SlideShare a Scribd company logo
Miruna Oprescu (moprescu@microsoft.com)
Microsoft
MMLSPARK:
Lessons From Building A
SparkML-Compatible Machine
Learning Library For Apache Spark
#EUai7
MMLSpark
Microsoft Machine Learning Library for Apache Spark
GitHub: https://github.com/Azure/mmlspark
Spark Package:
pyspark/spark-shell/spark-submit --packages Azure:mmlspark:0.9
Docker:
docker run -it -p 8888:8888 -e ACCEPT_EULA=yes microsoft/mmlspark
Navigate to http://localhost:8888 to view example Jupyter notebooks
2#EUai7
Why MMLSpark?
• The (typical) data science workflow with Spark:
3#EUai7
ML algorithm
Data transforms
Data
Model
Why MMLSpark?
• Doesn’t look familiar?…maybe this does?
4#EUai7
ML algorithms
Data
transforms
Data
Pipeline
Python/R
UDFsData
massaging
External libraries
(CNTK, OpenCV)
Why MMLSpark?
• Workflow can be:
– Slow & time-consuming
– Intractable
– Difficult to debug, reproduce
– Hard to put in production
5#EUai7
MMLSpark Goals
q Stay in the Spark ecosystem as much as possible by
integrating domain-specific libraries (vision, text
analytics, etc.)
q Have better model management support
q Bring cutting edge ML algorithms to Spark
q Reduce the overhead from UDFs and other custom
functions
q Run on every platform & language supported by Spark
6#EUai7
MMLSpark
Lesson #1: Follow the SparkML Pipeline model for
composability.
• MMLSpark consists of Transforms, Estimators
and Models that can be combined with existing
SparkML components into pipelines.
• These abstractions ensure composability,
reusability via serialization, logging, ease of use
across languages.
7#EUai7
MMLSpark: Before and After
8#EUai7
Example: Book Reviews
MMLSpark: Before
9#EUai7
MMLSpark: After
10#EUai7
MMLSpark
11#EUai7
Lesson #2: Leverage SparkML abstractions to
auto-generate Python and R interfaces.
• Decreases development time, ensures feature
parity, reduces errors and improves testing.
MMLSpark Architecture
12#EUai7
Pre-
trained
DNN
models
OpenCV Java
Bindings
Spark coreCNTK Java
Bindings
Scala API
PySpark/R wrappers
Wrapper generation
Python Wrappers: Example
13#EUai7
Scala source
Python wrapper
Generator
MMLSpark
Lesson #3: Turn parallelizable algorithms from
external libraries (e.g. OpenCV and
CNTK) into Scala Pipeline Stages.
• No data transfer overhead, all operations
happen at the JVM level.
• Enables cutting edge techniques such as
Transfer Learning.
14#EUai7
MMLSpark Architecture
15
Pre-
trained
DNN
models
OpenCV Java
Bindings
Spark coreCNTK Java
Bindings
Scala API
PySpark/R wrappers
Wrapper generation
#EUai7
MMLSpark: Example
• DNN Featurization with OpenCV and CNTK
16#EUai7
MMLSpark
Lesson #4: Run on every platform supported by
Spark. Test at the highest possible
level (Jupyter Notebooks).
• Publish self-contained packages that can be
used from a variety of targets.
• Avoid common integration issues by testing
directly with Jupyter Notebooks.
17#EUai7
MMLSpark: Bonus
• Image Schema unification
https://github.com/apache/spark/pull/19439
• Uses DataFrames as common format for
reading images.
• Standardizes handling of images as a datatype
used by different algorithms.
18#EUai7
Use case: Snow Leopards
19#EUai7
Use case: Snow Leopards
20#EUai7
• 3,900-6,500 individuals left
in the wild
• Little known about their
behavior, movement
patterns, survival rates
• Camera trapping since
2009 (~1.3 mil images)
Use case: Snow Leopards
21#EUai7
• Automatic Image
Classification with
MMLSpark:
− Thousands of hours of
researcher and volunteer time
saved
− Resources redeployed to
science and conservation vs
image sorting
− Much more accurate data on
range and population
Thank You!
• Star our repo:
https://github.com/Azure/mmlspark
• Contact us:
Myself: Miruna Oprescu (moprescu@microsoft.com)
Dev Lead: Sudarshan Raghunathan (susudars@microsoft.com)
PM: Roope Astala (roastala@microsoft.com)
22#EUai7
Ad

More Related Content

What's hot (20)

