SlideShare a Scribd company logo
A Technical Introduction to WiredTiger
Michael Cahill
Director of Engineering (Storage), MongoDB
We’ll begin shortly.
Thanks for joining:
About The Presenter
• Michael Cahill
• WiredTiger team lead at MongoDB
• Sydney, Australia
• michael.cahill@mongodb.com
• @m_j_cahill
What You Will Learn
• WiredTiger Architecture
• In-memory performance
• Document-level concurrency
• Compression and checksums
• Durability and the journal
• What’s next?
4
This webinar is not…
• How to write stand-alone WiredTiger apps
– contact info@wiredtiger.com if you are interested
• How to configure MongoDB with WiredTiger for your workload
You may have seen this:
or this…
What You Will Learn
 WiredTiger Architecture
• In-memory performance
• Document-level concurrency
• Compression and checksums
• Durability and the journal
• What’s next?
8
MongoDB’s Storage Engine API
• Allows different storage engines to "plug-in"
– different workloads have different performance characteristics
– mmap is not ideal for all workloads
– more flexibility
• mix storage engines on same replica set/sharded cluster
• MongoDB can innovate faster
• Opportunity to integrate further (HDFS, native encrypted,
hardware optimized …)
• Great way for us to demonstrate WiredTiger’s performance
9
Storage Engine Layer
Content
Repo
IoT Sensor
Backend
Ad Service
Customer
Analytics
Archive
MongoDB Query Language (MQL) + Native Drivers
MongoDB Document Data Model
MMAP V1 WT In-Memory ? ?
Supported in MongoDB 3.0 Future Possible Storage Engines
Management
Security
Example Future State
Experimental
10
Motivation for WiredTiger
• Take advantage of modern hardware:
– many CPU cores
– lots of RAM
• Minimize contention between threads
– lock-free algorithms, e.g., hazard pointers
– eliminate blocking due to concurrency control
• Hotter cache and more work per I/O
– compact file formats
– compression
11
WiredTiger Architecture
WiredTiger Engine
Schema &
Cursors
Python API C API Java API
Database
Files
Transactions
Page
read/ write
Logging
Column
storage
Block
management
Row
storage
Snapshots
Log Files
Cache
What You Will Learn
 WiredTiger Architecture
 In-memory performance
• Document-level concurrency
• Compression and checksums
• Durability and the journal
• What’s next?
13
Traditional B+tree (ht wikipedia)
14
Trees in cache
non-resident
child
ordinary pointer
root page
internal
page
internal
page
root page
leaf page
leaf page leaf page leaf page
15
Hazard Pointers
non-resident
child
ordinary pointer
root page
internal
page
internal
page
root page
leaf page
leaf page leaf page leaf page
1 memory
flush
16
Pages in cache
cache
data files
page images
on-disk
page
image
index
clean
page on-disk
page
image
indexdirty
page
updates
17
In-memory performance
• Trees in cache are optimized for in-memory access
• Follow pointers to traverse a tree
– no locking to access pages in cache
• Keep updates separate from clean data
• Do structural changes (eviction, splits) in background threads
What You Will Learn
 WiredTiger Architecture
 In-memory performance
 Document-level concurrency
• Compression and checksums
• Durability and the journal
• What’s next?
19
What is Concurrency Control?
• Computers have
– multiple CPU cores
– multiple I/O paths
• To make the most of the hardware, software has to execute
multiple operations in parallel
• Concurrency control has to keep data consistent
• Common approaches:
– locking
– keeping multiple versions of data (MVCC)
20
WiredTiger Concurrency Control
WiredTiger Engine
Schema &
Cursors
Python API C API Java API
Database
Files
Transactions
Page
read/ write
Logging
Column
storage
Block
management
Row
storage
Snapshots
Log Files
Cache
21
Pages in cache
cache
data files
page images
on-disk
page
image
index
clean
page on-disk
page
image
indexdirty
page
updates
skiplist
22
Multiversion Concurrency Control (MVCC)
• Multiple versions of records kept in cache
• Readers see the committed version before the transaction started
