SlideShare a Scribd company logo
Jun Kim , Senior Solution Architect &
Database Specialist
Agenda Overview of What’s New in 4.0
Working with Data
Building Distributed Systems
Enabling a Cloud Data Strategy
Beyond the Server: Serverless & Mobile
Q&A
40 minutes
Intelligent Operational Data Platform
Best way to work
with data
Intelligently put data
where you want it
Freedom to run
anywhere
Intelligent Operational Data Platform
Best way to work
with data
Intelligently put data
where you want it
Freedom to run
anywhere
Intelligent Operational Data Platform
Best way to work
with data
Intelligently put data
where you want it
Freedom to run
anywhere
Intelligent Operational Data Platform
Best way to work
with data
Intelligently put data
where you want it
Freedom to run
anywhere
BEST WAY TO WORK WITH DATA
MongoDB: Already Used Across Every Industry
and Use Case...
DATA MODELS AND TRANSACTIONS
DATA MODELS AND TRANSACTIONS
MULTI-DOCUMENT TRANSACTION EXAMPLES
MONGODB MULTI-DOCUMENT TRANSACTIONS
•
•
•
•
•
•
•
X
Natural for developers
● Idiomatic to the programming
language
● Familiar to relational
developers
● Simple
with client.start_session() as s:
s.start_transaction()
collection_one.insert_one(doc_one, session=s)
collection_two.insert_one(doc_two, session=s)
s.commit_transaction()
MONGODB TRANSACTIONS SYNTAX
X
s.start_transaction()
orders.insert_one(order, session=s)
stock.update_one(item, stockUpdate, session=s)
s.commit_transaction()
db.start_transaction()
cursor.execute(orderInsert, orderData)
cursor.execute(stockUpdate, stockData)
db.commit()
*
COMPARING SYNTAX WITH TABULAR
DATABASES
BEST PRACTICES
•
•
•
•
•
•
OUR JOURNEY TO ACID TRANSACTIONS
•
•
•
•
•
•
•
What’s Done, What’s Left for Sharded Transactions
MongoDB 3.0 MongoDB 3.2 MongoDB 3.4 MongoDB 3.6 MongoDB 4.0 MongoDB 4.2
New Storage engine
(WiredTiger)
Enhanced replication
protocol: stricter
consistency & durability
Shard membership
awareness
Consistent secondary
reads in sharded clusters
Replica Set Transactions Sharded Transactions
WiredTiger default storage
engine
Logical sessions
Make catalog
timestamp-aware
More extensive
WiredTiger repair
Config server
manageability
improvements
Retryable writes Snapshot reads Transaction manager
Read concern “majority” Causal Consistency
Recoverable rollback via
WT checkpoints
Global point-in-time reads
Cluster-wide logical clock Recover to a timestamp
Oplog applier prepare
support for transactions
Storage API changes to
use timestamps
Sharded catalog
improvements
Read concern majority
feature always available
Collection catalog
versioning
UUIDs in sharding
Fast in-place updates to
large documents in WT
In Progress
Done
Transaction EPIC
Planned
MongoDB 4.0 새로운 기능 소개
Persona Messages
•
•
•
•
•
•
•
•
AGGREGATION PIPELINE TYPE CONVERSIONS
• Transforms data into standardized, cleansed types
• Flexible data model allows ingest of data without pre-defining
schema
• Schema validation to enforce structure where needed
• Lack of data type uniformity for fields across documents can
complicate downstream processing
• Cleanse in the app, or run through external ETL pipeline
• Adds complexity and latency
• Now data types can be standardized with $convert operator natively
in MongoDB
• Faster data prep for consuming apps & analytics
X
{
$convert:
{
input: <expression>,
to: <type expression>,
onError: <expression>, // Optional.
onNull: <expression> // Optional.
}
}
TYPE CONVERSION SYNTAX
X
TYPE CONVERSION EXAMPLE
db.address.insert( { street: "Canal st", building: NumberDecimal(21), _id: 0})
db.address.insert( { street: "43rd st", building: "229", _id: 1} )
db.address.insert( { street: "Fulton st", building: "31", _id: 2 } )
db.address.aggregate( [
{ $addFields: { building: {$convert: { input: "$building", to: "int" }} } },
{ $sort: {building: 1}}
])
db.address.insert( { street: "52nd st", building: "11w", _id: 3} )
db.address.aggregate( [
{ $addFields: { building: { $convert: { input: "$building", to: "int", onError: 0 } } } },
{ $sort: {building: 1}}
])
X
TYPE CONVERSION BENEFITS : EDM PIPELINE
…Siloedsource
databases
Externalfeeds
(batch)
Streams
Transform
Storeraw
data
AnalyzeAggregate
Pub-sub,ETL,fileimports
StreamProcessing
Users
Other
Systems
MONGODB COMPASS
● The GUI for MongoDB: explore and interact with your
MongoDB data
○ Visualize and explore your data structure
○ Insert and modify documents
○ Build queries, then debug and optimize with
plans and index control
○ Control your data with document validation rules
● Compass Community is free to use and ships with
Community Server
● Compass Enterprise with additional features:
○ Advanced security
○ Schema analysis
○ Real-Time Performance Panel
○ Document Validation rules
AGGREGATION PIPELINE
db.customers.aggregate([
{
$unwind: "$address",
},
{
$match: {"address.location": "home"}
},
{
$group: {
_id: "$address.city",
totalSpend: {$sum: "$annualSpend"},
averageSpend: {$avg: "$annualSpend"},
maximumSpend: {$max: "$annualSpend"},
customers: {$sum: 1}
}
}
])
MongoDB’s aggregation framework has the flexibility you need to get
value from your data, but without the complexity and fragility of SQL
These “phases” are distinct and
easy to understand
They can be thought about in
order… no nesting.
● Easily build aggregation pipelines for
