SlideShare a Scribd company logo
Consulting Engineer, MongoDB
Prasoon Kumar
#MongoDBDays #MongoDBIndia
MongoDB Introduction;
Schema Design
What is MongoDB?
MongoDB is a ___________ database
1.  Document
2.  Open source
3.  High performance
4.  Horizontally scalable
5.  Full featured
1. Document Database
•  Not for .PDF & .DOC files
•  A document is essentially an associative array
•  Document = JSON object
•  Document = PHP Array
•  Document = Python Dict
•  Document = Ruby Hash
•  etc
1. NoSQL Data Model
Key-Value
Store
Riak
Memcache
Project
Voldemort
Redis
BerkeleyDB
Document
Database
MongoDB
CouchDB
OrientDB
Column-Family
Stores
Amazon
SimpleDB
Cassandra
Hbase
Hypertable
Graph
Databases
Neo4J
FlockDB
OrientDB
2. Open Source
•  MongoDB is an open source project
•  On GitHub
•  Licensed under the AGPL
•  Started & sponsored by MongoDB Inc (formerly
known as 10gen)
•  Commercial licenses available
•  Contributions welcome
3. High Performance
•  Written in C++
•  Extensive use of memory-mapped files
i.e.read-through write-through memory caching.
•  Runs nearly everywhere
•  Data serialized as BSON (fast parsing)
•  Full support for primary & secondary indexes
•  Document model = less work
Better Data
Locality
3. Performance
In-Memory Caching In-Place
Updates
4. Scalability
Auto-Sharding
•  Increase capacity as you go
•  Commodity and cloud architectures
•  Improved operational simplicity and cost visibility
4. High Availability
•  Automated replication and failover
•  Multi-data center support
•  Improved operational simplicity (e.g., HW swaps)
•  Data durability and consistency
4. Scalability: MongoDB Architecture
5. Full Featured
•  Ad Hoc queries
•  Real time aggregation
•  Rich query capabilities
•  Strongly consistent
•  Geospatial features
•  Support for most programming languages
•  Flexible schema
MongoDB is Fully Featured
mongodb.org/downloads
$ tar –zxvf mongodb-osx-x86_64-2.6.0.tgz
$ cd mongodb-osx-i386-2.6.0/bin
$ mkdir –p /data/db
$ ./mongod
Running MongoDB
MacBook-Pro-:~ $ mongo
MongoDB shell version: 2.6.0
connecting to: test
> db.cms.insert({text: 'Welcome to MongoDB'})
> db.cms.find().pretty()
{
"_id" : ObjectId("51c34130fbd5d7261b4cdb55"),
"text" : "Welcome to MongoDB"
}
Mongo Shell
_id
•  _id is the primary key in MongoDB
•  Automatically indexed
•  Automatically created as an ObjectId if not provided
•  Any unique immutable value could be used
ObjectId
•  ObjectId is a special 12 byte value
•  Guaranteed to be unique across your cluster
•  ObjectId("50804d0bd94ccab2da652599")
|----ts-----||---mac---||-pid-||----inc-----|
4 3 2 3
Document Database
Terminology
RDBMS MongoDB
Table, View ➜ Collection
Row ➜ Document
Index ➜ Index
Join ➜ Embedded Document
Foreign Key ➜ Reference
Partition ➜ Shard
Let’s Build a Blog
First step in any application is
Determine your entities
Entities in our Blogging System
•  Users (post authors)
•  Article
•  Comments
•  Tags,Category
•  Interactions (views,clicks)
In a relational base app
We would start by doing schema
design
Typical (relational) ERD
User
·Name
·Email address
Category
·Name
·URL
Comment
·Comment
·Date
·Author
Article
·Name
·Slug
·Publish date
·Text
Tag
·Name
·URL
In a MongoDB based app
We start building our app
and let the schema evolve
MongoDB ERD
User
·Name
·Email address
Article
·Name
·Slug
·Publish date
·Text
·Author
Comment[]
·Comment
·Date
·Author
Tag[]
·Value
Category[]
·Value
Seek = 5+ ms 
 Read = really really
fast
Post
Author
Comment
Disk seeks and data locality
Post
Author
Comment
Comment
Comment
Comment
Comment
Disk seeks and data locality
MongoDB Language Driver
Real applications are not
built in the shell
MongoDB has native
bindings for over 12
languages
Drivers & Ecosystem
Drivers
Support for the most popular
languages and frameworks
Frameworks
Morphia
MEAN Stack
Java
Python
Perl
Ruby
MongoDB Drivers
•  Official Support for 12 languages
•  Community drivers for tons more
•  Drivers connect to mongo servers
•  Drivers translate BSON into native types
•  mongo shell is not a driver,but works like one in some
ways
•  Installed using typical means (maven,npm,pecl,gem,
pip)
Working With MongoDB
# Python dictionary (or object)
>>> article = { ‘title’ : ‘Schema design in MongoDB’,
‘author’ : ‘prasoonk’,
‘section’ : ‘schema’,
‘slug’ : ‘schema-design-in-mongodb’,
‘text’ : ‘Data in MongoDB has a flexible schema.
So, 2 documents needn’t have same structure.
It allows implicit schema to evolve.’,
‘date’ : datetime.utcnow(),
‘tags’ : [‘MongoDB’, ‘schema’] }
>>> db[‘articles’].insert(article)
Design schema.. In application code
>>> img_data = Binary(open(‘article_img.jpg’).read())
>>> article = { ‘title’ : ‘Schema evolutionin MongoDB’,
‘author’ : ‘mattbates’,
‘section’ : ‘schema’,
‘slug’ : ‘schema-evolution-in-mongodb’,
‘text’ : ‘MongoDb has dynamic schema. For good
performance, you would need an implicit
structure and indexes’,
‘date’ : datetime.utcnow(),
‘tags’ : [‘MongoDB’, ‘schema’, ‘migration’],
‘headline_img’ : {
‘img’ : img_data,
‘caption’ : ‘A sample document at the shell’
}}
Let’s add a headline image
>>> article = { ‘title’ : ‘Favourite web application framework’,
‘author’ : ‘prasoonk’,
‘section’ : ‘web-dev’,
‘slug’ : ‘web-app-frameworks’,
‘gallery’ : [
{ ‘img_url’ : ‘http://x.com/45rty’, ‘caption’ : ‘Flask’, ..},
..
]
‘date’ : datetime.utcnow(),
‘tags’ : [‘Python’, ‘web’],
}
>>> db[‘articles’].insert(article)
And different types of article
>>> user = {
'user' : 'prasoonk',
'email' : 'prasoon.kumar@mongodb.com',
'password' : 'prasoon101',
'joined' : datetime.utcnow(),
'location' : { 'city' : 'Mumbai' },
}
} >>> db[‘users’].insert(user)
Users and profiles
Retrive using Comparison Operators
$gt,$gte,$in,$lt,$lte,$ne,$nin
•  Use to query documents
•  Logical:$or,$and,$not,$nor Element:$exists,$type
•  Logical:$or,$and,$not,$nor Element:$exists,$type
•  Evaluation:$mod,$regex,$where Geospatial:$geoWithin,$geoIntersects,$near,$nearSphere
Modelling comments (1)
•  Two collections–articles and comments
•  Use a reference (i.e. foreign key) to link together
•  But.. N+1 queries to retrieve article and comments
{
‘_id’: ObjectId(..),
‘title’:‘Schema design in MongoDB’,
‘author’:‘mattbates’,
‘date’: ISODate(..),
‘tags’: [‘MongoDB’, ‘schema’],
‘section’:‘schema’,
‘slug’:‘schema-design-in-mongodb’,
‘comments’:[ObjectId(..),…]
}
{ ‘_id’: ObjectId(..),
‘article_id’: 1,
‘text’: ‘A great article,helped me
understand schema design’,
‘date’: ISODate(..),,
‘author’:‘johnsmith’
}
$gt,$gte,$in,$lt,$lte,$ne,$nin
•  Use to query documents
•  Logical:$or,$and,$not,$nor Element:$exists,$type
•  Evaluation:$mod,$regex,$where Geospatial:$geoWithin,$geoIntersects,$near,$nearSphere
