This document discusses Yarn and its advantages over npm. It notes that Yarn uses yarn.lock files instead of npm-shrinkwrap.json files to lock down dependency versions. Yarn is also described as being faster, able to work offline by caching dependencies, and potentially more secure than npm with features like flat mode and module folders. The document suggests Yarn may handle dependencies and devDependencies differently than npm, and questions whether the yarn.lock file should be committed to source control.
2017/9/7 db tech showcase Tokyo 2017(JPOUG in 15 minutes)にて発表した内容です。
SQL大量発行に伴う処理遅延は、ミッションクリティカルシステムでありがちな性能問題のひとつです。
SQLをまとめて発行したり、処理の多重度を上げることができれば高速化可能です。ですが・・・
AP設計に起因する性能問題のため、開発工程の終盤においては対処が難しいことが多々あります。
そのような状況において、どのような改善手段があるのか、Oracleを例に解説します。
This document discusses Yarn and its advantages over npm. It notes that Yarn uses yarn.lock files instead of npm-shrinkwrap.json files to lock down dependency versions. Yarn is also described as being faster, able to work offline by caching dependencies, and potentially more secure than npm with features like flat mode and module folders. The document suggests Yarn may handle dependencies and devDependencies differently than npm, and questions whether the yarn.lock file should be committed to source control.
2017/9/7 db tech showcase Tokyo 2017(JPOUG in 15 minutes)にて発表した内容です。
SQL大量発行に伴う処理遅延は、ミッションクリティカルシステムでありがちな性能問題のひとつです。
SQLをまとめて発行したり、処理の多重度を上げることができれば高速化可能です。ですが・・・
AP設計に起因する性能問題のため、開発工程の終盤においては対処が難しいことが多々あります。
そのような状況において、どのような改善手段があるのか、Oracleを例に解説します。
The document describes different MongoDB collections and queries. It shows examples of collections that store products, orders, user profiles and analytics data. It also demonstrates queries that retrieve, update and aggregate data across multiple collections using operators like $inc, $push, $unset and $or. The document provides examples of indexing, explain plans, and journaling configurations.
The document provides tips and explanations for various MongoDB commands and operations including explain, hint, setProfilingLevel, currentOp, and mongostat. It discusses using indexes to optimize queries, setting profiling levels to log slow queries, using currentOp to view currently running operations, and using mongostat to view MongoDB server statistics.
This document contains links to MongoDB documentation pages about sharding, databases, collections, inserting, querying, updating, indexing, replication, and backups. It includes a link to a slideshare presentation on MongoDB sharding and links to pages explaining replica set internals and operations.
This document discusses MongoDB and replica sets. It provides an overview of MongoDB's features and benefits including scalability, high availability, and flexibility in schema design. It also explains how replica sets work, including generating the set, initializing replicas, handling failures, failover, and recovery. Replica sets allow for continuous availability and redundancy of data.
This document discusses recent developments in the cloud computing market. It analyzes strategies and acquisitions by major players like Amazon, Microsoft, Google, IBM, Oracle, and others. It attempts to categorize cloud services into infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS). The structure of the cloud computing market has evolved from a single public cloud to a mix of public, private, and hybrid cloud models. The document predicts corporations will increasingly utilize a mix of public and private clouds to meet different application and data needs.
28. OPS: 必要なシャード数の算定
• S = 単一のサーバのops/sec
(一秒あたりのオペレーション数)
• G = 必要なops/sec
• N = シャードの数
• G = N * S * .7
N = G/.7S
29. OPS: 必要なシャード数の算定
• S = 単一のサーバのops/sec
(一秒あたりのオペレーション数)
• G = 必要なops/sec
• N = シャードの数
• G = N * S * .7
N = G/.7S
シャーディング処理のオーバヘッド
30. OPS: 必要なシャード数の算定
• S = 単一のサーバのops/sec
(一秒あたりのオペレーション数)
• G = 必要なops/sec
• N = シャードの数
• G = N * S * .7
N = G/.7S
例:
S = 4000
G = 10000
N = 3.57
4津のシャードが必要