data processing and analytics
● Add new pipeline stages with code
skeletons and auto-completion
● See a preview of documents as they
are transformed in each stage
● Drag and drop to re-order pipeline
stages
● Save pipelines in Compass or export
to native code
X
AGGREGATION PIPELINE BUILDER
Introduced in MongoDB Compass
1.14
● Simplify query creation: build a query in
MongoDB Compass, then click to export
it to native code
● Supports complex, multi-parameter
queries and aggregation pipelines
● Initially supported: C#/.NET, Java,
JavaScript, Python, and mongo shell
syntax
○ More languages to come in future
releases
X
EXPORT TO LANGUAGE
Introduced in MongoDB Compass
1.15
MONGODB CHARTS (BETA)
• The fastest and easiest way
to create visualizations of
MongoDB data
• Built for the MongoDB
document model
• Visualize live data from any
of your MongoDB instances
– on-prem, in the cloud, or
in MongoDB Atlas
MONGODB CHARTS: CREATE, VISUALIZE,
SHARE
INTELLIGENTLY PUT DATA WHERE YOU
WANT IT
ELASTIC SCALE: 40% FASTER MIGRATIONS
• Sharded cluster balancer used to maintain even data
distribution across the cluster
• Now concurrently fetches and applies documents for 40%
faster data migration
• Responds faster to nodes being added and removed from the
cluster
• Right-size for cost and capacity
NON-BLOCKING SECONDARY READS
• Pre 4.0, secondary reads block while oplog
batches from primary are applied
• Maintains causal order with primary
• Using storage engine timestamps and
snapshots in 4.0, reads are now serviced
from a snapshot while secondary is applying
oplog entries
• Maintains consistent read latency, improves
read throughput & scaling
UPGRADED SECURITY
• Access control, auditing, encryption: MongoDB
offers some of strictest security controls of any
modern database
• Upgraded authentication (SHA2) and encryption
TLS (1.1+) to latest and strongest standards.
FREEDOM TO RUN ANYWHERE
Atlas
unlocks agility
and reduces
cost
Self-service and
elastic
Global and highly
available
Secure by default
Comprehensive
monitoring
Managed backup Cloud agnostic
Atlas Global Clusters
Distribute your fully automated database
across multiple geographically
distributed zones made up of one or
more cloud regions
● Read and write locally to provide
single-digit millisecond latency for
your distributed applications
● Ensure that data from certain
geographies lives in predefined
zones
● Easily deploy using prebuilt zone
templates or build your own zones by
choosing cloud regions in an easy-
to-use, visual interface
MongoDB Atlas Tiers
Atlas Database Auditing
Answer detailed questions about system
activity by tracking DDL, DML, and DCL
commands.
● Easily select the actions you want
audited as well as the MongoDB
users, Atlas roles, or LDAP groups
you want to audit from the Atlas UI
● Alternatively, create an audit filter as
a JSON string
● Auditing configuration applies to all
dedicated clusters within an Atlas
project
● Audit logs can be downloaded in
the UI or retrieved using the
MongoDB Atlas API
Atlas LDAP Integration
Centralize database access management
and eliminate the need to recreate
permissions by using your LDAP server
(over TLS/SSL) to manage user
authentication and authorization.
● LDAP groups are mapped to different
MongoDB roles in your MongoDB
Atlas databases
● LDAP configuration applies to all
dedicated database clusters within an
Atlas Project
● Available for deployments running
MongoDB 3.4+
Encryption at Rest: Bring Your Own KMS
MongoDB Atlas integrates with your key
management service of choice (AWS KMS &
Azure KeyVault), allowing you to centralize
control of the keys used to encrypt your
MongoDB data
● BYO KMS leverages MongoDB’s
encrypted storage engine (AES256-CBC
via OpenSSL) for database-level
encryption
● Create, import, and rotate keys for
MongoDB Atlas as well as define usage
policies and audit usage with the same
console/CLI used to manage keys for
your other cloud services
MONGODB MONITORING CLOUD
Free service, agent free, opt-in and out at any time
Assess health, optimize performance
KUBERNETES (K8S) AND RED HAT OPENSHIFT
BEYOND THE SERVER
Intelligent Operational Data Platform
Best way to work
with data
Intelligently put data
where you want it
Freedom to run
anywhere
Code user authentication
Code data access controls
Provision backend server
Install runtime environment
Add code to make backend HA
Add code to scale backend
Monitor & manage backend infrastructure
Code REST API for frontend to use backend
Code backend application logic
Code application frontend
Code against each external service API
Continuously poll database for changes
Without Stitch
Simple JSON Config
Handled automatically by Stitch and Atlas
Code frontend using single SDK/API
With Stitch
Backend
Data Access
Frontend
Provide JS code for Stitch Functions
App Backend Infrastructure
Core Database Functionality
Storage
Service integrations, data access control
Code that moves the business forward
Managing OS, Scale, Security, Backups, etc.
MongoDB
Atlas
MongoDB
Stitch Fully managed
Elastic scale
Highly Available
Secure
You should focus here
FOCUS YOUR ENERGY WHERE YOU CAN MAKE A
DIFFERENCE
MONGODB MOBILE (BETA)
Brings the power of MongoDB
to your device
Same database, same access
patterns – from IoT to Mobile
to Web.
THANK YOU
Ad