Comparison Operators
db.articles.find( { 'title' : ’Intro to MongoDB’ } )
db.articles.find( { ’date' : { ‘$lt’ :
{ISODate("2014-02-19T00:00:00.000Z") }} )
db.articles.find( { ‘tags’ : { ‘$in’ : [‘nosql’,‘database’] } } );
Modelling comments (2)
•  Single articles collection–
embed comments in article
documents
•  Pros
•  Single query, document designed
for the access pattern
•  Locality (disk, shard)
•  Cons
•  Comments array is unbounded;
documents will grow in size
(remember 16MB document
limit)
{
‘_id’: ObjectId(..),
‘title’:‘Schema design in MongoDB’,
‘author’:‘mattbates’,
‘date’: ISODate(..),
‘tags’: [‘MongoDB’,‘schema’],
…
‘comments’:[
{
‘text’: ‘Agreatarticle,helpedme
understandschemadesign’,
‘date’:ISODate(..),
‘author’:‘johnsmith’
},
…
]
}
Modelling comments (3)
•  Another option: hybrid of (2) and (3),embed
top x comments (e.g.by date,popularity) into
the article document
•  Fixed-size (2.4 feature) comments array
•  All other comments ‘overflow’ into a comments
collection (double write) in buckets
•  Pros
–  Document size is more fixed – fewer moves
–  Single query built
–  Full comment history with rich query/aggregation
Modelling comments (3)
{
‘_id’:ObjectId(..),
‘title’:‘SchemadesigninMongoDB’,
‘author’:‘mattbates’,
‘date’:ISODate(..),
‘tags’:[‘MongoDB’, ‘schema’],
…
‘comments_count’:45,
‘comments_pages’:1
‘comments’:[
{
‘text’: ‘Agreatarticle,helpedme
understandschemadesign’,
‘date’:ISODate(..),
‘author’:‘johnsmith’
},
…
]
}
Total number of comments
•  Integer counter updated by
update operation as
comments added/removed
Number of pages
•  Page is a bucket of 100
comments (see next slide..)
Fixed-size comments array
•  10 most recent
•  Sorted by date on insertion
Modelling comments (3)
{
‘_id’: ObjectId(..),
‘article_id’: ObjectId(..),
‘page’: 1,
‘count’: 42
‘comments’: [
{
‘text’: ‘A great article,helped me
understand schema design’,
‘date’: ISODate(..),
‘author’:‘johnsmith’
},
…
}
One comment bucket
(page) document
containing up to about 100
comments
Array of 100 comment sub-
documents
Modelling interactions
•  Interactions
–  Article views
–  Comments
–  (Social media sharing)
•  Requirements
–  Time series
–  Pre-aggregated in preparation for analytics
Modelling interactions
•  Document per article per day–
‘bucketing’
•  Daily counter and hourly sub-
document counters for interactions
•  Bounded array (24 hours)
•  Single query to retrieve daily article
interactions; ready-made for
graphing and further aggregation
{
‘_id’: ObjectId(..),
‘article_id’: ObjectId(..),
‘section’:‘schema’,
‘date’: ISODate(..),
‘daily’: {‘views’: 45,‘comments’: 150 }
‘hours’: {
0 : {‘views’: 10 },
1 : {‘views’: 2 },
…
23 : {‘comments’: 14,‘views’: 10 }
}
}
JSON and RESTful API
Client-side
JSON
(eg AngularJS, (BSON)
Real applications are not built at a shell–let’s build a RESTful API.
Pymongo driver
Python web
app
HTTP(S) REST
Examples to follow: Python RESTful API using Flask microframework
myCMS REST endpoints
Method URI Action
GET /articles Retrieve all articles
GET /articles-by-tag/[tag] Retrieve all articles by tag
GET /articles/[article_id] Retrieve a specific article by article_id
POST /articles Add a new article
GET /articles/[article_id]/comments Retrieve all article comments by
article_id
POST /articles/[article_id]/comments Add a new comment to an article.
POST /users Register a user user
GET /users/[username] Retrieve user’s profile
PUT /users/[username] Update a user’s profile
$ git clone http://www.github.com/prasoonk/mycms_mongodb
$ cd mycms-mongodb
$ virtualenv venv
$ source venv/bin/activate
$ pip install –r requirements.txt
$ mkdir –p data/db
$ mongod --dbpath=data/db --fork --logpath=mongod.log
$ python web.py
[$ deactivate]
Getting started with the skeleton code
@app.route('/cms/api/v1.0/articles', methods=['GET'])
def get_articles():
"""Retrieves all articles in the collection
sorted by date
"""
# query all articles and return a cursor sorted by date
cur = db['articles'].find().sort('date’)
if not cur:
abort(400)
# iterate the cursor and add docs to a dict
articles = [article for article in cur]
return jsonify({'articles' : json.dumps(articles, default=json_util.default)})
RESTful API methods in Python + Flask
@app.route('/cms/api/v1.0/articles/<string:article_id>/comments', methods = ['POST'])
def add_comment(article_id):
"""Adds a comment to the specified article and a
bucket, as well as updating a view counter
"””
…
page_id = article['last_comment_id'] // 100
…
# push the comment to the latest bucket and $inc the count
page = db['comments'].find_and_modify(
{ 'article_id' : ObjectId(article_id),
'page' : page_id},
{ '$inc' : { 'count' : 1 },
'$push' : {
'comments' : comment } },
fields= {'count' : 1},
upsert=True,
new=True)
RESTful API methods in Python + Flask
# $inc the page count if bucket size (100) is exceeded
if page['count'] > 100:
db.articles.update(
{ '_id' : article_id,
'comments_pages': article['comments_pages'] },
{ '$inc': { 'comments_pages': 1 } } )
# let's also add to the article itself
# most recent 10 comments only
res = db['articles'].update(
{'_id' : ObjectId(article_id)},
{'$push' : {'comments' : { '$each' : [comment],
'$sort' : {’date' : 1 },
'$slice' : -10}},
'$inc' : {'comment_count' : 1}})
…
RESTful API methods in Python + Flask
def add_interaction(article_id, type):
"""Record the interaction (view/comment) for the
specified article into the daily bucket and
update an hourly counter
"""
ts = datetime.datetime.utcnow()
# $inc daily and hourly view counters in day/article stats bucket
# note the unacknowledged w=0 write concern for performance
db['interactions'].update(
{ 'article_id' : ObjectId(article_id),
'date' : datetime.datetime(ts.year, ts.month, ts.day)},
{ '$inc' : {
'daily.{}’.format(type) : 1,
'hourly.{}.{}'.format(ts.hour, type) : 1
}},
upsert=True,
w=0)
RESTful API methods in Python + Flask
$ curl -i http://localhost:5000/cms/api/v1.0/articles
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 335
Server: Werkzeug/0.9.4 Python/2.7.5
Date: Thu, 10 Apr 2014 16:00:51 GMT
{
"articles": "[{"title": "Schema design in MongoDB", "text": "Data in MongoDB
has a flexible schema..", "section": "schema", "author": "prasoonk", "date":
{"$date": 1397145312505}, "_id": {"$oid": "5346bef5f2610c064a36a793"},
"slug": "schema-design-in-mongodb", "tags": ["MongoDB", "schema"]}]"}
Testing the API – retrieve articles
$ curl -H "Content-Type: application/json" -X POST -d '{"text":"An interesting
article and a great read."}'
http://localhost:5000/cms/api/v1.0/articles/52ed73a30bd031362b3c6bb3/
comments
{
"comment": "{"date": {"$date": 1391639269724}, "text": "An interesting
article and a great read."}”
}
	
