tracking and access control. Emerging areas like edge computing further complicate storage needs. Effective machine learning storage systems will need to address issues of data access speeds, management, reproducibility and governance.
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...Databricks
Getting machine learning models to production is notoriously difficult: it involves multiple teams (data scientists, data and machine learning engineers, operations, …), who often does not speak to each other very well; the model can be trained in one environment but then productionalized in completely different environment; it is not just about the code, but also about the data (features) and the model itself… At DataSentics, as a machine learning and cloud engineering studio, we see this struggle firsthand – on our internal projects and client’s projects as well.
The document discusses moving from data science to MLOps. It defines MLOps as extending DevOps methodology to include machine learning, data science, and data engineering assets. Key concepts of MLOps include iterative development, automation, continuous integration and delivery, versioning, testing, reproducibility, monitoring, source control, and model/feature stores. MLOps helps address challenges of moving models to production like the deployment gap by establishing best practices and tools for testing, deploying, managing, and monitoring models.
MLOps Bridging the gap between Data Scientists and Ops.Knoldus Inc.
Through this session we're going to introduce the MLOps lifecycle and discuss the hidden loopholes that can affect the MLProject. Then we are going to discuss the ML Model lifecycle and discuss the problem with training. We're going to introduce the MLFlow Tracking module in order to track the experiments.
Using MLOps to Bring ML to Production/The Promise of MLOpsWeaveworks
In this final Weave Online User Group of 2019, David Aronchick asks: have you ever struggled with having different environments to build, train and serve ML models, and how to orchestrate between them? While DevOps and GitOps have made huge traction in recent years, many customers struggle to apply these practices to ML workloads. This talk will focus on the ways MLOps has helped to effectively infuse AI into production-grade applications through establishing practices around model reproducibility, validation, versioning/tracking, and safe/compliant deployment. We will also talk about the direction for MLOps as an industry, and how we can use it to move faster, with more stability, than ever before.
The recording of this session is on our YouTube Channel here: https://youtu.be/twsxcwgB0ZQ
Speaker: David Aronchick, Head of Open Source ML Strategy, Microsoft
Bio: David leads Open Source Machine Learning Strategy at Azure. This means he spends most of his time helping humans to convince machines to be smarter. He is only moderately successful at this. Previously, David led product management for Kubernetes at Google, launched GKE, and co-founded the Kubeflow project. David has also worked at Microsoft, Amazon and Chef and co-founded three startups.
Sign up for a free Machine Learning Ops Workshop: http://bit.ly/MLOps_Workshop_List
Weaveworks will cover concepts such as GitOps (operations by pull request), Progressive Delivery (canary, A/B, blue-green), and how to apply those approaches to your machine learning operations to mitigate risk.
This document discusses MLOps, which aims to standardize and streamline machine learning model development and deployment through continuous delivery. MLOps applies agile principles to machine learning projects and treats models and datasets as first-class citizens within CI/CD systems. The document outlines three levels of MLOps implementation from manual to fully automated pipelines. It also describes common MLOps platform tools for data management, modeling, and operationalization, including tools for data labeling, versioning, experiment tracking, hyperparameter optimization, model deployment, and monitoring.
MLOps and Data Quality: Deploying Reliable ML Models in ProductionProvectus
Looking to build a robust machine learning infrastructure to streamline MLOps? Learn from Provectus experts how to ensure the success of your MLOps initiative by implementing Data QA components in your ML infrastructure.
For most organizations, the development of multiple machine learning models, their deployment and maintenance in production are relatively new tasks. Join Provectus as we explain how to build an end-to-end infrastructure for machine learning, with a focus on data quality and metadata management, to standardize and streamline machine learning life cycle management (MLOps).
Agenda
- Data Quality and why it matters
- Challenges and solutions of Data Testing
- Challenges and solutions of Model Testing
- MLOps pipelines and why they matter
- How to expand validation pipelines for Data Quality
This document provides an agenda and overview for an MLOps workshop hosted by Amazon Web Services. The agenda includes introductions to Amazon AI, MLOps, Amazon SageMaker, machine learning pipelines, and a hands-on exercise to build an MLOps pipeline. It discusses key concepts like personas in MLOps, the CRISP-DM process, microservices deployment, and challenges of MLOps. It also provides overviews of Amazon SageMaker for machine learning and AWS services for continuous integration/delivery.
How to use Azure Machine Learning service to manage the lifecycle of your models. Azure Machine Learning uses a Machine Learning Operations (MLOps) approach, which improves the quality and consistency of your machine learning solutions.
The catalyst for the success of automobiles came not through the invention of the car but rather through the establishment of an innovative assembly line. History shows us that the ability to mass produce and distribute a product is the key to driving adoption of any innovation, and machine learning is no different. MLOps is the assembly line of Machine Learning and in this presentation we will discuss the core capabilities your organization should be focused on to implement a successful MLOps system.