More Related Content

What's hot (20)

Blazing Fast Analytics with MongoDB & Spark
Blazing Fast Analytics with MongoDB & SparkBlazing Fast Analytics with MongoDB & Spark
Blazing Fast Analytics with MongoDB & Spark
MongoDB
 
MongoDB .local Chicago 2019: MongoDB – Powering the new age data demands
MongoDB .local Chicago 2019: MongoDB – Powering the new age data demandsMongoDB .local Chicago 2019: MongoDB – Powering the new age data demands
MongoDB .local Chicago 2019: MongoDB – Powering the new age data demands
MongoDB
 
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: Get MEAN and Lean with Docker and KubernetesMongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB
 
MongoDB in the Big Data Landscape
MongoDB in the Big Data LandscapeMongoDB in the Big Data Landscape
MongoDB in the Big Data Landscape
MongoDB
 
Spark and MongoDB
Spark and MongoDBSpark and MongoDB
Spark and MongoDB
Norberto Leite
 
Benefits of Using MongoDB Over RDBMSs
Benefits of Using MongoDB Over RDBMSsBenefits of Using MongoDB Over RDBMSs
Benefits of Using MongoDB Over RDBMSs
MongoDB
 
How Retail Banks Use MongoDB
How Retail Banks Use MongoDBHow Retail Banks Use MongoDB
How Retail Banks Use MongoDB
MongoDB
 
Webinar: An Enterprise Architect’s View of MongoDB
Webinar: An Enterprise Architect’s View of MongoDBWebinar: An Enterprise Architect’s View of MongoDB
Webinar: An Enterprise Architect’s View of MongoDB
MongoDB
 
Webinar: Live Data Visualisation with Tableau and MongoDB
Webinar: Live Data Visualisation with Tableau and MongoDBWebinar: Live Data Visualisation with Tableau and MongoDB
Webinar: Live Data Visualisation with Tableau and MongoDB
MongoDB
 
Webinar: Faster Big Data Analytics with MongoDB
Webinar: Faster Big Data Analytics with MongoDBWebinar: Faster Big Data Analytics with MongoDB
Webinar: Faster Big Data Analytics with MongoDB
MongoDB
 
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB
 
MongoDB BI Connector & Tableau
MongoDB BI Connector & Tableau MongoDB BI Connector & Tableau
MongoDB BI Connector & Tableau
MongoDB
 
MongoDB World 2019: Ticketek: Scaling to Global Ticket Sales with MongoDB Atlas
MongoDB World 2019: Ticketek: Scaling to Global Ticket Sales with MongoDB AtlasMongoDB World 2019: Ticketek: Scaling to Global Ticket Sales with MongoDB Atlas
MongoDB World 2019: Ticketek: Scaling to Global Ticket Sales with MongoDB Atlas
MongoDB
 