  
	
  
Testing the API – comment on an article
Schema iteration
New feature in the backlog?
Documents have dynamic schema so we just iterate the
object schema.
>>> user = {‘username’:‘matt’,
‘first’:‘Matt’,
‘last’:‘Bates’,
‘preferences’: {‘opt_out’: True } }
>>> user.save(user)
Next Steps
Further reading
•  ‘myCMS’ skeleton source code:
http://www.github.com/prasoonk/mycms_mongodb
•  Data Models
http://docs.mongodb.org/manual/data-modeling/
•  Use case-metadata and asset management:
http://docs.mongodb.org/ecosystem/use-cases/metadata-and-
asset-management/
•  Use case-storing comments:
http://docs.mongodb.org/ecosystem/use-cases/storing-
comments/
docs.mongodb.org
Online Training at MongoDB University
For More Information
Resource Location
MongoDB Downloads mongodb.com/download
Free Online Training education.mongodb.com
Webinars and Events mongodb.com/events
White Papers mongodb.com/white-papers
Case Studies mongodb.com/customers
Presentations mongodb.com/presentations
Documentation docs.mongodb.org
Additional Info info@mongodb.com
Resource Location
We've introduced a lot of
concepts here
Schema Design @
User
·Name
·Email address
Article
·Name
·Slug
·Publish date
·Text
·Author
Comment[]
·Comment
·Date
·Author
Tag[]
·Value
Category[]
·Value
Replication @
Secondary Secondary
Primary
Client Application
Driver
Write
Read
Read
Indexing @
7 16
1 2 5 6 9 12 18 21
Sharding @
www.etiennemansard.com
Questions?
Consulting Engineer, MongoDB
Prasoon Kumar
#MongoDBDays #MongoDBIndia @prasoonk
Thank You