MLOps Virtual Event | Building Machine Learning Platforms for the Full LifecycleDatabricks
This document summarizes a webinar on building machine learning platforms. It discusses how operating ML models is complex, requiring tasks like monitoring performance, handling data drift, and ensuring governance and security. It then outlines common components of ML platforms, including data management, model management, and code/deployment management. The webinar will demonstrate how different organizations handle these components and include demos from four companies. It will also cover Databricks' approach to providing an ML platform that integrates various tools and simplifies the full ML lifecycle from data preparation to deployment.
“Houston, we have a model...” Introduction to MLOpsRui Quintino
The document introduces MLOps (Machine Learning Operations) and the need to operationalize machine learning models beyond just model deployment. It discusses challenges like data and model drift, retraining models, software dependencies, monitoring models in production, and the need for automation, testing, and reproducibility across the full machine learning lifecycle from data to deployment. An example MLOps workflow is shown using GitHub and Azure ML to enable experiment tracking, automation, and continuous integration and delivery of models.
This session is continuation of “Automated Production Ready ML at Scale” in last Spark AI Summit at Europe. In this session you will learn about how H&M evolves reference architecture covering entire MLOps stack addressing a few common challenges in AI and Machine learning product, like development efficiency, end to end traceability, speed to production, etc.
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...DataWorks Summit
Specialized tools for machine learning development and model governance are becoming essential. MlFlow is an open source platform for managing the machine learning lifecycle. Just by adding a few lines of code in the function or script that trains their model, data scientists can log parameters, metrics, artifacts (plots, miscellaneous files, etc.) and a deployable packaging of the ML model. Every time that function or script is run, the results will be logged automatically as a byproduct of those lines of code being added, even if the party doing the training run makes no special effort to record the results. MLflow application programming interfaces (APIs) are available for the Python, R and Java programming languages, and MLflow sports a language-agnostic REST API as well. Over a relatively short time period, MLflow has garnered more than 3,300 stars on GitHub , almost 500,000 monthly downloads and 80 contributors from more than 40 companies. Most significantly, more than 200 companies are now using MLflow. We will demo MlFlow Tracking , Project and Model components with Azure Machine Learning (AML) Services and show you how easy it is to get started with MlFlow on-prem or in the cloud.
mlflow: Accelerating the End-to-End ML lifecycleDatabricks
Building and deploying a machine learning model can be difficult to do once. Enabling other data scientists (or yourself, one month later) to reproduce your pipeline, to compare the results of different versions, to track what’s running where, and to redeploy and rollback updated models is much harder.
In this talk, I’ll introduce MLflow, a new open source project from Databricks that simplifies the machine learning lifecycle. MLflow provides APIs for tracking experiment runs between multiple users within a reproducible environment, and for managing the deployment of models to production. MLflow is designed to be an open, modular platform, in the sense that you can use it with any existing ML library and development process. MLflow was launched in June 2018 and has already seen significant community contributions, with over 50 contributors and new features including language APIs, integrations with popular ML libraries, and storage backends. I’ll show how MLflow works and explain how to get started with MLflow.
H&M uses machine learning for various use cases including logistics, production, sales, marketing, and design/buying. MLOps principles like model versioning, reproducibility, scalability, and automated training are applied to manage the machine learning lifecycle. The technical stack includes Kubernetes, Docker, Azure Databricks for interactive development, Airflow for automated training, and Seldon for model serving. The goal is to apply MLOps at scale for various prediction scenarios through a continuous integration/continuous delivery pipeline.
Команда Data Phoenix Events приглашает всех, 17 августа в 19:00, на первый вебинар из серии "The A-Z of Data", который будет посвящен MLOps. В рамках вводного вебинара, мы рассмотрим, что такое MLOps, основные принципы и практики, лучшие инструменты и возможные архитектуры. Мы начнем с простого жизненного цикла разработки ML решений и закончим сложным, максимально автоматизированным, циклом, который нам позволяет реализовать MLOps.
https://dataphoenix.info/the-a-z-of-data/
https://dataphoenix.info/the-a-z-of-data-introduction-to-mlops/
For the full video of this presentation, please visit: https://www.edge-ai-vision.com/2022/09/mlops-managing-data-and-workflows-for-efficient-model-development-and-deployment-a-presentation-from-airbus/
Konstantinos Balafas, Head of AI Data, and Carlo Dal Mutto, Director of Engineering, both of Airbus, present the “MLOps: Managing Data and Workflows for Efficient Model Development and Deployment” tutorial at the May 2022 Embedded Vision Summit.
Machine learning operations (MLOps) is the engineering field focused on techniques for developing and deploying machine learning solutions at scale. As the name suggests, MLOps is a combination of machine learning development (“ML”) and software/IT operations (“Ops”). Blending these two words is particularly complex, given their diverse nature. ML development is characterized by research and experimental components, dealing with large amounts of data and complex operations, while software and IT operations aim at streamlining software deployment in products.