Tutorial: Building Your First App with MongoDB Stitch
Tutorial: Building Your First App with MongoDB StitchTutorial: Building Your First App with MongoDB Stitch
Tutorial: Building Your First App with MongoDB Stitch
MongoDB
 
Webinar: How Banks Use MongoDB as a Tick Database
Webinar: How Banks Use MongoDB as a Tick DatabaseWebinar: How Banks Use MongoDB as a Tick Database
Webinar: How Banks Use MongoDB as a Tick Database
MongoDB
 
[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design
[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design
[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design
MongoDB
 
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB
 
Database Trends for Modern Applications: Why the Database You Choose Matters
Database Trends for Modern Applications: Why the Database You Choose Matters Database Trends for Modern Applications: Why the Database You Choose Matters
Database Trends for Modern Applications: Why the Database You Choose Matters
MongoDB
 
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB ChartsMongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB
 
Business Jumpstart: The Right (and Wrong) Use Cases for MongoDB
Business Jumpstart: The Right (and Wrong) Use Cases for MongoDBBusiness Jumpstart: The Right (and Wrong) Use Cases for MongoDB
Business Jumpstart: The Right (and Wrong) Use Cases for MongoDB
MongoDB
 
Blazing Fast Analytics with MongoDB & Spark
Blazing Fast Analytics with MongoDB & SparkBlazing Fast Analytics with MongoDB & Spark
Blazing Fast Analytics with MongoDB & Spark
MongoDB
 
MongoDB .local Chicago 2019: MongoDB – Powering the new age data demands
MongoDB .local Chicago 2019: MongoDB – Powering the new age data demandsMongoDB .local Chicago 2019: MongoDB – Powering the new age data demands
MongoDB .local Chicago 2019: MongoDB – Powering the new age data demands
MongoDB
 
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: Get MEAN and Lean with Docker and KubernetesMongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB
 
MongoDB in the Big Data Landscape
MongoDB in the Big Data LandscapeMongoDB in the Big Data Landscape
MongoDB in the Big Data Landscape
MongoDB
 
Benefits of Using MongoDB Over RDBMSs
Benefits of Using MongoDB Over RDBMSsBenefits of Using MongoDB Over RDBMSs
Benefits of Using MongoDB Over RDBMSs
MongoDB
 
How Retail Banks Use MongoDB
How Retail Banks Use MongoDBHow Retail Banks Use MongoDB
How Retail Banks Use MongoDB
MongoDB
 
Webinar: An Enterprise Architect’s View of MongoDB
Webinar: An Enterprise Architect’s View of MongoDBWebinar: An Enterprise Architect’s View of MongoDB
Webinar: An Enterprise Architect’s View of MongoDB
MongoDB
 
Webinar: Live Data Visualisation with Tableau and MongoDB
Webinar: Live Data Visualisation with Tableau and MongoDBWebinar: Live Data Visualisation with Tableau and MongoDB
Webinar: Live Data Visualisation with Tableau and MongoDB
MongoDB
 
Webinar: Faster Big Data Analytics with MongoDB
Webinar: Faster Big Data Analytics with MongoDBWebinar: Faster Big Data Analytics with MongoDB
Webinar: Faster Big Data Analytics with MongoDB
MongoDB
 
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB .local Paris 2020: Tout savoir sur le moteur de recherche Full Text S...
MongoDB
 
MongoDB BI Connector & Tableau
MongoDB BI Connector & Tableau MongoDB BI Connector & Tableau
MongoDB BI Connector & Tableau
MongoDB
 
MongoDB World 2019: Ticketek: Scaling to Global Ticket Sales with MongoDB Atlas
MongoDB World 2019: Ticketek: Scaling to Global Ticket Sales with MongoDB AtlasMongoDB World 2019: Ticketek: Scaling to Global Ticket Sales with MongoDB Atlas
MongoDB World 2019: Ticketek: Scaling to Global Ticket Sales with MongoDB Atlas
MongoDB
 
Tutorial: Building Your First App with MongoDB Stitch
Tutorial: Building Your First App with MongoDB StitchTutorial: Building Your First App with MongoDB Stitch
Tutorial: Building Your First App with MongoDB Stitch
MongoDB
 
Webinar: How Banks Use MongoDB as a Tick Database
Webinar: How Banks Use MongoDB as a Tick DatabaseWebinar: How Banks Use MongoDB as a Tick Database
Webinar: How Banks Use MongoDB as a Tick Database
MongoDB
 
[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design
[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design
[MongoDB.local Bengaluru 2018] Jumpstart: Introduction to Schema Design
MongoDB
 
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB World 2019: MongoDB in Data Science: How to Build a Scalable Product ...
MongoDB
 