More Related Content

What's hot (20)

PPTX
How Thermo Fisher is Reducing Data Analysis Times from Days to Minutes with M...
MongoDB
 
PDF
MongoDB on Azure
Norberto Leite
 
PPTX
Webinar: What's New in MongoDB 3.2
MongoDB
 
POTX
MongoDB Days Silicon Valley: A Technical Introduction to WiredTiger
MongoDB
 
PDF
MongoDB .local Bengaluru 2019: Using MongoDB Services in Kubernetes: Any Plat...
MongoDB
 
PPTX
Maximizing MongoDB Performance on AWS
MongoDB
 
PDF
What's new in MongoDB 2.6 at India event by company
MongoDB APAC
 
PDF
MongoDB Administration 101
MongoDB
 
PPTX
Running MongoDB 3.0 on AWS
MongoDB
 
PDF
https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...
MongoDB
 
PPTX
Beyond the Basics 1: Storage Engines
MongoDB
 
PPTX
MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB present...
MongoDB
 
PPTX
3 scenarios when to use MongoDB!
Edureka!
 
PPTX
Conceptos Avanzados 1: Motores de Almacenamiento
MongoDB
 
PPTX
Webinar: Enabling Microservices with Containers, Orchestration, and MongoDB
MongoDB
 
PDF
Mongo db 3.4 Overview
Norberto Leite
 
PDF
MongoDB .local Bengaluru 2019: Lift & Shift MongoDB to Atlas
MongoDB
 
PDF
MongoDB .local Bengaluru 2019: New Encryption Capabilities in MongoDB 4.2: A ...
MongoDB
 
PDF
Shift: Real World Migration from MongoDB to Cassandra
DataStax
 
PPTX
MongoDB in the Middle of a Hybrid Cloud and Polyglot Persistence Architecture
MongoDB
 
How Thermo Fisher is Reducing Data Analysis Times from Days to Minutes with M...
MongoDB
 
MongoDB on Azure
Norberto Leite
 
Webinar: What's New in MongoDB 3.2
MongoDB
 
MongoDB Days Silicon Valley: A Technical Introduction to WiredTiger
MongoDB
 
MongoDB .local Bengaluru 2019: Using MongoDB Services in Kubernetes: Any Plat...
MongoDB
 
Maximizing MongoDB Performance on AWS
MongoDB
 
What's new in MongoDB 2.6 at India event by company
MongoDB APAC
 
MongoDB Administration 101
MongoDB
 
Running MongoDB 3.0 on AWS
MongoDB
 
https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...
MongoDB
 
Beyond the Basics 1: Storage Engines
MongoDB
 
MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB present...
MongoDB
 
3 scenarios when to use MongoDB!
Edureka!
 