Typical problems addressed by MLOps include data management (labeling, organization, storage), ML model and pipeline training repeatability, error analysis, model integration and deployment and model monitoring. In this talk, Dal Mutto and Balafas present practical MLOps techniques useful for tackling a variety of MLOps needs. They illustrate these techniques with real-world examples from their work developing autonomous flying capabilities as part of the Wayfinder team at Acubed, the Silicon Valley innovation center of Airbus.
Introdution to Dataops and AIOps (or MLOps)Adrien Blind
This presentation introduces the audience to the DataOps and AIOps practices. It deals with organizational & tech aspects, and provide hints to start you data journey.
This document discusses MLOps and Kubeflow. It begins with an introduction to the speaker and defines MLOps as addressing the challenges of independently autoscaling machine learning pipeline stages, choosing different tools for each stage, and seamlessly deploying models across environments. It then introduces Kubeflow as an open source project that uses Kubernetes to minimize MLOps efforts by enabling composability, scalability, and portability of machine learning workloads. The document outlines key MLOps capabilities in Kubeflow like Jupyter notebooks, hyperparameter tuning with Katib, and model serving with KFServing and Seldon Core. It describes the typical machine learning process and how Kubeflow supports experimental and production phases.
The document discusses challenges for machine learning data storage and management. It notes that machine learning workloads involve large and growing data sizes and types. Proper data governance is also essential for ensuring trustworthy machine learning systems, through mechanisms like data lineage tracking and access control. Emerging areas like edge computing further complicate storage needs. Effective machine learning storage systems will need to address issues of data access speeds, management, reproducibility and governance.
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...Databricks
Getting machine learning models to production is notoriously difficult: it involves multiple teams (data scientists, data and machine learning engineers, operations, …), who often does not speak to each other very well; the model can be trained in one environment but then productionalized in completely different environment; it is not just about the code, but also about the data (features) and the model itself… At DataSentics, as a machine learning and cloud engineering studio, we see this struggle firsthand – on our internal projects and client’s projects as well.
Building a Scalable and reliable open source ML Platform with MLFlowGoDataDriven
This document discusses building a scalable and open source machine learning platform. It introduces MLOps and describes ING's ML batch platform use case. The machine learning lifecycle is presented, noting that operationalizing machine learning models is difficult due to infrastructure deployment challenges, lack of collaboration and standardization. An ideal MLOps approach is described with flexible, scalable, automated and standardized processes. Benefits of ING's MLOps approach include increased efficiency, speed, quality, security and auditability. Open source tools that could be leveraged are also presented.
AutoML - Heralding a New Era of Machine Learning - CASOUG Oct 2021Sandesh Rao
The document discusses Oracle Machine Learning (OML) services on Oracle Autonomous Database. It provides an overview of the OML services REST API, which allows storing and deploying machine learning models. It enables scoring of models using REST endpoints for application integration. The API supports classification/regression of ONNX models from libraries like Scikit-learn and TensorFlow. It also provides cognitive text capabilities like topic discovery, keywords, sentiment analysis and text summarization.
With Machine Learning Model Operationalization Management (MLOps), we want to provide an end-to-end machine learning development process to design, build and manage reproducible, testable, and evolvable ML-powered software.
Building trustworthy and effective AI solutions.
- Many cloud vendor AI services (AWS, GCP, Azure)
- Demo of a workflow with AWS Sagemaker
- What is AI Trust
- What is explainability
- How to add this to a workflow with S3, Sagemaker, Lambda (server less) and Postman
Consolidating MLOps at One of Europe’s Biggest AirportsDatabricks
At Schiphol airport we run a lot of mission critical machine learning models in production, ranging from models that predict passenger flow to computer vision models that analyze what is happening around the aircraft. Especially now in times of Covid it is paramount for us to be able to quickly iterate on these models by implementing new features, retraining them to match the new dynamics and above all to monitor them actively to see if they still fit the current state of affairs.
To achieve those needs we rely on MLFlow but have also integrated that with many of our other systems. So have we written Airflow operators for MLFlow to ease the retraining of our models, have we integrated MLFlow deeply with our CI pipelines and have we integrated it with our model monitoring tooling.
In this talk we will take you through the way we rely on MLFlow and how that enables us to release (sometimes) multiple versions of a model per week in a controlled fashion. With this set-up we are achieving the same benefits and speed as you have with a traditional software CI pipeline.
AI algorithms offer great promise in criminal justice, credit scoring, hiring and other domains. However, algorithmic fairness is a legitimate concern. Possible bias and adversarial contamination can come from training data, inappropriate data handling/model selection or incorrect algorithm design. This talk discusses how to build an open, transparent, secure and fair pipeline that fully integrates into the AI lifecycle — leveraging open-source projects such as AI Fairness 360 (AIF360), Adversarial Robustness Toolbox (ART), the Fabric for Deep Learning (FfDL) and the Model Asset eXchange (MAX).
