SlideShare a Scribd company logo
https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_5NFl6U/edit#slide=id.p
A Technical Introduction to WiredTiger
Michael Cahill
Director of Engineering (Storage), MongoDB
You may have seen this:
or this…
How does WiredTiger do it?
6
What’s different about WiredTiger?
•  Document-level concurrency
•  In-memory performance
•  Multi-core scalability
•  Checksums
•  Compression
•  Durability with and without journaling
7
This presentation is not…
•  How to write stand-alone WiredTiger apps
•  How to configure MongoDB with WiredTiger for your workload
WiredTiger Background
9
Why create a new storage engine?
•  Minimize contention between threads
– lock-free algorithms, hazard pointers
– eliminate blocking due to concurrency control
•  Hotter cache and more work per I/O
– compact file formats
– compression
– big-block I/O
10
MongoDB’s Storage Engine API
•  Allows different storage engines to "plug-in"
– Different workloads have different performance characteristics
– mmap is not ideal for all workloads
– More flexibility
•  mix storage engines on same replica set/sharded cluster
•  Opportunity to integrate further (HDFS, native encrypted,
hardware optimized …)
•  Great way for us to demonstrate WiredTiger’s performance
11
Storage Engine Layer
Content
Repo
IoT Sensor
Backend
Ad Service
Customer
Analytics
Archive
MongoDB Query Language (MQL) + Native Drivers
MongoDB Document Data Model
MMAP V1 WT In-Memory ? ?
Supported in MongoDB 3.0 Future Possible Storage Engines
Management
Security
Example Future State
Experimental
WiredTiger Architecture
13
WiredTiger Architecture
WiredTiger Engine
Schema &
Cursors
Python API C API Java API
Database
Files
Transactions
Page
read/write
Logging
Column
storage
Block
management
Row
storage
Snapshots
Log Files
Cache
In-memory
consistency
Per-file
checkpoints
14
Trees in cache
non-resident
child
ordinary pointer
root page
internal
page
internal
page
root page
leaf page
leaf page leaf page leaf page
1 memory
flush
read required
disk image
15
Pages in cache
cache
data files
page images
on-disk
page
image
index
clean
page on-disk
page
image
indexdirty
page
updates
constructed
during read
skiplist
reconciled
during write
Concurrency
and
multi-core scaling
17
Multiversion Concurrency Control (MVCC)
•  Multiple versions of records kept in cache
•  Readers see the version that was committed before the operation
started
– MongoDB “yields” turn large operations into small transactions
•  Writers can create new versions concurrent with readers
•  Concurrent updates to a single record cause write conflicts
– MongoDB retries with back-off
Transforming data during I/O
19
Checksums
•  A checksum is stored with every page
•  Checksums are validated during page read
– Detects filesystem corruption, random bitflips
•  WiredTiger stores the checksum with the page address (typically
in a parent page)
– Extra safety against reading a stale page image
20
Compression
•  WiredTiger uses snappy compression by default in MongoDB
•  supported compression algorithms
–  snappy [default]: good compression, low overhead
–  zlib: better compression, more CPU
–  none
•  Indexes are compressed using prefix compression
–  allows compression in memory
Durability
with and without
Journal
22
Writing a checkpoint
1.  Write the leaves
2.  Write the internal pages, including the root
– the old checkpoint is still valid
3.  Sync the file
4.  Write the new root’s address to the metadata
– free pages from old checkpoints once the metadata is durable
23
Durability without Journaling
•  MMAPv1 uses a write-ahead log (journal) to guarantee
consistency
–  Running with “nojournal” is unsafe
•  WiredTiger doesn't have this need: no in-place updates
–  Write-ahead log can be truncated at checkpoints
•  Every 2GB or 60sec by default – configurable
–  Updates are written to optional journal as they commit
•  Not flushed on every commit by default
•  Recovery rolls forward from last checkpoint
•  Replication can guarantee durability
24
Journal and recovery
•  Optional write-ahead logging
•  Only written at transaction commit
•  snappy compression by default
•  Group commit
•  Automatic log archive / removal
•  On startup, we rely on finding a consistent checkpoint in the
metadata
•  Check LSNs in the metadata to figure out where to roll forward
from
25
So, what’s different about WiredTiger?
•  Multiversion Concurrent Control
–  No lock manager
•  Non-locking data structures
–  Multi-core scalability
•  Different representation of in-memory data vs on-disk
–  Enabled checksums, compression
•  Copy-on-write storage
–  Durability without a journal
What’s next?
27
28
What’s next for WiredTiger?
•  Tune for (many) more workloads
– avoid stalls during checkpoints with 100GB+ caches
– make capped collections (including oplog) more efficient
•  Make Log Structured Merge (LSM) trees work well with MongoDB
– out-of-cache, write-heavy workloads
•  Adding encryption
•  More advanced transactional semantics in the storage engine API
Thanks!
Questions?
Michael Cahill
michael.cahill@mongodb.com
Ad