MariaDB Performance Tuning Crash Course
MariaDB Performance Tuning Crash CourseMariaDB Performance Tuning Crash Course
MariaDB Performance Tuning Crash Course
Severalnines
 
Amazon Redshiftによるリアルタイム分析サービスの構築
Amazon Redshiftによるリアルタイム分析サービスの構築Amazon Redshiftによるリアルタイム分析サービスの構築
Amazon Redshiftによるリアルタイム分析サービスの構築
Minero Aoki
 
NTT DATA と PostgreSQL が挑んだ総力戦
NTT DATA と PostgreSQL が挑んだ総力戦NTT DATA と PostgreSQL が挑んだ総力戦
NTT DATA と PostgreSQL が挑んだ総力戦
NTT DATA OSS Professional Services
 
Zero Trust Run-time Kubernetes Security made easy with AccuKnox
Zero Trust Run-time Kubernetes Security made easy with AccuKnoxZero Trust Run-time Kubernetes Security made easy with AccuKnox
Zero Trust Run-time Kubernetes Security made easy with AccuKnox
AccuKnox
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Julian Hyde
 
Oracle Integration Cloud 概要(20200507版)
Oracle Integration Cloud 概要(20200507版)Oracle Integration Cloud 概要(20200507版)
Oracle Integration Cloud 概要(20200507版)
オラクルエンジニア通信
 
Tajo TPC-H Benchmark Test on AWS
Tajo TPC-H Benchmark Test on AWSTajo TPC-H Benchmark Test on AWS
Tajo TPC-H Benchmark Test on AWS
Gruter
 
Battle of the Stream Processing Titans – Flink versus RisingWave
Battle of the Stream Processing Titans – Flink versus RisingWaveBattle of the Stream Processing Titans – Flink versus RisingWave
Battle of the Stream Processing Titans – Flink versus RisingWave
Yingjun Wu
 
Deploy and Serve Model from Azure Databricks onto Azure Machine Learning
Deploy and Serve Model from Azure Databricks onto Azure Machine LearningDeploy and Serve Model from Azure Databricks onto Azure Machine Learning
Deploy and Serve Model from Azure Databricks onto Azure Machine Learning
Databricks
 
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
NTT DATA Technology & Innovation
 
Hive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas PatilHive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas Patil
Databricks
 
Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?
Guido Schmutz
 
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Edureka!
 
Oracle Spatial 概要説明資料
Oracle Spatial 概要説明資料Oracle Spatial 概要説明資料
Oracle Spatial 概要説明資料
オラクルエンジニア通信
 
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
NTT DATA OSS Professional Services
 
PGroonga 2 - PostgreSQLでの全文検索の決定版
PGroonga 2 - PostgreSQLでの全文検索の決定版PGroonga 2 - PostgreSQLでの全文検索の決定版
PGroonga 2 - PostgreSQLでの全文検索の決定版
Kouhei Sutou
 
Apache Spark Data Source V2 with Wenchen Fan and Gengliang Wang
Apache Spark Data Source V2 with Wenchen Fan and Gengliang WangApache Spark Data Source V2 with Wenchen Fan and Gengliang Wang
Apache Spark Data Source V2 with Wenchen Fan and Gengliang Wang
Databricks
 
Goでかんたんソースコードの静的解析
Goでかんたんソースコードの静的解析Goでかんたんソースコードの静的解析
Goでかんたんソースコードの静的解析
Takuya Ueda
 
db tech showcase 2019 D10 Oracle Database New Features
db tech showcase 2019 D10 Oracle Database New Featuresdb tech showcase 2019 D10 Oracle Database New Features
db tech showcase 2019 D10 Oracle Database New Features
Noriyoshi Shinoda
 
MariaDB Performance Tuning Crash Course
MariaDB Performance Tuning Crash CourseMariaDB Performance Tuning Crash Course
MariaDB Performance Tuning Crash Course
Severalnines
 
Amazon Redshiftによるリアルタイム分析サービスの構築
Amazon Redshiftによるリアルタイム分析サービスの構築Amazon Redshiftによるリアルタイム分析サービスの構築
Amazon Redshiftによるリアルタイム分析サービスの構築
Minero Aoki
 
Zero Trust Run-time Kubernetes Security made easy with AccuKnox
Zero Trust Run-time Kubernetes Security made easy with AccuKnoxZero Trust Run-time Kubernetes Security made easy with AccuKnox
Zero Trust Run-time Kubernetes Security made easy with AccuKnox
AccuKnox
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Julian Hyde
 