Mohamed Sabri: Operationalize machine learning with KubeflowLviv Startup Club
This document summarizes a hands-on workshop on Kubeflow Pipeline. The workshop will cover requirements, an introduction to the presenter Mohamed Sabri, and their approach of strategizing, shaping, and spreading knowledge. It then discusses operationalizing machine learning (MLOps) and provides an analysis, design, coaching, and implementation framework. Deliverables include an implemented MLOps environment, training sessions, design documents, and a recommendations roadmap. The rest of the document discusses MLOps architectures, challenges, example technologies and tools, a use case, and deployment workflows from notebooks to production.
MLOps – Applying DevOps to Competitive AdvantageDATAVERSITY
MLOps is a practice for collaboration between Data Science and operations to manage the production machine learning (ML) lifecycles. As an amalgamation of “machine learning” and “operations,” MLOps applies DevOps principles to ML delivery, enabling the delivery of ML-based innovation at scale to result in:
Faster time to market of ML-based solutions
More rapid rate of experimentation, driving innovation
Assurance of quality, trustworthiness, and ethical AI
MLOps is essential for scaling ML. Without it, enterprises risk struggling with costly overhead and stalled progress. Several vendors have emerged with offerings to support MLOps: the major offerings are Microsoft Azure ML and Google Vertex AI. We looked at these offerings from the perspective of enterprise features and time-to-value.
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning ModelsAnyscale
Apache Spark has rapidly become a key tool for data scientists to explore, understand and transform massive datasets and to build and train advanced machine learning models. The question then becomes, how do I deploy these model to a production environment? How do I embed what I have learned into customer facing data applications?
In this webinar, we will discuss best practices from Databricks on
how our customers productionize machine learning models
do a deep dive with actual customer case studies,
show live tutorials of a few example architectures and code in Python, Scala, Java and SQL.
Tech-Talk at Bay Area Spark Meetup
Apache Spark(tm) has rapidly become a key tool for data scientists to explore, understand and transform massive datasets and to build and train advanced machine learning models. The question then becomes, how do I deploy these model to a production environment. How do I embed what I have learned into customer facing data applications. Like all things in engineering, it depends.
In this meetup, we will discuss best practices from Databricks on how our customers productionize machine learning models and do a deep dive with actual customer case studies and live demos of a few example architectures and code in Python and Scala. We will also briefly touch on what is coming in Apache Spark 2.X with model serialization and scoring options.
This document discusses security considerations for Software as a Service (SaaS) applications. It notes that SaaS providers implement some security controls, but they may not meet all organizational requirements. It recommends using Cloud Access Security Brokers (CASBs) to enforce enterprise security policies for cloud applications and gain visibility into user activity. The document outlines CASB architecture options and benefits, such as detecting shadow IT, controlling SaaS access, and protecting company data in SaaS applications. It emphasizes starting with a small implementation and adding functionality over time.
Alex mang patterns for scalability in microsoft azure applicationCodecamp Romania
The document discusses patterns for scalability in Microsoft Azure applications. It covers queue-based load leveling, competing consumers, and priority queue patterns for handling application load and message processing. It also discusses materialized view and sharding patterns for scaling databases, where materialized views optimize queries and sharding partitions data horizontally across multiple servers. The talk includes demos of priority queue and sharding patterns to illustrate their implementations.
Splice Machine's use of Apache Spark and MLflowDatabricks
Splice Machine is an ANSI-SQL Relational Database Management System (RDBMS) on Apache Spark. It has proven low-latency transactional processing (OLTP) as well as analytical processing (OLAP) at petabyte scale. It uses Spark for all analytical computations and leverages HBase for persistence. This talk highlights a new Native Spark Datasource - which enables seamless data movement between Spark Data Frames and Splice Machine tables without serialization and deserialization. This Spark Datasource makes machine learning libraries such as MLlib native to the Splice RDBMS . Splice Machine has now integrated MLflow into its data platform, creating a flexible Data Science Workbench with an RDBMS at its core. The transactional capabilities of Splice Machine integrated with the plethora of DataFrame-compatible libraries and MLflow capabilities manages a complete, real-time workflow of data-to-insights-to-action. In this presentation we will demonstrate Splice Machine's Data Science Workbench and how it leverages Spark and MLflow to create powerful, full-cycle machine learning capabilities on an integrated platform, from transactional updates to data wrangling, experimentation, and deployment, and back again.
Operationalizing Machine Learning at Scale at StarbucksDatabricks
As ML-driven innovations are propelled by the Self-Service capabilities in the Enterprise Data and Analytics Platform, teams face a significant entry barrier and productivity issues in moving from POCs to Operating ML-powered apps at scale in production.