– MongoDB “yields” turn large operations into small transactions
• Writers can create new versions concurrent with readers
• Concurrent updates to a single record cause write conflicts
– MongoDB retries with back-off
23
MVCC In Action
updateupdate
What You Will Learn
 WiredTiger Architecture
 In-memory performance
 Document-level concurrency
 Compression and checksums
• Durability and the journal
• What’s next?
25
WiredTiger Page I/O
WiredTiger Engine
Schema &
Cursors
Python API C API Java API
Database
Files
Transactions
Page
read/ write
Logging
Column
storage
Block
management
Row
storage
Snapshots
Log Files
Cache
26
Trees in cache
non-resident
child
ordinary pointer
root page
internal
page
internal
page
root page
leaf page
leaf page leaf page leaf page
read required
27
Pages in cache
cache
data files
page images
on-disk
page
image
index
clean
page on-disk
page
image
indexdirty
page
updates
reconciled
during write
28
Checksums
• A checksum is stored with every page
• Checksums are validated during page read
– detects filesystem corruption, random bitflips
• WiredTiger stores the checksum with the page address (typically
in a parent page)
– extra safety against reading a stale page image
29
Compression
• WiredTiger uses snappy compression by default in MongoDB
• Supported compression algorithms:
– snappy [default]: good compression, low overhead
– zlib: better compression, more CPU
– none
• Indexes also use prefix compression
– stays compressed in memory
30
Compression in Action
(Flights database, ht Asya)
What You Will Learn
 WiredTiger Architecture
 In-memory performance
 Document-level concurrency
 Compression and checksums
 Durability and the journal
• What’s next?
32
Journal and Recovery
• Write-ahead logging (aka journal) enabled by default
• Only written at transaction commit
• Log records are compressed with snappy by default
• Group commit for concurrency
• Automatic log archive / removal
• On startup, we rely on finding a consistent checkpoint in the
metadata
• Use the metadata to figure out how much to roll forward
33
Durability without Journaling
• MMAPv1 require the journal for consistency
– running with “nojournal” is unsafe
• WiredTiger doesn't have this need: no in-place updates
– checkpoints every 60 seconds by default
– with “nojournal”, updates since the last checkpoint may be lost
– data will still be consistent
• Replication can guarantee durability
34
Writing a checkpoint
1. Write dirty leaf pages
– don’t overwrite, write new versions into free space
2. Write the internal pages, including the root
– the old checkpoint is still valid
3. Sync the file
4. Write the new root’s address to the metadata
– free pages from old checkpoints once the metadata is durable
35
Checkpoints in Action
old
root page
internal
page
internal
page
leaf page leaf page leaf page
new
root page
internal
page
internal
page
leaf page leaf page
36
Checkpoints in Action (cont.)
old
root page
internal
page
internal
page
leaf page leaf page leaf page
new
root page
internal
page
internal
page
leaf page leaf page
What You Will Learn
 WiredTiger Architecture
 In-memory performance
 Document-level concurrency
 Compression and checksums
 Durability and the journal
 What’s next?
38
39
WiredTiger LSM support
• Out-of-order insert workloads
• Data set much larger than cache
• Query performance is not (as) important
• Resource overhead of background maintenance
acceptable
40
41
What’s next for WiredTiger?
• Tune for (many) more workloads
– avoid stalls during checkpoints with 100GB+ caches
– make capped collections (including oplog) more efficient
– Mark Callaghan seeing ~2x speedup in 3.1 snapshots:
http://smalldatum.blogspot.com/
• Make Log Structured Merge (LSM) trees work well with MongoDB
– out-of-cache, write-heavy workloads
• Adding encryption
• More advanced transactional semantics in the storage engine API
Thanks!
Questions?
Michael Cahill
michael.cahill@mongodb.com
Ad