Tajo TPC-H Benchmark Test on AWS
Tajo TPC-H Benchmark Test on AWSTajo TPC-H Benchmark Test on AWS
Tajo TPC-H Benchmark Test on AWS
Gruter
 
Battle of the Stream Processing Titans – Flink versus RisingWave
Battle of the Stream Processing Titans – Flink versus RisingWaveBattle of the Stream Processing Titans – Flink versus RisingWave
Battle of the Stream Processing Titans – Flink versus RisingWave
Yingjun Wu
 
Deploy and Serve Model from Azure Databricks onto Azure Machine Learning
Deploy and Serve Model from Azure Databricks onto Azure Machine LearningDeploy and Serve Model from Azure Databricks onto Azure Machine Learning
Deploy and Serve Model from Azure Databricks onto Azure Machine Learning
Databricks
 
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
Apache Sparkの基本と最新バージョン3.2のアップデート(Open Source Conference 2021 Online/Fukuoka ...
NTT DATA Technology & Innovation
 
Hive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas PatilHive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas Patil
Databricks
 
Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?
Guido Schmutz
 
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Edureka!
 
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
NTT DATA OSS Professional Services
 
PGroonga 2 - PostgreSQLでの全文検索の決定版
PGroonga 2 - PostgreSQLでの全文検索の決定版PGroonga 2 - PostgreSQLでの全文検索の決定版
PGroonga 2 - PostgreSQLでの全文検索の決定版
Kouhei Sutou
 
Apache Spark Data Source V2 with Wenchen Fan and Gengliang Wang
Apache Spark Data Source V2 with Wenchen Fan and Gengliang WangApache Spark Data Source V2 with Wenchen Fan and Gengliang Wang
Apache Spark Data Source V2 with Wenchen Fan and Gengliang Wang
Databricks
 
Goでかんたんソースコードの静的解析
Goでかんたんソースコードの静的解析Goでかんたんソースコードの静的解析
Goでかんたんソースコードの静的解析
Takuya Ueda
 
db tech showcase 2019 D10 Oracle Database New Features
db tech showcase 2019 D10 Oracle Database New Featuresdb tech showcase 2019 D10 Oracle Database New Features
db tech showcase 2019 D10 Oracle Database New Features
Noriyoshi Shinoda
 

Similar to MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library for Apache Spark with Miruna Oprescu (20)

Sparkly Notebook: Interactive Analysis and Visualization with Spark
Sparkly Notebook: Interactive Analysis and Visualization with SparkSparkly Notebook: Interactive Analysis and Visualization with Spark
Sparkly Notebook: Interactive Analysis and Visualization with Spark
felixcss
 
Introduction to Apache Spark and MLlib
Introduction to Apache Spark and MLlibIntroduction to Apache Spark and MLlib
Introduction to Apache Spark and MLlib
pumaranikar
 
Profiling & Testing with Spark
Profiling & Testing with SparkProfiling & Testing with Spark
Profiling & Testing with Spark
Roger Rafanell Mas
 
Spark tutorial
Spark tutorialSpark tutorial
Spark tutorial
Sahan Bulathwela
 
Apache Spark Tutorial
Apache Spark TutorialApache Spark Tutorial
Apache Spark Tutorial
Ahmet Bulut
 
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
 Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F... Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Databricks
 
Apache spark presentation
Apache spark presentationApache spark presentation
Apache spark presentation
Mahboob Hussain
 
AI and Spark - IBM Community AI Day
AI and Spark - IBM Community AI DayAI and Spark - IBM Community AI Day
AI and Spark - IBM Community AI Day
Nick Pentreath
 
Spark Summit EU 2015: Lessons from 300+ production users
Spark Summit EU 2015: Lessons from 300+ production usersSpark Summit EU 2015: Lessons from 300+ production users
Spark Summit EU 2015: Lessons from 300+ production users
Databricks
 
Apache spark-melbourne-april-2015-meetup
Apache spark-melbourne-april-2015-meetupApache spark-melbourne-april-2015-meetup
Apache spark-melbourne-april-2015-meetup
Ned Shawa
 
Accelerating apache spark with rdma
Accelerating apache spark with rdmaAccelerating apache spark with rdma
Accelerating apache spark with rdma
inside-BigData.com
 
Infrastructure for Deep Learning in Apache Spark
Infrastructure for Deep Learning in Apache SparkInfrastructure for Deep Learning in Apache Spark
Infrastructure for Deep Learning in Apache Spark
Databricks
 