This document discusses challenges and considerations for leveraging machine learning and big data. It covers the full machine learning lifecycle from data acquisition and cleaning to model deployment and monitoring. Key points include the importance of feature engineering, selecting the right frameworks, addressing barriers to operationalizing models, and deciding between single node versus distributed solutions based on data and algorithm characteristics. Python is presented as a flexible tool for prototyping solutions.
MLOps: From Data Science to Business ROI
This deck describes why operationalizing ML (running ML and DL in production and managing the full production lifecycle) is challenging. We also describe MCenter and how it manages the ML lifecycle
This document discusses trends in machine learning and opportunities for storage applications. It notes that while AI investment is growing, few deployments are at scale. ML workloads generate large amounts of data and require data management. Edge computing and streaming data are also trends. The document outlines how ML can be used to improve storage, such as for caching, workload classification, and failure prediction. Challenges include limited training data and production deployment. Examples of using ML in storage companies are also provided.
Machine Learning in Production
The era of big data generation is upon us. Devices ranging from sensors to robots and sophisticated applications are generating increasing amounts of rich data (time series, text, images, sound, video, etc.). For such data to benefit a business’s bottom line, insights must be extracted, a process that increasingly requires machine learning (ML) and deep learning (DL) approaches deployed in production applications use cases.
Production ML is complicated by several challenges, including the need for two very distinct skill sets (operations and data science) to collaborate, the inherent complexity and uniqueness of ML itself, when compared to other apps, and the varied array of analytic engines that need to be combined for a practical deployment, often across physically distributed infrastructure. Nisha Talagala shares solutions and techniques for effectively managing machine learning and deep learning in production with popular analytic engines such as Apache Spark, TensorFlow, and Apache Flink.
This document discusses experiences with streaming and micro-batch processing for online machine learning using Apache Flink. It finds that online algorithms can more accurately model changing real-world data patterns compared to offline/batch algorithms by retraining models continuously with new data. The document demonstrates an online SVM algorithm built on Flink that achieves higher accuracy than offline SVM on a real-world workload with changing patterns. It also shows the online SVM on Flink provides lower latency and higher throughput than a micro-batch based solution on Spark.
This document discusses new data applications like machine learning and deep learning and their implications for storage. It notes that these applications deal with large and diverse data types including time series, matrices, and graphs. They have relaxed requirements for data correctness and persistence compared to traditional transactions. Opportunities exist to optimize storage for these workloads through techniques like tiering across memory types, streamlining data access, and exploiting lineage metadata to cache intermediate results. Fundamental shifts may also be possible by integrating analytics optimizations into storage management.
Quantum Computing Quick Research Guide by Arthur MorganArthur Morgan
This is a Quick Research Guide (QRG).
QRGs include the following:
- A brief, high-level overview of the QRG topic.
- A milestone timeline for the QRG topic.
- Links to various free online resource materials to provide a deeper dive into the QRG topic.
- Conclusion and a recommendation for at least two books available in the SJPL system on the QRG topic.
QRGs planned for the series:
- Artificial Intelligence QRG
- Quantum Computing QRG
- Big Data Analytics QRG
- Spacecraft Guidance, Navigation & Control QRG (coming 2026)
- UK Home Computing & The Birth of ARM QRG (coming 2027)
Any questions or comments?
- Please contact Arthur Morgan at [email protected].
100% human made.
What is Model Context Protocol(MCP) - The new technology for communication bw...Vishnu Singh Chundawat
The MCP (Model Context Protocol) is a framework designed to manage context and interaction within complex systems. This SlideShare presentation will provide a detailed overview of the MCP Model, its applications, and how it plays a crucial role in improving communication and decision-making in distributed systems. We will explore the key concepts behind the protocol, including the importance of context, data management, and how this model enhances system adaptability and responsiveness. Ideal for software developers, system architects, and IT professionals, this presentation will offer valuable insights into how the MCP Model can streamline workflows, improve efficiency, and create more intuitive systems for a wide range of use cases.
Dev Dives: Automate and orchestrate your processes with UiPath MaestroUiPathCommunity
This session is designed to equip developers with the skills needed to build mission-critical, end-to-end processes that seamlessly orchestrate agents, people, and robots.
📕 Here's what you can expect:
- Modeling: Build end-to-end processes using BPMN.
- Implementing: Integrate agentic tasks, RPA, APIs, and advanced decisioning into processes.
- Operating: Control process instances with rewind, replay, pause, and stop functions.
- Monitoring: Use dashboards and embedded analytics for real-time insights into process instances.
This webinar is a must-attend for developers looking to enhance their agentic automation skills and orchestrate robust, mission-critical processes.