Database Trends for Modern Applications: Why the Database You Choose Matters
Database Trends for Modern Applications: Why the Database You Choose Matters Database Trends for Modern Applications: Why the Database You Choose Matters
Database Trends for Modern Applications: Why the Database You Choose Matters
MongoDB
 
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB ChartsMongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB .local Paris 2020: Devenez explorateur de données avec MongoDB Charts
MongoDB
 
Business Jumpstart: The Right (and Wrong) Use Cases for MongoDB
Business Jumpstart: The Right (and Wrong) Use Cases for MongoDBBusiness Jumpstart: The Right (and Wrong) Use Cases for MongoDB
Business Jumpstart: The Right (and Wrong) Use Cases for MongoDB
MongoDB
 

Similar to MongoDB 4.0 새로운 기능 소개 (20)

Confluent & MongoDB APAC Lunch & Learn
Confluent & MongoDB APAC Lunch & LearnConfluent & MongoDB APAC Lunch & Learn
Confluent & MongoDB APAC Lunch & Learn
confluent
 
MACHBASE_NEO
MACHBASE_NEOMACHBASE_NEO
MACHBASE_NEO
MACHBASE
 
MongoDB 3.4 webinar
MongoDB 3.4 webinarMongoDB 3.4 webinar
MongoDB 3.4 webinar
Andrew Morgan
 
Mongo db 3.4 Overview
Mongo db 3.4 OverviewMongo db 3.4 Overview
Mongo db 3.4 Overview
Norberto Leite
 
Final_CloudEventFrankfurt2017 (1).pdf
Final_CloudEventFrankfurt2017 (1).pdfFinal_CloudEventFrankfurt2017 (1).pdf
Final_CloudEventFrankfurt2017 (1).pdf
MongoDB
 
Cloud Data Strategy event London
Cloud Data Strategy event LondonCloud Data Strategy event London
Cloud Data Strategy event London
MongoDB
 
Azure DocumentDB Overview
Azure DocumentDB OverviewAzure DocumentDB Overview
Azure DocumentDB Overview
Andrew Liu
 
Public Cloud Workshop
Public Cloud WorkshopPublic Cloud Workshop
Public Cloud Workshop
Amer Ather
 
Getting started with postgresql
Getting started with postgresqlGetting started with postgresql
Getting started with postgresql
botsplash.com
 
Postgres for Digital Transformation: NoSQL Features, Replication, FDW & More
Postgres for Digital Transformation:NoSQL Features, Replication, FDW & MorePostgres for Digital Transformation:NoSQL Features, Replication, FDW & More
Postgres for Digital Transformation: NoSQL Features, Replication, FDW & More
Ashnikbiz
 
IBM - Introduction to Cloudant
IBM - Introduction to CloudantIBM - Introduction to Cloudant
IBM - Introduction to Cloudant
Francisco González Jiménez
 
0812 2014 01_toronto-smac meetup_i_os_cloudant_worklight_part2
0812 2014 01_toronto-smac meetup_i_os_cloudant_worklight_part20812 2014 01_toronto-smac meetup_i_os_cloudant_worklight_part2
0812 2014 01_toronto-smac meetup_i_os_cloudant_worklight_part2
Raul Chong
 
MongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB .local Chicago 2019: MongoDB Atlas JumpstartMongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB
 
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseAzure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
BizTalk360
 
MongoDB.local Atlanta: MongoDB on Z
MongoDB.local Atlanta: MongoDB on ZMongoDB.local Atlanta: MongoDB on Z
MongoDB.local Atlanta: MongoDB on Z
MongoDB
 
USQL Trivadis Azure Data Lake Event
USQL Trivadis Azure Data Lake EventUSQL Trivadis Azure Data Lake Event
USQL Trivadis Azure Data Lake Event
Trivadis
 
inmation Presentation
inmation Presentationinmation Presentation
inmation Presentation
inmation Software GmbH
 
How Crosser Built a Modern Industrial Data Historian with InfluxDB and Grafana
How Crosser Built a Modern Industrial Data Historian with InfluxDB and GrafanaHow Crosser Built a Modern Industrial Data Historian with InfluxDB and Grafana
How Crosser Built a Modern Industrial Data Historian with InfluxDB and Grafana
InfluxData
 
2014.10.22 Building Azure Solutions with Office 365
2014.10.22 Building Azure Solutions with Office 3652014.10.22 Building Azure Solutions with Office 365
2014.10.22 Building Azure Solutions with Office 365
Marco Parenzan
 
Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka
Solutions for bi-directional integration between Oracle RDBMS & Apache KafkaSolutions for bi-directional integration between Oracle RDBMS & Apache Kafka
Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka
Guido Schmutz
 
