ML is transforming many industries but operating ML systems at scale is complex as it involves many teams, constant data and model updates, and moving from development to production. ML platforms aim to help with this by providing software to manage the entire ML lifecycle from data to experimentation to production deployment through a consistent interface. Desirable features for an ML platform include ease of use, integration with data infrastructure for governance, and collaboration functions to enable sharing of code, data, models and experiments. Databricks provides an open source ML platform that integrates with data lakes and a data science workspace to help organizations perform MLOps at scale.