More Related Content

What's hot (20)

AWS Glue - let's get stuck in!
AWS Glue - let's get stuck in!AWS Glue - let's get stuck in!
AWS Glue - let's get stuck in!
Chris Taylor
 
CTO Patterns
CTO PatternsCTO Patterns
CTO Patterns
Akash Saxena
 
Understanding and programming the SharePoint REST API
Understanding and programming the SharePoint REST APIUnderstanding and programming the SharePoint REST API
Understanding and programming the SharePoint REST API
Chris Beckett
 
Elasticsearch Introduction
Elasticsearch IntroductionElasticsearch Introduction
Elasticsearch Introduction
Roopendra Vishwakarma
 
Elk
Elk Elk
Elk
Caleb Wang
 
THE STATE OF OPENTELEMETRY, DOTAN HOROVITS, Logz.io
THE STATE OF OPENTELEMETRY, DOTAN HOROVITS, Logz.ioTHE STATE OF OPENTELEMETRY, DOTAN HOROVITS, Logz.io
THE STATE OF OPENTELEMETRY, DOTAN HOROVITS, Logz.io
DevOpsDays Tel Aviv
 
Observability at Scale
Observability at Scale Observability at Scale
Observability at Scale
Knoldus Inc.
 
Elasticsearch From the Bottom Up
Elasticsearch From the Bottom UpElasticsearch From the Bottom Up
Elasticsearch From the Bottom Up
foundsearch
 
Intro to open source observability with grafana, prometheus, loki, and tempo(...
Intro to open source observability with grafana, prometheus, loki, and tempo(...Intro to open source observability with grafana, prometheus, loki, and tempo(...
Intro to open source observability with grafana, prometheus, loki, and tempo(...
LibbySchulze
 
PostgreSQL ile Zaman Serileri
PostgreSQL ile Zaman SerileriPostgreSQL ile Zaman Serileri
PostgreSQL ile Zaman Serileri
PostgreSQL Kullanıcıları ve Geliştiricileri Derneği
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
Flink Forward
 
Stability Patterns for Microservices
Stability Patterns for MicroservicesStability Patterns for Microservices
Stability Patterns for Microservices
pflueras
 
Plazma - Treasure Data’s distributed analytical database -
Plazma - Treasure Data’s distributed analytical database -Plazma - Treasure Data’s distributed analytical database -
Plazma - Treasure Data’s distributed analytical database -
Treasure Data, Inc.
 
AUTOGEN A Personalized Large Language Model For Academic Enhancement Ethic...
AUTOGEN  A Personalized Large Language Model For Academic Enhancement   Ethic...AUTOGEN  A Personalized Large Language Model For Academic Enhancement   Ethic...
AUTOGEN A Personalized Large Language Model For Academic Enhancement Ethic...
Daniel Wachtel
 
Elasticsearch
ElasticsearchElasticsearch
Elasticsearch
Divij Sehgal
 
MongoDB Internals
MongoDB InternalsMongoDB Internals
MongoDB Internals
Siraj Memon
 