👨🏫 Speaker:
Andrei Vintila, Principal Product Manager @UiPath
This session streamed live on April 29, 2025, 16:00 CET.
Check out all our upcoming Dev Dives sessions at https://community.uipath.com/dev-dives-automation-developer-2025/.
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc
Most consumers believe they’re making informed decisions about their personal data—adjusting privacy settings, blocking trackers, and opting out where they can. However, our new research reveals that while awareness is high, taking meaningful action is still lacking. On the corporate side, many organizations report strong policies for managing third-party data and consumer consent yet fall short when it comes to consistency, accountability and transparency.
This session will explore the research findings from TrustArc’s Privacy Pulse Survey, examining consumer attitudes toward personal data collection and practical suggestions for corporate practices around purchasing third-party data.
Attendees will learn:
- Consumer awareness around data brokers and what consumers are doing to limit data collection
- How businesses assess third-party vendors and their consent management operations
- Where business preparedness needs improvement
- What these trends mean for the future of privacy governance and public trust
This discussion is essential for privacy, risk, and compliance professionals who want to ground their strategies in current data and prepare for what’s next in the privacy landscape.
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxJustin Reock
Building 10x Organizations with Modern Productivity Metrics
10x developers may be a myth, but 10x organizations are very real, as proven by the influential study performed in the 1980s, ‘The Coding War Games.’
Right now, here in early 2025, we seem to be experiencing YAPP (Yet Another Productivity Philosophy), and that philosophy is converging on developer experience. It seems that with every new method we invent for the delivery of products, whether physical or virtual, we reinvent productivity philosophies to go alongside them.
But which of these approaches actually work? DORA? SPACE? DevEx? What should we invest in and create urgency behind today, so that we don’t find ourselves having the same discussion again in a decade?
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025BookNet Canada
Book industry standards are evolving rapidly. In the first part of this session, we’ll share an overview of key developments from 2024 and the early months of 2025. Then, BookNet’s resident standards expert, Tom Richardson, and CEO, Lauren Stewart, have a forward-looking conversation about what’s next.
Link to recording, transcript, and accompanying resource: https://bnctechforum.ca/sessions/standardsgoals-for-2025-standards-certification-roundup/
Presented by BookNet Canada on May 6, 2025 with support from the Department of Canadian Heritage.
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfAbi john
Analyze the growth of meme coins from mere online jokes to potential assets in the digital economy. Explore the community, culture, and utility as they elevate themselves to a new era in cryptocurrency.
TrsLabs - Fintech Product & Business ConsultingTrs Labs
Hybrid Growth Mandate Model with TrsLabs
Strategic Investments, Inorganic Growth, Business Model Pivoting are critical activities that business don't do/change everyday. In cases like this, it may benefit your business to choose a temporary external consultant.
An unbiased plan driven by clearcut deliverables, market dynamics and without the influence of your internal office equations empower business leaders to make right choices.
Getting things done within a budget within a timeframe is key to Growing Business - No matter whether you are a start-up or a big company
Talk to us & Unlock the competitive advantage
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...SOFTTECHHUB
I started my online journey with several hosting services before stumbling upon Ai EngineHost. At first, the idea of paying one fee and getting lifetime access seemed too good to pass up. The platform is built on reliable US-based servers, ensuring your projects run at high speeds and remain safe. Let me take you step by step through its benefits and features as I explain why this hosting solution is a perfect fit for digital entrepreneurs.
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Aqusag Technologies
In late April 2025, a significant portion of Europe, particularly Spain, Portugal, and parts of southern France, experienced widespread, rolling power outages that continue to affect millions of residents, businesses, and infrastructure systems.
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxshyamraj55
We’re bringing the TDX energy to our community with 2 power-packed sessions:
🛠️ Workshop: MuleSoft for Agentforce
Explore the new version of our hands-on workshop featuring the latest Topic Center and API Catalog updates.
📄 Talk: Power Up Document Processing
Dive into smart automation with MuleSoft IDP, NLP, and Einstein AI for intelligent document workflows.
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersToradex
Toradex brings robust Linux support to SMARC (Smart Mobility Architecture), ensuring high performance and long-term reliability for embedded applications. Here’s how:
• Optimized Torizon OS & Yocto Support – Toradex provides Torizon OS, a Debian-based easy-to-use platform, and Yocto BSPs for customized Linux images on SMARC modules.
• Seamless Integration with i.MX 8M Plus and i.MX 95 – Toradex SMARC solutions leverage NXP’s i.MX 8 M Plus and i.MX 95 SoCs, delivering power efficiency and AI-ready performance.
• Secure and Reliable – With Secure Boot, over-the-air (OTA) updates, and LTS kernel support, Toradex ensures industrial-grade security and longevity.
• Containerized Workflows for AI & IoT – Support for Docker, ROS, and real-time Linux enables scalable AI, ML, and IoT applications.