More Related Content

What's hot (20)

PostgreSQL Deep Internal
PostgreSQL Deep InternalPostgreSQL Deep Internal
PostgreSQL Deep Internal
EXEM
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Mike Dirolf
 
後悔しないもんごもんごの使い方 〜アプリ編〜
後悔しないもんごもんごの使い方 〜アプリ編〜後悔しないもんごもんごの使い方 〜アプリ編〜
後悔しないもんごもんごの使い方 〜アプリ編〜
Masakazu Matsushita
 
MongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTigerMongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTiger
WiredTiger
 
An introduction to MongoDB
An introduction to MongoDBAn introduction to MongoDB
An introduction to MongoDB
César Trigo
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Introduction to memcached
Introduction to memcachedIntroduction to memcached
Introduction to memcached
Jurriaan Persyn
 
MongoDB
MongoDBMongoDB
MongoDB
nikhil2807
 
Scaling for Performance
Scaling for PerformanceScaling for Performance
Scaling for Performance
ScyllaDB
 
RocksDB compaction
RocksDB compactionRocksDB compaction
RocksDB compaction
MIJIN AN
 
MongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB .local Toronto 2019: Tips and Tricks for Effective IndexingMongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB
 
InnoDB Internal
InnoDB InternalInnoDB Internal
InnoDB Internal
mysqlops
 
Inside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source DatabaseInside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source Database
Mike Dirolf
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
DataStax Academy
 
Introduction to Storm
Introduction to Storm Introduction to Storm
Introduction to Storm
Chandler Huang
 
Mongo DB
Mongo DB Mongo DB
Mongo DB
Tata Consultancy Services
 
Mongo indexes
Mongo indexesMongo indexes
Mongo indexes
paradokslabs
 
Webinar: MongoDB Schema Design and Performance Implications
Webinar: MongoDB Schema Design and Performance ImplicationsWebinar: MongoDB Schema Design and Performance Implications
Webinar: MongoDB Schema Design and Performance Implications
MongoDB
 
The InnoDB Storage Engine for MySQL
The InnoDB Storage Engine for MySQLThe InnoDB Storage Engine for MySQL
The InnoDB Storage Engine for MySQL
Morgan Tocker
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
PostgreSQL Deep Internal
PostgreSQL Deep InternalPostgreSQL Deep Internal
PostgreSQL Deep Internal
EXEM
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Mike Dirolf
 
後悔しないもんごもんごの使い方 〜アプリ編〜
後悔しないもんごもんごの使い方 〜アプリ編〜後悔しないもんごもんごの使い方 〜アプリ編〜
後悔しないもんごもんごの使い方 〜アプリ編〜
Masakazu Matsushita
 
MongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTigerMongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTiger
WiredTiger
 
An introduction to MongoDB
An introduction to MongoDBAn introduction to MongoDB
An introduction to MongoDB
César Trigo
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Introduction to memcached
Introduction to memcachedIntroduction to memcached
Introduction to memcached
Jurriaan Persyn
 
Scaling for Performance
Scaling for PerformanceScaling for Performance
Scaling for Performance
ScyllaDB
 
RocksDB compaction
RocksDB compactionRocksDB compaction
RocksDB compaction
MIJIN AN
 
MongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB .local Toronto 2019: Tips and Tricks for Effective IndexingMongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB .local Toronto 2019: Tips and Tricks for Effective Indexing
MongoDB
 
InnoDB Internal
InnoDB InternalInnoDB Internal
InnoDB Internal
mysqlops
 
Inside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source DatabaseInside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source Database
Mike Dirolf
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
DataStax Academy
 
Introduction to Storm
Introduction to Storm Introduction to Storm
Introduction to Storm
Chandler Huang
 
Webinar: MongoDB Schema Design and Performance Implications
Webinar: MongoDB Schema Design and Performance ImplicationsWebinar: MongoDB Schema Design and Performance Implications
Webinar: MongoDB Schema Design and Performance Implications
MongoDB
 