Conceptos Avanzados 1: Motores de Almacenamiento
MongoDB
 
Webinar: Enabling Microservices with Containers, Orchestration, and MongoDB
MongoDB
 
Mongo db 3.4 Overview
Norberto Leite
 
MongoDB .local Bengaluru 2019: Lift & Shift MongoDB to Atlas
MongoDB
 
MongoDB .local Bengaluru 2019: New Encryption Capabilities in MongoDB 4.2: A ...
MongoDB
 
Shift: Real World Migration from MongoDB to Cassandra
DataStax
 
MongoDB in the Middle of a Hybrid Cloud and Polyglot Persistence Architecture
MongoDB
 

Similar to Mongo db eveningschemadesign (20)

PPTX
Webinar: Build an Application Series - Session 2 - Getting Started
MongoDB
 
PDF
MongoDB Basics
Sarang Shravagi
 
PDF
Building your first app with MongoDB
Norberto Leite
 
PDF
Building your first app with mongo db
MongoDB
 
PDF
MongoDB and Ruby on Rails
rfischer20
 
PPTX
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
PPTX
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
PPTX
S01 e01 schema-design
MongoDB
 
KEY
MongoDB NYC Python
Mike Dirolf
 
KEY
MongoDB
Steven Francia
 
PPTX
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
KEY
Mongodb intro
christkv
 
PPTX
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
KEY
MongoDB EuroPython 2009
Mike Dirolf
 
PDF
10gen MongoDB Video Presentation at WebGeek DevCup
WebGeek Philippines
 
PPTX
Webinar: Building Your First MongoDB App
MongoDB
 
PDF
Back to Basics 2017: Mí primera aplicación MongoDB
MongoDB
 
PDF
MongoDB
wiTTyMinds1
 
KEY
MongoDB Hadoop DC
Mike Dirolf
 
Webinar: Build an Application Series - Session 2 - Getting Started
MongoDB
 
MongoDB Basics
Sarang Shravagi
 
Building your first app with MongoDB
Norberto Leite
 
Building your first app with mongo db
MongoDB
 
MongoDB and Ruby on Rails
rfischer20
 
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
S01 e01 schema-design
MongoDB
 
MongoDB NYC Python
Mike Dirolf
 
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
Mongodb intro
christkv
 
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
MongoDB EuroPython 2009
Mike Dirolf
 
10gen MongoDB Video Presentation at WebGeek DevCup
WebGeek Philippines
 
Webinar: Building Your First MongoDB App
MongoDB
 
Back to Basics 2017: Mí primera aplicación MongoDB
MongoDB
 
MongoDB
wiTTyMinds1
 
MongoDB Hadoop DC
Mike Dirolf
 
Ad

Recently uploaded (20)

PDF
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PPTX
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PDF
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
PDF
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
PDF
Python basic programing language for automation
DanialHabibi2
 
PDF
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
PDF
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
July Patch Tuesday
Ivanti
 
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
AUTOMATION AND ROBOTICS IN PHARMA INDUSTRY.pptx
sameeraaabegumm
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
Log-Based Anomaly Detection: Enhancing System Reliability with Machine Learning
Mohammed BEKKOUCHE
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
SWEBOK Guide and Software Services Engineering Education
Hironori Washizaki
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
Python basic programing language for automation
DanialHabibi2
 