• Strong Ecosystem & Developer Support – Toradex offers comprehensive documentation, developer tools, and dedicated support, accelerating time-to-market.
With Toradex’s Linux support for SMARC, developers get a scalable, secure, and high-performance solution for industrial, medical, and AI-driven applications.
Do you have a specific project or application in mind where you're considering SMARC? We can help with Free Compatibility Check and help you with quick time-to-market
For more information: https://www.toradex.com/computer-on-modules/smarc-arm-family
HCL Nomad Web – Best Practices and Managing Multiuser Environmentspanagenda
Webinar Recording: https://www.panagenda.com/webinars/hcl-nomad-web-best-practices-and-managing-multiuser-environments/
HCL Nomad Web is heralded as the next generation of the HCL Notes client, offering numerous advantages such as eliminating the need for packaging, distribution, and installation. Nomad Web client upgrades will be installed “automatically” in the background. This significantly reduces the administrative footprint compared to traditional HCL Notes clients. However, troubleshooting issues in Nomad Web present unique challenges compared to the Notes client.
Join Christoph and Marc as they demonstrate how to simplify the troubleshooting process in HCL Nomad Web, ensuring a smoother and more efficient user experience.
In this webinar, we will explore effective strategies for diagnosing and resolving common problems in HCL Nomad Web, including
- Accessing the console
- Locating and interpreting log files
- Accessing the data folder within the browser’s cache (using OPFS)
- Understand the difference between single- and multi-user scenarios
- Utilizing Client Clocking
Generative Artificial Intelligence (GenAI) in BusinessDr. Tathagat Varma
My talk for the Indian School of Business (ISB) Emerging Leaders Program Cohort 9. In this talk, I discussed key issues around adoption of GenAI in business - benefits, opportunities and limitations. I also discussed how my research on Theory of Cognitive Chasms helps address some of these issues
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveScyllaDB
Want to learn practical tips for designing systems that can scale efficiently without compromising speed?
Join us for a workshop where we’ll address these challenges head-on and explore how to architect low-latency systems using Rust. During this free interactive workshop oriented for developers, engineers, and architects, we’ll cover how Rust’s unique language features and the Tokio async runtime enable high-performance application development.
As you explore key principles of designing low-latency systems with Rust, you will learn how to:
- Create and compile a real-world app with Rust
- Connect the application to ScyllaDB (NoSQL data store)
- Negotiate tradeoffs related to data modeling and querying
- Manage and monitor the database for consistently low latencies
How Can I use the AI Hype in my Business Context?Daniel Lehner
𝙄𝙨 𝘼𝙄 𝙟𝙪𝙨𝙩 𝙝𝙮𝙥𝙚? 𝙊𝙧 𝙞𝙨 𝙞𝙩 𝙩𝙝𝙚 𝙜𝙖𝙢𝙚 𝙘𝙝𝙖𝙣𝙜𝙚𝙧 𝙮𝙤𝙪𝙧 𝙗𝙪𝙨𝙞𝙣𝙚𝙨𝙨 𝙣𝙚𝙚𝙙𝙨?
Everyone’s talking about AI but is anyone really using it to create real value?
Most companies want to leverage AI. Few know 𝗵𝗼𝘄.
✅ What exactly should you ask to find real AI opportunities?
✅ Which AI techniques actually fit your business?
✅ Is your data even ready for AI?
If you’re not sure, you’re not alone. This is a condensed version of the slides I presented at a Linkedin webinar for Tecnovy on 28.04.2025.
How Can I use the AI Hype in my Business Context?Daniel Lehner
Ml ops past_present_future
1. MLOps – Past, Present
and Future
Nisha Talagala
CEO, Pyxeda AI
2. In this talk
• What is “MLOps”
• MLOps Areas and Evolution
• Two MLOps topics
• Cloud - End to end pipelines in the Cloud
• Drift – suddenly everywhere
• MLOps Future
5. Why?
• Flow is complex and multi-
faceted
• Tools are at different levels
and tackle subsets of
workflow
• Multiple roles collaborate
Data
Train
Model(s)
Develop
Model(s)
Test
Model(s)
Deploy
Model(s)
Connect
to
Business
app
App developers
Data Scientists
ML Engineers
Operations
Business
Need
Monitor
and
Optimize
Many levels of complexity
6. A typical flow
• Use case definition
• Data prep
• Modeling
• Training
• Deploy
• Integrate
• Monitor/Optimize
• Iterate
Data
Train
Model(s)
Develop
Model(s)
Test
Model(s)
Deploy
Model(s)
Connect
to
Business
app
App developers
Data Scientists
ML Engineers
Operations
Business
Need
Monitor
and
Optimize
7. MLOps – the term
• Production ML has been done
for many years in large web
companies and others
• First MLOps Platform for
enterprises – from ParallelM in
2018
• Inspired by Database practices
and DBAs, Software lifecycle
• Focus on full lifecycle tooling
combined with Best Practices
• https://www.kdnuggets.com/2
018/04/operational-machine-
learning-successful-mlops.html
MLOps (a compound of “machine learning” and
“operations”) is a practice for collaboration and
communication between data scientists and operations
professionals to help manage production ML (or deep
learning) lifecycle.[1] Similar to
the DevOps or DataOps approaches, MLOps looks to
increase automation and improve the quality of production
ML while also focusing on business and regulatory
requirements. While MLOps also started as a set of best
practices, it is slowly evolving into an independent
approach to ML lifecycle management. MLOps applies to
the entire lifecycle - from integrating with model
generation (software development lifecycle, continuous
integration/continuous delivery), orchestration, and
deployment, to health, diagnostics, governance, and
business metrics.