The InnoDB Storage Engine for MySQL
The InnoDB Storage Engine for MySQLThe InnoDB Storage Engine for MySQL
The InnoDB Storage Engine for MySQL
Morgan Tocker
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 

Similar to A Technical Introduction to WiredTiger (20)

https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...
https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...
https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...
MongoDB
 
WiredTiger & What's New in 3.0
WiredTiger & What's New in 3.0WiredTiger & What's New in 3.0
WiredTiger & What's New in 3.0
MongoDB
 
Running MongoDB 3.0 on AWS
Running MongoDB 3.0 on AWSRunning MongoDB 3.0 on AWS
Running MongoDB 3.0 on AWS
MongoDB
 
Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines	Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines
MongoDB
 
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Silicon Valley Code Camp 2015 - Advanced MongoDB - The SequelSilicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Daniel Coupal
 
Closing Keynote
Closing KeynoteClosing Keynote
Closing Keynote
Neo4j
 
MongoDB World 2018: Building a New Transactional Model
MongoDB World 2018: Building a New Transactional ModelMongoDB World 2018: Building a New Transactional Model
MongoDB World 2018: Building a New Transactional Model
MongoDB
 
AngularJS 1.x - your first application (problems and solutions)
AngularJS 1.x - your first application (problems and solutions)AngularJS 1.x - your first application (problems and solutions)
AngularJS 1.x - your first application (problems and solutions)
Igor Talevski
 
Let the Tiger Roar - MongoDB 3.0
Let the Tiger Roar - MongoDB 3.0Let the Tiger Roar - MongoDB 3.0
Let the Tiger Roar - MongoDB 3.0
Norberto Leite
 
COBOL to Apache Spark
COBOL to Apache SparkCOBOL to Apache Spark
COBOL to Apache Spark
Rakuten Group, Inc.
 
Back to Basics Webinar 6: Production Deployment
Back to Basics Webinar 6: Production DeploymentBack to Basics Webinar 6: Production Deployment
Back to Basics Webinar 6: Production Deployment
MongoDB
 
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage EngineMongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB
 
Webinar: High Performance MongoDB Applications with IBM POWER8
Webinar: High Performance MongoDB Applications with IBM POWER8Webinar: High Performance MongoDB Applications with IBM POWER8
Webinar: High Performance MongoDB Applications with IBM POWER8
MongoDB
 
Play Framework and Activator
Play Framework and ActivatorPlay Framework and Activator
Play Framework and Activator
Kevin Webber
 
Java Concurrency and Performance | Multi Threading | Concurrency | Java Conc...
Java Concurrency and Performance | Multi Threading  | Concurrency | Java Conc...Java Concurrency and Performance | Multi Threading  | Concurrency | Java Conc...
Java Concurrency and Performance | Multi Threading | Concurrency | Java Conc...
Anand Narayanan
 
Comparison between Dynamo and riak
Comparison between Dynamo and riakComparison between Dynamo and riak
Comparison between Dynamo and riak
Beatriz Aguilar Gallo
 
Mongo db v3_deep_dive
Mongo db v3_deep_diveMongo db v3_deep_dive
Mongo db v3_deep_dive
Bryan Reinero
 
Microsoft SQL Server Flash Storage
Microsoft SQL Server Flash StorageMicrosoft SQL Server Flash Storage
Microsoft SQL Server Flash Storage
Mark Ginnebaugh
 
Kafka 0.8.0 Presentation to Atlanta Java User's Group March 2013
Kafka 0.8.0 Presentation to Atlanta Java User's Group March 2013Kafka 0.8.0 Presentation to Atlanta Java User's Group March 2013
Kafka 0.8.0 Presentation to Atlanta Java User's Group March 2013
Christopher Curtin
 