Elasticsearch
ElasticsearchElasticsearch
Elasticsearch
Shagun Rathore
 
Feed Your SIEM Smart with Kafka Connect (Vitalii Rudenskyi, McKesson Corp) Ka...
Feed Your SIEM Smart with Kafka Connect (Vitalii Rudenskyi, McKesson Corp) Ka...Feed Your SIEM Smart with Kafka Connect (Vitalii Rudenskyi, McKesson Corp) Ka...
Feed Your SIEM Smart with Kafka Connect (Vitalii Rudenskyi, McKesson Corp) Ka...
HostedbyConfluent
 
Elasticsearch
ElasticsearchElasticsearch
Elasticsearch
Hermeto Romano
 
Introduction to elasticsearch
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
hypto
 
AWS Glue - let's get stuck in!
AWS Glue - let's get stuck in!AWS Glue - let's get stuck in!
AWS Glue - let's get stuck in!
Chris Taylor
 
Understanding and programming the SharePoint REST API
Understanding and programming the SharePoint REST APIUnderstanding and programming the SharePoint REST API
Understanding and programming the SharePoint REST API
Chris Beckett
 
THE STATE OF OPENTELEMETRY, DOTAN HOROVITS, Logz.io
THE STATE OF OPENTELEMETRY, DOTAN HOROVITS, Logz.ioTHE STATE OF OPENTELEMETRY, DOTAN HOROVITS, Logz.io
THE STATE OF OPENTELEMETRY, DOTAN HOROVITS, Logz.io
DevOpsDays Tel Aviv
 
Observability at Scale
Observability at Scale Observability at Scale
Observability at Scale
Knoldus Inc.
 
Elasticsearch From the Bottom Up
Elasticsearch From the Bottom UpElasticsearch From the Bottom Up
Elasticsearch From the Bottom Up
foundsearch
 
Intro to open source observability with grafana, prometheus, loki, and tempo(...
Intro to open source observability with grafana, prometheus, loki, and tempo(...Intro to open source observability with grafana, prometheus, loki, and tempo(...
Intro to open source observability with grafana, prometheus, loki, and tempo(...
LibbySchulze
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
Flink Forward
 
Stability Patterns for Microservices
Stability Patterns for MicroservicesStability Patterns for Microservices
Stability Patterns for Microservices
pflueras
 
Plazma - Treasure Data’s distributed analytical database -
Plazma - Treasure Data’s distributed analytical database -Plazma - Treasure Data’s distributed analytical database -
Plazma - Treasure Data’s distributed analytical database -
Treasure Data, Inc.
 
AUTOGEN A Personalized Large Language Model For Academic Enhancement Ethic...
AUTOGEN  A Personalized Large Language Model For Academic Enhancement   Ethic...AUTOGEN  A Personalized Large Language Model For Academic Enhancement   Ethic...
AUTOGEN A Personalized Large Language Model For Academic Enhancement Ethic...
Daniel Wachtel
 
MongoDB Internals
MongoDB InternalsMongoDB Internals
MongoDB Internals
Siraj Memon
 
Feed Your SIEM Smart with Kafka Connect (Vitalii Rudenskyi, McKesson Corp) Ka...
Feed Your SIEM Smart with Kafka Connect (Vitalii Rudenskyi, McKesson Corp) Ka...Feed Your SIEM Smart with Kafka Connect (Vitalii Rudenskyi, McKesson Corp) Ka...
Feed Your SIEM Smart with Kafka Connect (Vitalii Rudenskyi, McKesson Corp) Ka...
HostedbyConfluent
 
Introduction to elasticsearch
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
hypto
 

Similar to https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_5NFl6U/edit#slide=id.p (20)

MongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTigerMongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTiger
WiredTiger
 
A Technical Introduction to WiredTiger
A Technical Introduction to WiredTigerA Technical Introduction to WiredTiger
A Technical Introduction to WiredTiger
MongoDB
 
WiredTiger & What's New in 3.0
WiredTiger & What's New in 3.0WiredTiger & What's New in 3.0
WiredTiger & What's New in 3.0
MongoDB
 
A Technical Introduction to WiredTiger
A Technical Introduction to WiredTigerA Technical Introduction to WiredTiger
A Technical Introduction to WiredTiger
MongoDB
 
Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines	Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines
MongoDB
 
Let the Tiger Roar - MongoDB 3.0
Let the Tiger Roar - MongoDB 3.0Let the Tiger Roar - MongoDB 3.0
Let the Tiger Roar - MongoDB 3.0
Norberto Leite
 
Running MongoDB 3.0 on AWS
Running MongoDB 3.0 on AWSRunning MongoDB 3.0 on AWS
Running MongoDB 3.0 on AWS
MongoDB
 
Let the Tiger Roar!
Let the Tiger Roar!Let the Tiger Roar!
Let the Tiger Roar!
MongoDB
 
MongoDB 3.0 and WiredTiger (Event: An Evening with MongoDB Dallas 3/10/15)
MongoDB 3.0 and WiredTiger (Event: An Evening with MongoDB Dallas 3/10/15)MongoDB 3.0 and WiredTiger (Event: An Evening with MongoDB Dallas 3/10/15)
MongoDB 3.0 and WiredTiger (Event: An Evening with MongoDB Dallas 3/10/15)
MongoDB
 
What'sNnew in 3.0 Webinar
What'sNnew in 3.0 WebinarWhat'sNnew in 3.0 Webinar
What'sNnew in 3.0 Webinar
MongoDB
 
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage EngineMongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB
 
Mongo DB
Mongo DBMongo DB
Mongo DB
Karan Kukreja
 
Back to Basics Webinar 6: Production Deployment
Back to Basics Webinar 6: Production DeploymentBack to Basics Webinar 6: Production Deployment
Back to Basics Webinar 6: Production Deployment
MongoDB
 
Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage EnginesBeyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines
MongoDB
 
Taking Splunk to the Next Level - Architecture Breakout Session
Taking Splunk to the Next Level - Architecture Breakout SessionTaking Splunk to the Next Level - Architecture Breakout Session
Taking Splunk to the Next Level - Architecture Breakout Session
Splunk
 
Webinar slides: Our Guide to MySQL & MariaDB Performance Tuning
Webinar slides: Our Guide to MySQL & MariaDB Performance TuningWebinar slides: Our Guide to MySQL & MariaDB Performance Tuning
Webinar slides: Our Guide to MySQL & MariaDB Performance Tuning
Severalnines
 
A Closer Look at Apache Kudu
A Closer Look at Apache KuduA Closer Look at Apache Kudu
A Closer Look at Apache Kudu
Andriy Zabavskyy
 
MongoDB 101 & Beyond: Get Started in MongoDB 3.0, Preview 3.2 & Demo of Ops M...
MongoDB 101 & Beyond: Get Started in MongoDB 3.0, Preview 3.2 & Demo of Ops M...MongoDB 101 & Beyond: Get Started in MongoDB 3.0, Preview 3.2 & Demo of Ops M...
MongoDB 101 & Beyond: Get Started in MongoDB 3.0, Preview 3.2 & Demo of Ops M...
MongoDB
 
MongoDB: Advantages of an Open Source NoSQL Database
MongoDB: Advantages of an Open Source NoSQL DatabaseMongoDB: Advantages of an Open Source NoSQL Database
MongoDB: Advantages of an Open Source NoSQL Database
FITC
 
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Silicon Valley Code Camp 2015 - Advanced MongoDB - The SequelSilicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Daniel Coupal
 
MongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTigerMongoDB World 2015 - A Technical Introduction to WiredTiger
MongoDB World 2015 - A Technical Introduction to WiredTiger
WiredTiger
 
A Technical Introduction to WiredTiger
A Technical Introduction to WiredTigerA Technical Introduction to WiredTiger
A Technical Introduction to WiredTiger
MongoDB
 
WiredTiger & What's New in 3.0
WiredTiger & What's New in 3.0WiredTiger & What's New in 3.0
WiredTiger & What's New in 3.0
MongoDB
 
A Technical Introduction to WiredTiger
A Technical Introduction to WiredTigerA Technical Introduction to WiredTiger
A Technical Introduction to WiredTiger
MongoDB
 
Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines	Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines
MongoDB
 