Confluent & MongoDB APAC Lunch & Learn
Confluent & MongoDB APAC Lunch & LearnConfluent & MongoDB APAC Lunch & Learn
Confluent & MongoDB APAC Lunch & Learn
confluent
 
MACHBASE_NEO
MACHBASE_NEOMACHBASE_NEO
MACHBASE_NEO
MACHBASE
 
Final_CloudEventFrankfurt2017 (1).pdf
Final_CloudEventFrankfurt2017 (1).pdfFinal_CloudEventFrankfurt2017 (1).pdf
Final_CloudEventFrankfurt2017 (1).pdf
MongoDB
 
Cloud Data Strategy event London
Cloud Data Strategy event LondonCloud Data Strategy event London
Cloud Data Strategy event London
MongoDB
 
Azure DocumentDB Overview
Azure DocumentDB OverviewAzure DocumentDB Overview
Azure DocumentDB Overview
Andrew Liu
 
Public Cloud Workshop
Public Cloud WorkshopPublic Cloud Workshop
Public Cloud Workshop
Amer Ather
 
Getting started with postgresql
Getting started with postgresqlGetting started with postgresql
Getting started with postgresql
botsplash.com
 
Postgres for Digital Transformation: NoSQL Features, Replication, FDW & More
Postgres for Digital Transformation:NoSQL Features, Replication, FDW & MorePostgres for Digital Transformation:NoSQL Features, Replication, FDW & More
Postgres for Digital Transformation: NoSQL Features, Replication, FDW & More
Ashnikbiz
 
0812 2014 01_toronto-smac meetup_i_os_cloudant_worklight_part2
0812 2014 01_toronto-smac meetup_i_os_cloudant_worklight_part20812 2014 01_toronto-smac meetup_i_os_cloudant_worklight_part2
0812 2014 01_toronto-smac meetup_i_os_cloudant_worklight_part2
Raul Chong
 
MongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB .local Chicago 2019: MongoDB Atlas JumpstartMongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB .local Chicago 2019: MongoDB Atlas Jumpstart
MongoDB
 
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseAzure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
BizTalk360
 
MongoDB.local Atlanta: MongoDB on Z
MongoDB.local Atlanta: MongoDB on ZMongoDB.local Atlanta: MongoDB on Z
MongoDB.local Atlanta: MongoDB on Z
MongoDB
 
USQL Trivadis Azure Data Lake Event
USQL Trivadis Azure Data Lake EventUSQL Trivadis Azure Data Lake Event
USQL Trivadis Azure Data Lake Event
Trivadis
 
How Crosser Built a Modern Industrial Data Historian with InfluxDB and Grafana
How Crosser Built a Modern Industrial Data Historian with InfluxDB and GrafanaHow Crosser Built a Modern Industrial Data Historian with InfluxDB and Grafana
How Crosser Built a Modern Industrial Data Historian with InfluxDB and Grafana
InfluxData
 
2014.10.22 Building Azure Solutions with Office 365
2014.10.22 Building Azure Solutions with Office 3652014.10.22 Building Azure Solutions with Office 365
2014.10.22 Building Azure Solutions with Office 365
Marco Parenzan
 
Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka
Solutions for bi-directional integration between Oracle RDBMS & Apache KafkaSolutions for bi-directional integration between Oracle RDBMS & Apache Kafka
Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka
Guido Schmutz
 
Ad

Recently uploaded (20)

Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Ad

MongoDB 4.0 새로운 기능 소개

  • 1. Jun Kim , Senior Solution Architect & Database Specialist
  • 2. Agenda Overview of What’s New in 4.0 Working with Data Building Distributed Systems Enabling a Cloud Data Strategy Beyond the Server: Serverless & Mobile Q&A 40 minutes
  • 3. Intelligent Operational Data Platform Best way to work with data Intelligently put data where you want it Freedom to run anywhere
  • 4. Intelligent Operational Data Platform Best way to work with data Intelligently put data where you want it Freedom to run anywhere
  • 5. Intelligent Operational Data Platform Best way to work with data Intelligently put data where you want it Freedom to run anywhere
  • 6. Intelligent Operational Data Platform Best way to work with data Intelligently put data where you want it Freedom to run anywhere
  • 7. BEST WAY TO WORK WITH DATA
  • 8. MongoDB: Already Used Across Every Industry and Use Case...
  • 9. DATA MODELS AND TRANSACTIONS
  • 10. DATA MODELS AND TRANSACTIONS
  • 13. X Natural for developers ● Idiomatic to the programming language ● Familiar to relational developers ● Simple with client.start_session() as s: s.start_transaction() collection_one.insert_one(doc_one, session=s) collection_two.insert_one(doc_two, session=s) s.commit_transaction() MONGODB TRANSACTIONS SYNTAX
  • 14. X s.start_transaction() orders.insert_one(order, session=s) stock.update_one(item, stockUpdate, session=s) s.commit_transaction() db.start_transaction() cursor.execute(orderInsert, orderData) cursor.execute(stockUpdate, stockData) db.commit() * COMPARING SYNTAX WITH TABULAR DATABASES
  • 16. OUR JOURNEY TO ACID TRANSACTIONS • • • • • • •
  • 17. What’s Done, What’s Left for Sharded Transactions MongoDB 3.0 MongoDB 3.2 MongoDB 3.4 MongoDB 3.6 MongoDB 4.0 MongoDB 4.2 New Storage engine (WiredTiger) Enhanced replication protocol: stricter consistency & durability Shard membership awareness Consistent secondary reads in sharded clusters Replica Set Transactions Sharded Transactions WiredTiger default storage engine Logical sessions Make catalog timestamp-aware More extensive WiredTiger repair Config server manageability improvements Retryable writes Snapshot reads Transaction manager Read concern “majority” Causal Consistency Recoverable rollback via WT checkpoints Global point-in-time reads Cluster-wide logical clock Recover to a timestamp Oplog applier prepare support for transactions Storage API changes to use timestamps Sharded catalog improvements Read concern majority feature always available Collection catalog versioning UUIDs in sharding Fast in-place updates to large documents in WT In Progress Done Transaction EPIC Planned
  • 20. AGGREGATION PIPELINE TYPE CONVERSIONS • Transforms data into standardized, cleansed types • Flexible data model allows ingest of data without pre-defining schema • Schema validation to enforce structure where needed • Lack of data type uniformity for fields across documents can complicate downstream processing • Cleanse in the app, or run through external ETL pipeline • Adds complexity and latency • Now data types can be standardized with $convert operator natively in MongoDB • Faster data prep for consuming apps & analytics
  • 21. X { $convert: { input: <expression>, to: <type expression>, onError: <expression>, // Optional. onNull: <expression> // Optional. } } TYPE CONVERSION SYNTAX
  • 22. X TYPE CONVERSION EXAMPLE db.address.insert( { street: "Canal st", building: NumberDecimal(21), _id: 0}) db.address.insert( { street: "43rd st", building: "229", _id: 1} ) db.address.insert( { street: "Fulton st", building: "31", _id: 2 } ) db.address.aggregate( [ { $addFields: { building: {$convert: { input: "$building", to: "int" }} } }, { $sort: {building: 1}} ]) db.address.insert( { street: "52nd st", building: "11w", _id: 3} ) db.address.aggregate( [ { $addFields: { building: { $convert: { input: "$building", to: "int", onError: 0 } } } }, { $sort: {building: 1}} ])
  • 23. X TYPE CONVERSION BENEFITS : EDM PIPELINE …Siloedsource databases Externalfeeds (batch) Streams Transform Storeraw data AnalyzeAggregate Pub-sub,ETL,fileimports StreamProcessing Users Other Systems
  • 24. MONGODB COMPASS ● The GUI for MongoDB: explore and interact with your MongoDB data ○ Visualize and explore your data structure ○ Insert and modify documents ○ Build queries, then debug and optimize with plans and index control ○ Control your data with document validation rules ● Compass Community is free to use and ships with Community Server ● Compass Enterprise with additional features: ○ Advanced security ○ Schema analysis ○ Real-Time Performance Panel ○ Document Validation rules
  • 25. AGGREGATION PIPELINE db.customers.aggregate([ { $unwind: "$address", }, { $match: {"address.location": "home"} }, { $group: { _id: "$address.city", totalSpend: {$sum: "$annualSpend"}, averageSpend: {$avg: "$annualSpend"}, maximumSpend: {$max: "$annualSpend"}, customers: {$sum: 1} } } ]) MongoDB’s aggregation framework has the flexibility you need to get value from your data, but without the complexity and fragility of SQL These “phases” are distinct and easy to understand They can be thought about in order… no nesting.