A Closer Look at Apache Kudu
A Closer Look at Apache KuduA Closer Look at Apache Kudu
A Closer Look at Apache Kudu
Andriy Zabavskyy
 
https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...
https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...
https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_...
MongoDB
 
WiredTiger & What's New in 3.0
WiredTiger & What's New in 3.0WiredTiger & What's New in 3.0
WiredTiger & What's New in 3.0
MongoDB
 
Running MongoDB 3.0 on AWS
Running MongoDB 3.0 on AWSRunning MongoDB 3.0 on AWS
Running MongoDB 3.0 on AWS
MongoDB
 
Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines	Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines
MongoDB
 
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Silicon Valley Code Camp 2015 - Advanced MongoDB - The SequelSilicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Daniel Coupal
 
Closing Keynote
Closing KeynoteClosing Keynote
Closing Keynote
Neo4j
 
MongoDB World 2018: Building a New Transactional Model
MongoDB World 2018: Building a New Transactional ModelMongoDB World 2018: Building a New Transactional Model
MongoDB World 2018: Building a New Transactional Model
MongoDB
 
AngularJS 1.x - your first application (problems and solutions)
AngularJS 1.x - your first application (problems and solutions)AngularJS 1.x - your first application (problems and solutions)
AngularJS 1.x - your first application (problems and solutions)
Igor Talevski
 
Let the Tiger Roar - MongoDB 3.0
Let the Tiger Roar - MongoDB 3.0Let the Tiger Roar - MongoDB 3.0
Let the Tiger Roar - MongoDB 3.0
Norberto Leite
 
Back to Basics Webinar 6: Production Deployment
Back to Basics Webinar 6: Production DeploymentBack to Basics Webinar 6: Production Deployment
Back to Basics Webinar 6: Production Deployment
MongoDB
 
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage EngineMongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB
 
Webinar: High Performance MongoDB Applications with IBM POWER8
Webinar: High Performance MongoDB Applications with IBM POWER8Webinar: High Performance MongoDB Applications with IBM POWER8
Webinar: High Performance MongoDB Applications with IBM POWER8
MongoDB
 
Play Framework and Activator
Play Framework and ActivatorPlay Framework and Activator
Play Framework and Activator
Kevin Webber
 
Java Concurrency and Performance | Multi Threading | Concurrency | Java Conc...
Java Concurrency and Performance | Multi Threading  | Concurrency | Java Conc...Java Concurrency and Performance | Multi Threading  | Concurrency | Java Conc...
Java Concurrency and Performance | Multi Threading | Concurrency | Java Conc...
Anand Narayanan
 
Mongo db v3_deep_dive
Mongo db v3_deep_diveMongo db v3_deep_dive
Mongo db v3_deep_dive
Bryan Reinero
 
Microsoft SQL Server Flash Storage
Microsoft SQL Server Flash StorageMicrosoft SQL Server Flash Storage
Microsoft SQL Server Flash Storage
Mark Ginnebaugh
 
Kafka 0.8.0 Presentation to Atlanta Java User's Group March 2013
Kafka 0.8.0 Presentation to Atlanta Java User's Group March 2013Kafka 0.8.0 Presentation to Atlanta Java User's Group March 2013
Kafka 0.8.0 Presentation to Atlanta Java User's Group March 2013
Christopher Curtin
 
A Closer Look at Apache Kudu
A Closer Look at Apache KuduA Closer Look at Apache Kudu
A Closer Look at Apache Kudu
Andriy Zabavskyy
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
Ad

Recently uploaded (20)