Let the Tiger Roar - MongoDB 3.0
Let the Tiger Roar - MongoDB 3.0Let the Tiger Roar - MongoDB 3.0
Let the Tiger Roar - MongoDB 3.0
Norberto Leite
 
Running MongoDB 3.0 on AWS
Running MongoDB 3.0 on AWSRunning MongoDB 3.0 on AWS
Running MongoDB 3.0 on AWS
MongoDB
 
Let the Tiger Roar!
Let the Tiger Roar!Let the Tiger Roar!
Let the Tiger Roar!
MongoDB
 
MongoDB 3.0 and WiredTiger (Event: An Evening with MongoDB Dallas 3/10/15)
MongoDB 3.0 and WiredTiger (Event: An Evening with MongoDB Dallas 3/10/15)MongoDB 3.0 and WiredTiger (Event: An Evening with MongoDB Dallas 3/10/15)
MongoDB 3.0 and WiredTiger (Event: An Evening with MongoDB Dallas 3/10/15)
MongoDB
 
What'sNnew in 3.0 Webinar
What'sNnew in 3.0 WebinarWhat'sNnew in 3.0 Webinar
What'sNnew in 3.0 Webinar
MongoDB
 
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage EngineMongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB Evenings Boston - An Update on MongoDB's WiredTiger Storage Engine
MongoDB
 
Back to Basics Webinar 6: Production Deployment
Back to Basics Webinar 6: Production DeploymentBack to Basics Webinar 6: Production Deployment
Back to Basics Webinar 6: Production Deployment
MongoDB
 
Beyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage EnginesBeyond the Basics 1: Storage Engines
Beyond the Basics 1: Storage Engines
MongoDB
 
Taking Splunk to the Next Level - Architecture Breakout Session
Taking Splunk to the Next Level - Architecture Breakout SessionTaking Splunk to the Next Level - Architecture Breakout Session
Taking Splunk to the Next Level - Architecture Breakout Session
Splunk
 
Webinar slides: Our Guide to MySQL & MariaDB Performance Tuning
Webinar slides: Our Guide to MySQL & MariaDB Performance TuningWebinar slides: Our Guide to MySQL & MariaDB Performance Tuning
Webinar slides: Our Guide to MySQL & MariaDB Performance Tuning
Severalnines
 
A Closer Look at Apache Kudu
A Closer Look at Apache KuduA Closer Look at Apache Kudu
A Closer Look at Apache Kudu
Andriy Zabavskyy
 
MongoDB 101 & Beyond: Get Started in MongoDB 3.0, Preview 3.2 & Demo of Ops M...
MongoDB 101 & Beyond: Get Started in MongoDB 3.0, Preview 3.2 & Demo of Ops M...MongoDB 101 & Beyond: Get Started in MongoDB 3.0, Preview 3.2 & Demo of Ops M...
MongoDB 101 & Beyond: Get Started in MongoDB 3.0, Preview 3.2 & Demo of Ops M...
MongoDB
 
MongoDB: Advantages of an Open Source NoSQL Database
MongoDB: Advantages of an Open Source NoSQL DatabaseMongoDB: Advantages of an Open Source NoSQL Database
MongoDB: Advantages of an Open Source NoSQL Database
FITC
 
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Silicon Valley Code Camp 2015 - Advanced MongoDB - The SequelSilicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Silicon Valley Code Camp 2015 - Advanced MongoDB - The Sequel
Daniel Coupal
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
Ad

Recently uploaded (20)

What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 

https://docs.google.com/presentation/d/1DcL4zK6i3HZRDD4xTGX1VpSOwyu2xBeWLT6a_5NFl6U/edit#slide=id.p