https://www.kdnuggets.com/2018/04/operational-machine-
learning-successful-mlops.html
9. In this talk
• Origin of “MLOps”
• MLOps Areas and Evolution
• Two MLOps topics
• End to end pipelines in the Cloud
• Drift – suddenly everywhere
• MLOps Future
10. MLOps in Today’s Context – AWS Example
Substantial tooling available for each stage from multiple cloud vendors
Labeling
Data Prep and Visualization
Modeling and Deployment
Marketplaces
Service APIs
Manipulate raw data
Build, tune or deploy your own
models
Buy a model or algorithm
Use a pre-built AI (example
voice to text, etc.)
Infrastructure: Compute, Authentication, Data source, Logs etc.
Where your AI runs and what
monitors it
11. S3
A Sample ML Lifecycle in AWS
Dataset
prep and
transform
AWS
Sagemaker
Sagemaker
endpoint +
Marketplace
inference code
External
endpoint (basic
Lambda)
Dataset Model
Artifact
Postman
Request Prediction
AWS
Marketplace
Modified
Dataset
API Gateway
Custom
Docker
Containers
12. In this talk
• Origin of “MLOps”
• MLOps Areas and Evolution
• Two MLOps topics
• End to end pipelines in the Cloud
• ML Health and Drift – suddenly everywhere
• MLOps Future
13. MLOps and COVID
What is Drift?
https://www.weforum.org/agenda/2020/
05/here-s-how-to-check-in-on-your-ai-
system-as-covid-19-plays-havoc/
May 22, 2020
14. Drift
•Types of Drift
• Concept Drift
• Data Drift
• Prediction inputs
• Training vs Prediction
15. Data Drift Example - Gradual change in
distribution
Training Data
Production Data: 1-500 Production Data: 500-1000 Production Data: 1000-1500
Bank churn data from Kaggle – Drift Test Generator by Pyxeda (contact [email protected])
16. How can this type of shift in distribution be
detected
Simple rules like
• monitoring the mean (for continuous vaiables)
• RMSE (for categorical variables)
Other techniques to measure distribution divergence in one dimension
• Kolmogorov-Smirnov test (continuous)
• Bhattacharyya distance (categorical)
• Earth movers distance (categorical)
17. How can this type of shift in distribution be
detected
Relational Drift
• Drift can happen in relationship between two variables
Techniques for detecting multi-dimensional drift
• Not much literature yet
18. In this talk
• Origin of “MLOps”
• MLOps Areas and Evolution
• Two MLOps topics
• End to end pipelines in the Cloud
• ML Health and Drift – suddenly everywhere
• MLOps Future
19. Model Governance – Current and Emerging
• The process of ensuring that Model creation meets an organization
or industry’s compliance and other requirements
• For heavily regulated industries, this is a legal issue
• For example – Finance has model governance rules that MUST be followed
before models are deployed
• For other industries, it is a risk mitigation issue
• For example - If someone complains of bias – what model was used and how
did it come about?
• New laws – EU GDPR, CA CCPA, etc. apply across industries
Governance is a combination of Compliance, Reproducibility, Security
and Integrity
20. Model Security – On the Horizon
• Models can be hacked
• The more advanced the AI, the more likely it can be hacked
• For example – if the AI is self adapting (such as online algorithms), they can
“drift” and a well placed attack can control the direction of drift
• Other attacks can “probe” the model, understand its behavior and
then exploit it
• Corrupting data is another way to corrupt the (consequent) model
Model Security is an emerging topic. Overview of security and
relationship to integrity - see
https://www.forbes.com/sites/cognitiveworld/2019/01/29/ml-integrity-
four-production-pillars-for-trustworthy-ai/#279ee9ec5e6f
21. Summary
MLOps is here to stay. One startup in 2018 to 10s or more now.
Started with Deployment, now encompasses the whole lifecycle
Can also be seen in MLOps Engineer, Full Stack Data Scientist and
Applied ML Engineer roles and teams
Expect future to include Validation, Security, Adaptability and Scale