How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 

A Technical Introduction to WiredTiger

  • 1. A Technical Introduction to WiredTiger Michael Cahill Director of Engineering (Storage), MongoDB We’ll begin shortly. Thanks for joining:
  • 2. About The Presenter • Michael Cahill • WiredTiger team lead at MongoDB • Sydney, Australia • [email protected] • @m_j_cahill
  • 3. What You Will Learn • WiredTiger Architecture • In-memory performance • Document-level concurrency • Compression and checksums • Durability and the journal • What’s next?
  • 4. 4 This webinar is not… • How to write stand-alone WiredTiger apps – contact [email protected] if you are interested • How to configure MongoDB with WiredTiger for your workload
  • 5. You may have seen this:
  • 7. What You Will Learn  WiredTiger Architecture • In-memory performance • Document-level concurrency • Compression and checksums • Durability and the journal • What’s next?
  • 8. 8 MongoDB’s Storage Engine API • Allows different storage engines to "plug-in" – different workloads have different performance characteristics – mmap is not ideal for all workloads – more flexibility • mix storage engines on same replica set/sharded cluster • MongoDB can innovate faster • Opportunity to integrate further (HDFS, native encrypted, hardware optimized …) • Great way for us to demonstrate WiredTiger’s performance
  • 9. 9 Storage Engine Layer Content Repo IoT Sensor Backend Ad Service Customer Analytics Archive MongoDB Query Language (MQL) + Native Drivers MongoDB Document Data Model MMAP V1 WT In-Memory ? ? Supported in MongoDB 3.0 Future Possible Storage Engines Management Security Example Future State Experimental
  • 10. 10 Motivation for WiredTiger • Take advantage of modern hardware: – many CPU cores – lots of RAM • Minimize contention between threads – lock-free algorithms, e.g., hazard pointers – eliminate blocking due to concurrency control • Hotter cache and more work per I/O – compact file formats – compression
  • 11. 11 WiredTiger Architecture WiredTiger Engine Schema & Cursors Python API C API Java API Database Files Transactions Page read/ write Logging Column storage Block management Row storage Snapshots Log Files Cache
  • 12. What You Will Learn  WiredTiger Architecture  In-memory performance • Document-level concurrency • Compression and checksums • Durability and the journal • What’s next?
  • 14. 14 Trees in cache non-resident child ordinary pointer root page internal page internal page root page leaf page leaf page leaf page leaf page
  • 15. 15 Hazard Pointers non-resident child ordinary pointer root page internal page internal page root page leaf page leaf page leaf page leaf page 1 memory flush
  • 16. 16 Pages in cache cache data files page images on-disk page image index clean page on-disk page image indexdirty page updates
  • 17. 17 In-memory performance • Trees in cache are optimized for in-memory access • Follow pointers to traverse a tree – no locking to access pages in cache • Keep updates separate from clean data • Do structural changes (eviction, splits) in background threads
  • 18. What You Will Learn  WiredTiger Architecture  In-memory performance  Document-level concurrency • Compression and checksums • Durability and the journal • What’s next?
  • 19. 19 What is Concurrency Control? • Computers have – multiple CPU cores – multiple I/O paths • To make the most of the hardware, software has to execute multiple operations in parallel • Concurrency control has to keep data consistent • Common approaches: – locking – keeping multiple versions of data (MVCC)
  • 20. 20 WiredTiger Concurrency Control WiredTiger Engine Schema & Cursors Python API C API Java API Database Files Transactions Page read/ write Logging Column storage Block management Row storage Snapshots Log Files Cache
  • 21. 21 Pages in cache cache data files page images on-disk page image index clean page on-disk page image indexdirty page updates skiplist
  • 22. 22 Multiversion Concurrency Control (MVCC) • Multiple versions of records kept in cache • Readers see the committed version before the transaction started – MongoDB “yields” turn large operations into small transactions • Writers can create new versions concurrent with readers • Concurrent updates to a single record cause write conflicts – MongoDB retries with back-off
  • 24. What You Will Learn  WiredTiger Architecture  In-memory performance  Document-level concurrency  Compression and checksums • Durability and the journal • What’s next?
  • 25. 25 WiredTiger Page I/O WiredTiger Engine Schema & Cursors Python API C API Java API Database Files Transactions Page read/ write Logging Column storage Block management Row storage Snapshots Log Files Cache