Open Source Lambda Architecture for deep learning
Open Source Lambda Architecture for deep learningOpen Source Lambda Architecture for deep learning
Open Source Lambda Architecture for deep learning
Patrick Nicolas
 
Spark summit 2019 infrastructure for deep learning in apache spark 0425
Spark summit 2019 infrastructure for deep learning in apache spark 0425Spark summit 2019 infrastructure for deep learning in apache spark 0425
Spark summit 2019 infrastructure for deep learning in apache spark 0425
Wee Hyong Tok
 
Performance Optimization of SPH Algorithms for Multi/Many-Core Architectures
Performance Optimization of SPH Algorithms for Multi/Many-Core ArchitecturesPerformance Optimization of SPH Algorithms for Multi/Many-Core Architectures
Performance Optimization of SPH Algorithms for Multi/Many-Core Architectures
Dr. Fabio Baruffa
 
In-Memory Evolution in Apache Spark
In-Memory Evolution in Apache SparkIn-Memory Evolution in Apache Spark
In-Memory Evolution in Apache Spark
Kazuaki Ishizaki
 
Emiliano Martinez | Deep learning in Spark Slides | Codemotion Madrid 2018
Emiliano Martinez | Deep learning in Spark Slides | Codemotion Madrid 2018Emiliano Martinez | Deep learning in Spark Slides | Codemotion Madrid 2018
Emiliano Martinez | Deep learning in Spark Slides | Codemotion Madrid 2018
Codemotion
 
Running Emerging AI Applications on Big Data Platforms with Ray On Apache Spark
Running Emerging AI Applications on Big Data Platforms with Ray On Apache SparkRunning Emerging AI Applications on Big Data Platforms with Ray On Apache Spark
Running Emerging AI Applications on Big Data Platforms with Ray On Apache Spark
Databricks
 
Apache spark
Apache sparkApache spark
Apache spark
TEJPAL GAUTAM
 
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Databricks
 
Sparkly Notebook: Interactive Analysis and Visualization with Spark
Sparkly Notebook: Interactive Analysis and Visualization with SparkSparkly Notebook: Interactive Analysis and Visualization with Spark
Sparkly Notebook: Interactive Analysis and Visualization with Spark
felixcss
 
Introduction to Apache Spark and MLlib
Introduction to Apache Spark and MLlibIntroduction to Apache Spark and MLlib
Introduction to Apache Spark and MLlib
pumaranikar
 
Profiling & Testing with Spark
Profiling & Testing with SparkProfiling & Testing with Spark
Profiling & Testing with Spark
Roger Rafanell Mas
 
Apache Spark Tutorial
Apache Spark TutorialApache Spark Tutorial
Apache Spark Tutorial
Ahmet Bulut
 
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
 Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F... Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Databricks
 
Apache spark presentation
Apache spark presentationApache spark presentation
Apache spark presentation
Mahboob Hussain
 
AI and Spark - IBM Community AI Day
AI and Spark - IBM Community AI DayAI and Spark - IBM Community AI Day
AI and Spark - IBM Community AI Day
Nick Pentreath
 
Spark Summit EU 2015: Lessons from 300+ production users
Spark Summit EU 2015: Lessons from 300+ production usersSpark Summit EU 2015: Lessons from 300+ production users
Spark Summit EU 2015: Lessons from 300+ production users
Databricks
 
Apache spark-melbourne-april-2015-meetup
Apache spark-melbourne-april-2015-meetupApache spark-melbourne-april-2015-meetup
Apache spark-melbourne-april-2015-meetup
Ned Shawa
 
Accelerating apache spark with rdma
Accelerating apache spark with rdmaAccelerating apache spark with rdma
Accelerating apache spark with rdma
inside-BigData.com
 
Infrastructure for Deep Learning in Apache Spark
Infrastructure for Deep Learning in Apache SparkInfrastructure for Deep Learning in Apache Spark
Infrastructure for Deep Learning in Apache Spark
Databricks
 
Open Source Lambda Architecture for deep learning
Open Source Lambda Architecture for deep learningOpen Source Lambda Architecture for deep learning
Open Source Lambda Architecture for deep learning
Patrick Nicolas
 
Spark summit 2019 infrastructure for deep learning in apache spark 0425
Spark summit 2019 infrastructure for deep learning in apache spark 0425Spark summit 2019 infrastructure for deep learning in apache spark 0425
Spark summit 2019 infrastructure for deep learning in apache spark 0425
Wee Hyong Tok
 