  • 26. ● Easily build aggregation pipelines for data processing and analytics ● Add new pipeline stages with code skeletons and auto-completion ● See a preview of documents as they are transformed in each stage ● Drag and drop to re-order pipeline stages ● Save pipelines in Compass or export to native code X AGGREGATION PIPELINE BUILDER Introduced in MongoDB Compass 1.14
  • 27. ● Simplify query creation: build a query in MongoDB Compass, then click to export it to native code ● Supports complex, multi-parameter queries and aggregation pipelines ● Initially supported: C#/.NET, Java, JavaScript, Python, and mongo shell syntax ○ More languages to come in future releases X EXPORT TO LANGUAGE Introduced in MongoDB Compass 1.15
  • 28. MONGODB CHARTS (BETA) • The fastest and easiest way to create visualizations of MongoDB data • Built for the MongoDB document model • Visualize live data from any of your MongoDB instances – on-prem, in the cloud, or in MongoDB Atlas
  • 29. MONGODB CHARTS: CREATE, VISUALIZE, SHARE
  • 30. INTELLIGENTLY PUT DATA WHERE YOU WANT IT
  • 31. ELASTIC SCALE: 40% FASTER MIGRATIONS • Sharded cluster balancer used to maintain even data distribution across the cluster • Now concurrently fetches and applies documents for 40% faster data migration • Responds faster to nodes being added and removed from the cluster • Right-size for cost and capacity
  • 32. NON-BLOCKING SECONDARY READS • Pre 4.0, secondary reads block while oplog batches from primary are applied • Maintains causal order with primary • Using storage engine timestamps and snapshots in 4.0, reads are now serviced from a snapshot while secondary is applying oplog entries • Maintains consistent read latency, improves read throughput & scaling
  • 33. UPGRADED SECURITY • Access control, auditing, encryption: MongoDB offers some of strictest security controls of any modern database • Upgraded authentication (SHA2) and encryption TLS (1.1+) to latest and strongest standards.
  • 34. FREEDOM TO RUN ANYWHERE
  • 35. Atlas unlocks agility and reduces cost Self-service and elastic Global and highly available Secure by default Comprehensive monitoring Managed backup Cloud agnostic
  • 36. Atlas Global Clusters Distribute your fully automated database across multiple geographically distributed zones made up of one or more cloud regions ● Read and write locally to provide single-digit millisecond latency for your distributed applications ● Ensure that data from certain geographies lives in predefined zones ● Easily deploy using prebuilt zone templates or build your own zones by choosing cloud regions in an easy- to-use, visual interface
  • 38. Atlas Database Auditing Answer detailed questions about system activity by tracking DDL, DML, and DCL commands. ● Easily select the actions you want audited as well as the MongoDB users, Atlas roles, or LDAP groups you want to audit from the Atlas UI ● Alternatively, create an audit filter as a JSON string ● Auditing configuration applies to all dedicated clusters within an Atlas project ● Audit logs can be downloaded in the UI or retrieved using the MongoDB Atlas API
  • 39. Atlas LDAP Integration Centralize database access management and eliminate the need to recreate permissions by using your LDAP server (over TLS/SSL) to manage user authentication and authorization. ● LDAP groups are mapped to different MongoDB roles in your MongoDB Atlas databases ● LDAP configuration applies to all dedicated database clusters within an Atlas Project ● Available for deployments running MongoDB 3.4+
  • 40. Encryption at Rest: Bring Your Own KMS MongoDB Atlas integrates with your key management service of choice (AWS KMS & Azure KeyVault), allowing you to centralize control of the keys used to encrypt your MongoDB data ● BYO KMS leverages MongoDB’s encrypted storage engine (AES256-CBC via OpenSSL) for database-level encryption ● Create, import, and rotate keys for MongoDB Atlas as well as define usage policies and audit usage with the same console/CLI used to manage keys for your other cloud services
  • 41. MONGODB MONITORING CLOUD Free service, agent free, opt-in and out at any time Assess health, optimize performance
  • 42. KUBERNETES (K8S) AND RED HAT OPENSHIFT
  • 44. Intelligent Operational Data Platform Best way to work with data Intelligently put data where you want it Freedom to run anywhere
  • 45. Code user authentication Code data access controls Provision backend server Install runtime environment Add code to make backend HA Add code to scale backend Monitor & manage backend infrastructure Code REST API for frontend to use backend Code backend application logic Code application frontend Code against each external service API Continuously poll database for changes Without Stitch Simple JSON Config Handled automatically by Stitch and Atlas Code frontend using single SDK/API With Stitch Backend Data Access Frontend Provide JS code for Stitch Functions
  • 46. App Backend Infrastructure Core Database Functionality Storage Service integrations, data access control Code that moves the business forward Managing OS, Scale, Security, Backups, etc. MongoDB Atlas MongoDB Stitch Fully managed Elastic scale Highly Available Secure You should focus here FOCUS YOUR ENERGY WHERE YOU CAN MAKE A DIFFERENCE
  • 47. MONGODB MOBILE (BETA) Brings the power of MongoDB to your device Same database, same access patterns – from IoT to Mobile to Web.