  • 2. A Technical Introduction to WiredTiger Michael Cahill Director of Engineering (Storage), MongoDB
  • 3. You may have seen this:
  • 6. 6 What’s different about WiredTiger? •  Document-level concurrency •  In-memory performance •  Multi-core scalability •  Checksums •  Compression •  Durability with and without journaling
  • 7. 7 This presentation is not… •  How to write stand-alone WiredTiger apps •  How to configure MongoDB with WiredTiger for your workload
  • 9. 9 Why create a new storage engine? •  Minimize contention between threads – lock-free algorithms, hazard pointers – eliminate blocking due to concurrency control •  Hotter cache and more work per I/O – compact file formats – compression – big-block I/O
  • 10. 10 MongoDB’s Storage Engine API •  Allows different storage engines to "plug-in" – Different workloads have different performance characteristics – mmap is not ideal for all workloads – More flexibility •  mix storage engines on same replica set/sharded cluster •  Opportunity to integrate further (HDFS, native encrypted, hardware optimized …) •  Great way for us to demonstrate WiredTiger’s performance
  • 11. 11 Storage Engine Layer Content Repo IoT Sensor Backend Ad Service Customer Analytics Archive MongoDB Query Language (MQL) + Native Drivers MongoDB Document Data Model MMAP V1 WT In-Memory ? ? Supported in MongoDB 3.0 Future Possible Storage Engines Management Security Example Future State Experimental
  • 13. 13 WiredTiger Architecture WiredTiger Engine Schema & Cursors Python API C API Java API Database Files Transactions Page read/write Logging Column storage Block management Row storage Snapshots Log Files Cache In-memory consistency Per-file checkpoints
  • 14. 14 Trees in cache non-resident child ordinary pointer root page internal page internal page root page leaf page leaf page leaf page leaf page 1 memory flush read required disk image
  • 15. 15 Pages in cache cache data files page images on-disk page image index clean page on-disk page image indexdirty page updates constructed during read skiplist reconciled during write
  • 17. 17 Multiversion Concurrency Control (MVCC) •  Multiple versions of records kept in cache •  Readers see the version that was committed before the operation started – MongoDB “yields” turn large operations into small transactions •  Writers can create new versions concurrent with readers •  Concurrent updates to a single record cause write conflicts – MongoDB retries with back-off
  • 19. 19 Checksums •  A checksum is stored with every page •  Checksums are validated during page read – Detects filesystem corruption, random bitflips •  WiredTiger stores the checksum with the page address (typically in a parent page) – Extra safety against reading a stale page image
  • 20. 20 Compression •  WiredTiger uses snappy compression by default in MongoDB •  supported compression algorithms –  snappy [default]: good compression, low overhead –  zlib: better compression, more CPU –  none •  Indexes are compressed using prefix compression –  allows compression in memory
  • 22. 22 Writing a checkpoint 1.  Write the leaves 2.  Write the internal pages, including the root – the old checkpoint is still valid 3.  Sync the file 4.  Write the new root’s address to the metadata – free pages from old checkpoints once the metadata is durable
  • 23. 23 Durability without Journaling •  MMAPv1 uses a write-ahead log (journal) to guarantee consistency –  Running with “nojournal” is unsafe •  WiredTiger doesn't have this need: no in-place updates –  Write-ahead log can be truncated at checkpoints •  Every 2GB or 60sec by default – configurable –  Updates are written to optional journal as they commit •  Not flushed on every commit by default •  Recovery rolls forward from last checkpoint •  Replication can guarantee durability
  • 24. 24 Journal and recovery •  Optional write-ahead logging •  Only written at transaction commit •  snappy compression by default •  Group commit •  Automatic log archive / removal •  On startup, we rely on finding a consistent checkpoint in the metadata •  Check LSNs in the metadata to figure out where to roll forward from
  • 25. 25 So, what’s different about WiredTiger? •  Multiversion Concurrent Control –  No lock manager •  Non-locking data structures –  Multi-core scalability •  Different representation of in-memory data vs on-disk –  Enabled checksums, compression •  Copy-on-write storage –  Durability without a journal
  • 27. 27
  • 28. 28 What’s next for WiredTiger? •  Tune for (many) more workloads – avoid stalls during checkpoints with 100GB+ caches – make capped collections (including oplog) more efficient •  Make Log Structured Merge (LSM) trees work well with MongoDB – out-of-cache, write-heavy workloads •  Adding encryption •  More advanced transactional semantics in the storage engine API