Performance Optimization of SPH Algorithms for Multi/Many-Core Architectures
Performance Optimization of SPH Algorithms for Multi/Many-Core ArchitecturesPerformance Optimization of SPH Algorithms for Multi/Many-Core Architectures
Performance Optimization of SPH Algorithms for Multi/Many-Core Architectures
Dr. Fabio Baruffa
 
In-Memory Evolution in Apache Spark
In-Memory Evolution in Apache SparkIn-Memory Evolution in Apache Spark
In-Memory Evolution in Apache Spark
Kazuaki Ishizaki
 
Emiliano Martinez | Deep learning in Spark Slides | Codemotion Madrid 2018
Emiliano Martinez | Deep learning in Spark Slides | Codemotion Madrid 2018Emiliano Martinez | Deep learning in Spark Slides | Codemotion Madrid 2018
Emiliano Martinez | Deep learning in Spark Slides | Codemotion Madrid 2018
Codemotion
 
Running Emerging AI Applications on Big Data Platforms with Ray On Apache Spark
Running Emerging AI Applications on Big Data Platforms with Ray On Apache SparkRunning Emerging AI Applications on Big Data Platforms with Ray On Apache Spark
Running Emerging AI Applications on Big Data Platforms with Ray On Apache Spark
Databricks
 
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Databricks
 
Ad

More from Spark Summit (20)

FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Spark Summit
 
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Spark Summit
 
Ad

Recently uploaded (20)

Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Shotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formateShotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formate
freefreefire0998
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
brainstorming-techniques-infographics.pptx
brainstorming-techniques-infographics.pptxbrainstorming-techniques-infographics.pptx
brainstorming-techniques-infographics.pptx
maritzacastro321
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptxPRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
JayeshTaneja4
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
presentation of first program exist.pptx
presentation of first program exist.pptxpresentation of first program exist.pptx
presentation of first program exist.pptx
MajidAzeemChohan
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
KNN_Logistic_Regression_Presentation_Styled.pptx
KNN_Logistic_Regression_Presentation_Styled.pptxKNN_Logistic_Regression_Presentation_Styled.pptx
KNN_Logistic_Regression_Presentation_Styled.pptx
sonujha1980712
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Introcomputerscienceand datascience.pptx
Introcomputerscienceand datascience.pptxIntrocomputerscienceand datascience.pptx
Introcomputerscienceand datascience.pptx
abdulrehmanbscsf22
 
History of Science and Technologyandits source.pptx
History of Science and Technologyandits source.pptxHistory of Science and Technologyandits source.pptx
History of Science and Technologyandits source.pptx
balongcastrojo
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
shit yudh slideshare power likha point presen
shit yudh slideshare power likha point presenshit yudh slideshare power likha point presen
shit yudh slideshare power likha point presen
vishalgurjar11229
 
Call illuminati Agent in uganda+256776963507/0741506136
Call illuminati Agent in uganda+256776963507/0741506136Call illuminati Agent in uganda+256776963507/0741506136
Call illuminati Agent in uganda+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Shotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formateShotgun detailed overview my this ppt formate
Shotgun detailed overview my this ppt formate
freefreefire0998
 
brainstorming-techniques-infographics.pptx
brainstorming-techniques-infographics.pptxbrainstorming-techniques-infographics.pptx
brainstorming-techniques-infographics.pptx
maritzacastro321
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptxPRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
PRE-NATAL GRnnnmnnnnmmOWTH seminar[1].pptx
JayeshTaneja4
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
presentation of first program exist.pptx
presentation of first program exist.pptxpresentation of first program exist.pptx
presentation of first program exist.pptx
MajidAzeemChohan
 
KNN_Logistic_Regression_Presentation_Styled.pptx
KNN_Logistic_Regression_Presentation_Styled.pptxKNN_Logistic_Regression_Presentation_Styled.pptx
KNN_Logistic_Regression_Presentation_Styled.pptx
sonujha1980712
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Introcomputerscienceand datascience.pptx
Introcomputerscienceand datascience.pptxIntrocomputerscienceand datascience.pptx
Introcomputerscienceand datascience.pptx
abdulrehmanbscsf22
 
History of Science and Technologyandits source.pptx
History of Science and Technologyandits source.pptxHistory of Science and Technologyandits source.pptx
History of Science and Technologyandits source.pptx
balongcastrojo
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
shit yudh slideshare power likha point presen
shit yudh slideshare power likha point presenshit yudh slideshare power likha point presen
shit yudh slideshare power likha point presen
vishalgurjar11229
 

MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library for Apache Spark with Miruna Oprescu

  • 1. Miruna Oprescu ([email protected]) Microsoft MMLSPARK: Lessons From Building A SparkML-Compatible Machine Learning Library For Apache Spark #EUai7
  • 2. MMLSpark Microsoft Machine Learning Library for Apache Spark GitHub: https://github.com/Azure/mmlspark Spark Package: pyspark/spark-shell/spark-submit --packages Azure:mmlspark:0.9 Docker: docker run -it -p 8888:8888 -e ACCEPT_EULA=yes microsoft/mmlspark Navigate to http://localhost:8888 to view example Jupyter notebooks 2#EUai7
  • 3. Why MMLSpark? • The (typical) data science workflow with Spark: 3#EUai7 ML algorithm Data transforms Data Model
  • 4. Why MMLSpark? • Doesn’t look familiar?…maybe this does? 4#EUai7 ML algorithms Data transforms Data Pipeline Python/R UDFsData massaging External libraries (CNTK, OpenCV)
  • 5. Why MMLSpark? • Workflow can be: – Slow & time-consuming – Intractable – Difficult to debug, reproduce – Hard to put in production 5#EUai7
  • 6. MMLSpark Goals q Stay in the Spark ecosystem as much as possible by integrating domain-specific libraries (vision, text analytics, etc.) q Have better model management support q Bring cutting edge ML algorithms to Spark q Reduce the overhead from UDFs and other custom functions q Run on every platform & language supported by Spark 6#EUai7
  • 7. MMLSpark Lesson #1: Follow the SparkML Pipeline model for composability. • MMLSpark consists of Transforms, Estimators and Models that can be combined with existing SparkML components into pipelines. • These abstractions ensure composability, reusability via serialization, logging, ease of use across languages. 7#EUai7
  • 8. MMLSpark: Before and After 8#EUai7 Example: Book Reviews
  • 11. MMLSpark 11#EUai7 Lesson #2: Leverage SparkML abstractions to auto-generate Python and R interfaces. • Decreases development time, ensures feature parity, reduces errors and improves testing.
  • 12. MMLSpark Architecture 12#EUai7 Pre- trained DNN models OpenCV Java Bindings Spark coreCNTK Java Bindings Scala API PySpark/R wrappers Wrapper generation
  • 13. Python Wrappers: Example 13#EUai7 Scala source Python wrapper Generator
  • 14. MMLSpark Lesson #3: Turn parallelizable algorithms from external libraries (e.g. OpenCV and CNTK) into Scala Pipeline Stages. • No data transfer overhead, all operations happen at the JVM level. • Enables cutting edge techniques such as Transfer Learning. 14#EUai7
  • 15. MMLSpark Architecture 15 Pre- trained DNN models OpenCV Java Bindings Spark coreCNTK Java Bindings Scala API PySpark/R wrappers Wrapper generation #EUai7
  • 16. MMLSpark: Example • DNN Featurization with OpenCV and CNTK 16#EUai7
  • 17. MMLSpark Lesson #4: Run on every platform supported by Spark. Test at the highest possible level (Jupyter Notebooks). • Publish self-contained packages that can be used from a variety of targets. • Avoid common integration issues by testing directly with Jupyter Notebooks. 17#EUai7
  • 18. MMLSpark: Bonus • Image Schema unification https://github.com/apache/spark/pull/19439 • Uses DataFrames as common format for reading images. • Standardizes handling of images as a datatype used by different algorithms. 18#EUai7
  • 19. Use case: Snow Leopards 19#EUai7
  • 20. Use case: Snow Leopards 20#EUai7 • 3,900-6,500 individuals left in the wild • Little known about their behavior, movement patterns, survival rates • Camera trapping since 2009 (~1.3 mil images)
  • 21. Use case: Snow Leopards 21#EUai7 • Automatic Image Classification with MMLSpark: − Thousands of hours of researcher and volunteer time saved − Resources redeployed to science and conservation vs image sorting − Much more accurate data on range and population
  • 22. Thank You! • Star our repo: https://github.com/Azure/mmlspark • Contact us: Myself: Miruna Oprescu ([email protected]) Dev Lead: Sudarshan Raghunathan ([email protected]) PM: Roope Astala ([email protected]) 22#EUai7