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
July Patch Tuesday
Ivanti
 
Ad

Mongo db eveningschemadesign

  • 1. Consulting Engineer, MongoDB Prasoon Kumar #MongoDBDays #MongoDBIndia MongoDB Introduction; Schema Design
  • 3. MongoDB is a ___________ database 1.  Document 2.  Open source 3.  High performance 4.  Horizontally scalable 5.  Full featured
  • 4. 1. Document Database •  Not for .PDF & .DOC files •  A document is essentially an associative array •  Document = JSON object •  Document = PHP Array •  Document = Python Dict •  Document = Ruby Hash •  etc
  • 5. 1. NoSQL Data Model Key-Value Store Riak Memcache Project Voldemort Redis BerkeleyDB Document Database MongoDB CouchDB OrientDB Column-Family Stores Amazon SimpleDB Cassandra Hbase Hypertable Graph Databases Neo4J FlockDB OrientDB
  • 6. 2. Open Source •  MongoDB is an open source project •  On GitHub •  Licensed under the AGPL •  Started & sponsored by MongoDB Inc (formerly known as 10gen) •  Commercial licenses available •  Contributions welcome
  • 7. 3. High Performance •  Written in C++ •  Extensive use of memory-mapped files i.e.read-through write-through memory caching. •  Runs nearly everywhere •  Data serialized as BSON (fast parsing) •  Full support for primary & secondary indexes •  Document model = less work
  • 9. 4. Scalability Auto-Sharding •  Increase capacity as you go •  Commodity and cloud architectures •  Improved operational simplicity and cost visibility
  • 10. 4. High Availability •  Automated replication and failover •  Multi-data center support •  Improved operational simplicity (e.g., HW swaps) •  Data durability and consistency
  • 11. 4. Scalability: MongoDB Architecture
  • 12. 5. Full Featured •  Ad Hoc queries •  Real time aggregation •  Rich query capabilities •  Strongly consistent •  Geospatial features •  Support for most programming languages •  Flexible schema
  • 13. MongoDB is Fully Featured
  • 15. $ tar –zxvf mongodb-osx-x86_64-2.6.0.tgz $ cd mongodb-osx-i386-2.6.0/bin $ mkdir –p /data/db $ ./mongod Running MongoDB
  • 16. MacBook-Pro-:~ $ mongo MongoDB shell version: 2.6.0 connecting to: test > db.cms.insert({text: 'Welcome to MongoDB'}) > db.cms.find().pretty() { "_id" : ObjectId("51c34130fbd5d7261b4cdb55"), "text" : "Welcome to MongoDB" } Mongo Shell
  • 17. _id •  _id is the primary key in MongoDB •  Automatically indexed •  Automatically created as an ObjectId if not provided •  Any unique immutable value could be used
  • 18. ObjectId •  ObjectId is a special 12 byte value •  Guaranteed to be unique across your cluster •  ObjectId("50804d0bd94ccab2da652599") |----ts-----||---mac---||-pid-||----inc-----| 4 3 2 3
  • 20. Terminology RDBMS MongoDB Table, View ➜ Collection Row ➜ Document Index ➜ Index Join ➜ Embedded Document Foreign Key ➜ Reference Partition ➜ Shard
  • 22. First step in any application is Determine your entities
  • 23. Entities in our Blogging System •  Users (post authors) •  Article •  Comments •  Tags,Category •  Interactions (views,clicks)
  • 24. In a relational base app We would start by doing schema design
  • 25. Typical (relational) ERD User ·Name ·Email address Category ·Name ·URL Comment ·Comment ·Date ·Author Article ·Name ·Slug ·Publish date ·Text Tag ·Name ·URL
  • 26. In a MongoDB based app We start building our app and let the schema evolve
  • 27. MongoDB ERD User ·Name ·Email address Article ·Name ·Slug ·Publish date ·Text ·Author Comment[] ·Comment ·Date ·Author Tag[] ·Value Category[] ·Value
  • 28. Seek = 5+ ms Read = really really fast Post Author Comment Disk seeks and data locality
  • 31. Real applications are not built in the shell
  • 32. MongoDB has native bindings for over 12 languages
  • 33. Drivers & Ecosystem Drivers Support for the most popular languages and frameworks Frameworks Morphia MEAN Stack Java Python Perl Ruby
  • 34. MongoDB Drivers •  Official Support for 12 languages •  Community drivers for tons more •  Drivers connect to mongo servers •  Drivers translate BSON into native types •  mongo shell is not a driver,but works like one in some ways •  Installed using typical means (maven,npm,pecl,gem, pip)
  • 36. # Python dictionary (or object) >>> article = { ‘title’ : ‘Schema design in MongoDB’, ‘author’ : ‘prasoonk’, ‘section’ : ‘schema’, ‘slug’ : ‘schema-design-in-mongodb’, ‘text’ : ‘Data in MongoDB has a flexible schema. So, 2 documents needn’t have same structure. It allows implicit schema to evolve.’, ‘date’ : datetime.utcnow(), ‘tags’ : [‘MongoDB’, ‘schema’] } >>> db[‘articles’].insert(article) Design schema.. In application code
  • 37. >>> img_data = Binary(open(‘article_img.jpg’).read()) >>> article = { ‘title’ : ‘Schema evolutionin MongoDB’, ‘author’ : ‘mattbates’, ‘section’ : ‘schema’, ‘slug’ : ‘schema-evolution-in-mongodb’, ‘text’ : ‘MongoDb has dynamic schema. For good performance, you would need an implicit structure and indexes’, ‘date’ : datetime.utcnow(), ‘tags’ : [‘MongoDB’, ‘schema’, ‘migration’], ‘headline_img’ : { ‘img’ : img_data, ‘caption’ : ‘A sample document at the shell’ }} Let’s add a headline image