  • 26. 26 Trees in cache non-resident child ordinary pointer root page internal page internal page root page leaf page leaf page leaf page leaf page read required
  • 27. 27 Pages in cache cache data files page images on-disk page image index clean page on-disk page image indexdirty page updates reconciled during write
  • 28. 28 Checksums • A checksum is stored with every page • Checksums are validated during page read – detects filesystem corruption, random bitflips • WiredTiger stores the checksum with the page address (typically in a parent page) – extra safety against reading a stale page image
  • 29. 29 Compression • WiredTiger uses snappy compression by default in MongoDB • Supported compression algorithms: – snappy [default]: good compression, low overhead – zlib: better compression, more CPU – none • Indexes also use prefix compression – stays compressed in memory
  • 30. 30 Compression in Action (Flights database, ht Asya)
  • 31. What You Will Learn  WiredTiger Architecture  In-memory performance  Document-level concurrency  Compression and checksums  Durability and the journal • What’s next?
  • 32. 32 Journal and Recovery • Write-ahead logging (aka journal) enabled by default • Only written at transaction commit • Log records are compressed with snappy by default • Group commit for concurrency • Automatic log archive / removal • On startup, we rely on finding a consistent checkpoint in the metadata • Use the metadata to figure out how much to roll forward
  • 33. 33 Durability without Journaling • MMAPv1 require the journal for consistency – running with “nojournal” is unsafe • WiredTiger doesn't have this need: no in-place updates – checkpoints every 60 seconds by default – with “nojournal”, updates since the last checkpoint may be lost – data will still be consistent • Replication can guarantee durability
  • 34. 34 Writing a checkpoint 1. Write dirty leaf pages – don’t overwrite, write new versions into free space 2. Write the internal pages, including the root – the old checkpoint is still valid 3. Sync the file 4. Write the new root’s address to the metadata – free pages from old checkpoints once the metadata is durable
  • 35. 35 Checkpoints in Action old root page internal page internal page leaf page leaf page leaf page new root page internal page internal page leaf page leaf page
  • 36. 36 Checkpoints in Action (cont.) old root page internal page internal page leaf page leaf page leaf page new root page internal page internal page leaf page leaf page
  • 37. What You Will Learn  WiredTiger Architecture  In-memory performance  Document-level concurrency  Compression and checksums  Durability and the journal  What’s next?
  • 38. 38
  • 39. 39 WiredTiger LSM support • Out-of-order insert workloads • Data set much larger than cache • Query performance is not (as) important • Resource overhead of background maintenance acceptable
  • 40. 40
  • 41. 41 What’s next for WiredTiger? • Tune for (many) more workloads – avoid stalls during checkpoints with 100GB+ caches – make capped collections (including oplog) more efficient – Mark Callaghan seeing ~2x speedup in 3.1 snapshots: http://smalldatum.blogspot.com/ • Make Log Structured Merge (LSM) trees work well with MongoDB – out-of-cache, write-heavy workloads • Adding encryption • More advanced transactional semantics in the storage engine API

Editor's Notes

  • #9: <Exciting, good fit for lots of MongoDB workloads>
  • #17: Different in-memory representation vs on-disk – opportunities to optimize plus some interesting fetures Writing a page: Combine the previous page image with in-memory changes Allocate new space in the file If the result is too big, split Always write multiples of the allocation size Can configure direct I/O to keep reads and writes out of the filesystem cache
  • #22: Different in-memory representation vs on-disk – opportunities to optimize plus some interesting fetures Writing a page: Combine the previous page image with in-memory changes Allocate new space in the file If the result is too big, split Always write multiples of the allocation size Can configure direct I/O to keep reads and writes out of the filesystem cache
  • #28: Different in-memory representation vs on-disk – opportunities to optimize plus some interesting fetures Writing a page: Combine the previous page image with in-memory changes Allocate new space in the file If the result is too big, split Always write multiples of the allocation size Can configure direct I/O to keep reads and writes out of the filesystem cache