  • 38. >>> article = { ‘title’ : ‘Favourite web application framework’, ‘author’ : ‘prasoonk’, ‘section’ : ‘web-dev’, ‘slug’ : ‘web-app-frameworks’, ‘gallery’ : [ { ‘img_url’ : ‘http://x.com/45rty’, ‘caption’ : ‘Flask’, ..}, .. ] ‘date’ : datetime.utcnow(), ‘tags’ : [‘Python’, ‘web’], } >>> db[‘articles’].insert(article) And different types of article
  • 39. >>> user = { 'user' : 'prasoonk', 'email' : '[email protected]', 'password' : 'prasoon101', 'joined' : datetime.utcnow(), 'location' : { 'city' : 'Mumbai' }, } } >>> db[‘users’].insert(user) Users and profiles
  • 40. Retrive using Comparison Operators $gt,$gte,$in,$lt,$lte,$ne,$nin •  Use to query documents •  Logical:$or,$and,$not,$nor Element:$exists,$type •  Logical:$or,$and,$not,$nor Element:$exists,$type •  Evaluation:$mod,$regex,$where Geospatial:$geoWithin,$geoIntersects,$near,$nearSphere
  • 41. Modelling comments (1) •  Two collections–articles and comments •  Use a reference (i.e. foreign key) to link together •  But.. N+1 queries to retrieve article and comments { ‘_id’: ObjectId(..), ‘title’:‘Schema design in MongoDB’, ‘author’:‘mattbates’, ‘date’: ISODate(..), ‘tags’: [‘MongoDB’, ‘schema’], ‘section’:‘schema’, ‘slug’:‘schema-design-in-mongodb’, ‘comments’:[ObjectId(..),…] } { ‘_id’: ObjectId(..), ‘article_id’: 1, ‘text’: ‘A great article,helped me understand schema design’, ‘date’: ISODate(..),, ‘author’:‘johnsmith’ }
  • 42. $gt,$gte,$in,$lt,$lte,$ne,$nin •  Use to query documents •  Logical:$or,$and,$not,$nor Element:$exists,$type •  Evaluation:$mod,$regex,$where Geospatial:$geoWithin,$geoIntersects,$near,$nearSphere Comparison Operators db.articles.find( { 'title' : ’Intro to MongoDB’ } ) db.articles.find( { ’date' : { ‘$lt’ : {ISODate("2014-02-19T00:00:00.000Z") }} ) db.articles.find( { ‘tags’ : { ‘$in’ : [‘nosql’,‘database’] } } );
  • 43. Modelling comments (2) •  Single articles collection– embed comments in article documents •  Pros •  Single query, document designed for the access pattern •  Locality (disk, shard) •  Cons •  Comments array is unbounded; documents will grow in size (remember 16MB document limit) { ‘_id’: ObjectId(..), ‘title’:‘Schema design in MongoDB’, ‘author’:‘mattbates’, ‘date’: ISODate(..), ‘tags’: [‘MongoDB’,‘schema’], … ‘comments’:[ { ‘text’: ‘Agreatarticle,helpedme understandschemadesign’, ‘date’:ISODate(..), ‘author’:‘johnsmith’ }, … ] }
  • 44. Modelling comments (3) •  Another option: hybrid of (2) and (3),embed top x comments (e.g.by date,popularity) into the article document •  Fixed-size (2.4 feature) comments array •  All other comments ‘overflow’ into a comments collection (double write) in buckets •  Pros –  Document size is more fixed – fewer moves –  Single query built –  Full comment history with rich query/aggregation
  • 45. Modelling comments (3) { ‘_id’:ObjectId(..), ‘title’:‘SchemadesigninMongoDB’, ‘author’:‘mattbates’, ‘date’:ISODate(..), ‘tags’:[‘MongoDB’, ‘schema’], … ‘comments_count’:45, ‘comments_pages’:1 ‘comments’:[ { ‘text’: ‘Agreatarticle,helpedme understandschemadesign’, ‘date’:ISODate(..), ‘author’:‘johnsmith’ }, … ] } Total number of comments •  Integer counter updated by update operation as comments added/removed Number of pages •  Page is a bucket of 100 comments (see next slide..) Fixed-size comments array •  10 most recent •  Sorted by date on insertion
  • 46. Modelling comments (3) { ‘_id’: ObjectId(..), ‘article_id’: ObjectId(..), ‘page’: 1, ‘count’: 42 ‘comments’: [ { ‘text’: ‘A great article,helped me understand schema design’, ‘date’: ISODate(..), ‘author’:‘johnsmith’ }, … } One comment bucket (page) document containing up to about 100 comments Array of 100 comment sub- documents
  • 47. Modelling interactions •  Interactions –  Article views –  Comments –  (Social media sharing) •  Requirements –  Time series –  Pre-aggregated in preparation for analytics
  • 48. Modelling interactions •  Document per article per day– ‘bucketing’ •  Daily counter and hourly sub- document counters for interactions •  Bounded array (24 hours) •  Single query to retrieve daily article interactions; ready-made for graphing and further aggregation { ‘_id’: ObjectId(..), ‘article_id’: ObjectId(..), ‘section’:‘schema’, ‘date’: ISODate(..), ‘daily’: {‘views’: 45,‘comments’: 150 } ‘hours’: { 0 : {‘views’: 10 }, 1 : {‘views’: 2 }, … 23 : {‘comments’: 14,‘views’: 10 } } }
  • 49. JSON and RESTful API Client-side JSON (eg AngularJS, (BSON) Real applications are not built at a shell–let’s build a RESTful API. Pymongo driver Python web app HTTP(S) REST Examples to follow: Python RESTful API using Flask microframework
  • 50. myCMS REST endpoints Method URI Action GET /articles Retrieve all articles GET /articles-by-tag/[tag] Retrieve all articles by tag GET /articles/[article_id] Retrieve a specific article by article_id POST /articles Add a new article GET /articles/[article_id]/comments Retrieve all article comments by article_id POST /articles/[article_id]/comments Add a new comment to an article. POST /users Register a user user GET /users/[username] Retrieve user’s profile PUT /users/[username] Update a user’s profile
  • 51. $ git clone http://www.github.com/prasoonk/mycms_mongodb $ cd mycms-mongodb $ virtualenv venv $ source venv/bin/activate $ pip install –r requirements.txt $ mkdir –p data/db $ mongod --dbpath=data/db --fork --logpath=mongod.log $ python web.py [$ deactivate] Getting started with the skeleton code
  • 52. @app.route('/cms/api/v1.0/articles', methods=['GET']) def get_articles(): """Retrieves all articles in the collection sorted by date """ # query all articles and return a cursor sorted by date cur = db['articles'].find().sort('date’) if not cur: abort(400) # iterate the cursor and add docs to a dict articles = [article for article in cur] return jsonify({'articles' : json.dumps(articles, default=json_util.default)}) RESTful API methods in Python + Flask
  • 53. @app.route('/cms/api/v1.0/articles/<string:article_id>/comments', methods = ['POST']) def add_comment(article_id): """Adds a comment to the specified article and a bucket, as well as updating a view counter "”” … page_id = article['last_comment_id'] // 100 … # push the comment to the latest bucket and $inc the count page = db['comments'].find_and_modify( { 'article_id' : ObjectId(article_id), 'page' : page_id}, { '$inc' : { 'count' : 1 }, '$push' : { 'comments' : comment } }, fields= {'count' : 1}, upsert=True, new=True) RESTful API methods in Python + Flask
  • 54. # $inc the page count if bucket size (100) is exceeded if page['count'] > 100: db.articles.update( { '_id' : article_id, 'comments_pages': article['comments_pages'] }, { '$inc': { 'comments_pages': 1 } } ) # let's also add to the article itself # most recent 10 comments only res = db['articles'].update( {'_id' : ObjectId(article_id)}, {'$push' : {'comments' : { '$each' : [comment], '$sort' : {’date' : 1 }, '$slice' : -10}}, '$inc' : {'comment_count' : 1}}) … RESTful API methods in Python + Flask
  • 55. def add_interaction(article_id, type): """Record the interaction (view/comment) for the specified article into the daily bucket and update an hourly counter """ ts = datetime.datetime.utcnow() # $inc daily and hourly view counters in day/article stats bucket # note the unacknowledged w=0 write concern for performance db['interactions'].update( { 'article_id' : ObjectId(article_id), 'date' : datetime.datetime(ts.year, ts.month, ts.day)}, { '$inc' : { 'daily.{}’.format(type) : 1, 'hourly.{}.{}'.format(ts.hour, type) : 1 }}, upsert=True, w=0) RESTful API methods in Python + Flask
  • 56. $ curl -i http://localhost:5000/cms/api/v1.0/articles HTTP/1.0 200 OK Content-Type: application/json Content-Length: 335 Server: Werkzeug/0.9.4 Python/2.7.5 Date: Thu, 10 Apr 2014 16:00:51 GMT { "articles": "[{"title": "Schema design in MongoDB", "text": "Data in MongoDB has a flexible schema..", "section": "schema", "author": "prasoonk", "date": {"$date": 1397145312505}, "_id": {"$oid": "5346bef5f2610c064a36a793"}, "slug": "schema-design-in-mongodb", "tags": ["MongoDB", "schema"]}]"} Testing the API – retrieve articles
  • 57. $ curl -H "Content-Type: application/json" -X POST -d '{"text":"An interesting article and a great read."}' http://localhost:5000/cms/api/v1.0/articles/52ed73a30bd031362b3c6bb3/ comments { "comment": "{"date": {"$date": 1391639269724}, "text": "An interesting article and a great read."}” }     Testing the API – comment on an article
  • 58. Schema iteration New feature in the backlog? Documents have dynamic schema so we just iterate the object schema. >>> user = {‘username’:‘matt’, ‘first’:‘Matt’, ‘last’:‘Bates’, ‘preferences’: {‘opt_out’: True } } >>> user.save(user)
  • 60. Further reading •  ‘myCMS’ skeleton source code: http://www.github.com/prasoonk/mycms_mongodb •  Data Models http://docs.mongodb.org/manual/data-modeling/ •  Use case-metadata and asset management: http://docs.mongodb.org/ecosystem/use-cases/metadata-and- asset-management/ •  Use case-storing comments: http://docs.mongodb.org/ecosystem/use-cases/storing- comments/
  • 62. Online Training at MongoDB University
  • 63. For More Information Resource Location MongoDB Downloads mongodb.com/download Free Online Training education.mongodb.com Webinars and Events mongodb.com/events White Papers mongodb.com/white-papers Case Studies mongodb.com/customers Presentations mongodb.com/presentations Documentation docs.mongodb.org Additional Info [email protected] Resource Location
  • 64. We've introduced a lot of concepts here
  • 65. Schema Design @ User ·Name ·Email address Article ·Name ·Slug ·Publish date ·Text ·Author Comment[] ·Comment ·Date ·Author Tag[] ·Value Category[] ·Value
  • 66. Replication @ Secondary Secondary Primary Client Application Driver Write Read Read
  • 67. Indexing @ 7 16 1 2 5 6 9 12 18 21
  • 70. Consulting Engineer, MongoDB Prasoon Kumar #MongoDBDays #MongoDBIndia @prasoonk Thank You