This talk is about monitoring with Prometheus. A progression is shown from monitoring concept, to Micrometer, Prometheus and Grafana.
Presented at Alithya by Richard Langlois and Gervais Naoussi, on September 19th, 2018
Prometheus: Monitoring by "Pravin Magdum" from "Crevise". The presentation was done at #doppa17 DevOps++ Global Summit 2017. All the copyrights are reserved with the author
This is a talk on how you can monitor your microservices architecture using Prometheus and Grafana. This has easy to execute steps to get a local monitoring stack running on your local machine using docker.
Prometheus - Intro, CNCF, TSDB,PromQL,GrafanaSridhar Kumar N
https://www.youtube.com/playlist?list=PLAiEy9H6ItrKC5PbH7KiELiSEIKv3tuov
-What is Prometheus?
-Difference Between Nagios vs Prometheus
-Architecture
-Alertmanager
-Time series DB
-PromQL (Prometheus Query Language)
-Live Demo
-Grafana
Prometheus is an open-source monitoring system that collects metrics from configured targets, stores time-series data, and allows users to query and visualize the data. It works by scraping metrics over HTTP from applications and servers, storing the data in its time-series database, and providing a UI and query language to analyze the data. Prometheus is useful for monitoring system metrics like CPU usage and memory as well as application metrics like HTTP requests and errors.
In this session, we will start with the importance of monitoring of services and infrastructure. We will discuss about Prometheus an opensource monitoring tool. We will discuss the architecture of Prometheus. We will also discuss some visualization tools which can be used over Prometheus. Then we will have a quick demo for Prometheus and Grafana.
Prometheus is an open-source monitoring system that collects metrics from instrumented systems and applications and allows for querying and alerting on metrics over time. It is designed to be simple to operate, scalable, and provides a powerful query language and multidimensional data model. Key features include no external dependencies, metrics collection by scraping endpoints, time-series storage, and alerting handled by the AlertManager with support for various integrations.
Prometheus has become the defacto monitoring system for cloud native applications, with systems like Kubernetes and Etcd natively exposing Prometheus metrics. In this talk Tom will explore all the moving part for a working Prometheus-on-Kubernetes monitoring system, including kube-state-metrics, node-exporter, cAdvisor and Grafana. You will learn about the various methods for getting to a working setup: the manual approach, using CoreOSs Prometheus Operator, or using Prometheus Ksonnet Mixin. Tom will also share some little tips and tricks for getting the most out of your Prometheus monitoring, including the common pitfalls and what you should be alerting on.
Infrastructure & System Monitoring using PrometheusMarco Pas
The document introduces infrastructure and system monitoring using Prometheus. It discusses the importance of monitoring, common things to monitor like services, applications, and OS metrics. It provides an overview of Prometheus including its main components and data format. The document demonstrates setting up Prometheus, adding host metrics using Node Exporter, configuring Grafana, monitoring Docker containers using cAdvisor, configuring alerting in Prometheus and Alertmanager, instrumenting application code, and integrating Consul for service discovery. Live code demos are provided for key concepts.
Prometheus is an open-source monitoring system that collects metrics from configured targets, stores time series data, and allows users to query and alert on that data. It is designed for dynamic cloud environments and has built-in service discovery integration. Core features include simplicity, efficiency, a dimensional data model, the PromQL query language, and service discovery.
An Introduction to Prometheus (GrafanaCon 2016)Brian Brazil
Often what you monitor and get alerted on is defined by your tools, rather than what makes the most sense to you and your organisation. Alerts on metrics such as CPU usage which are noisy and rarely spot real problems, while outages go undetected. Monitoring systems can also be challenging to maintain, and overall provide a poor return on investment.
In the past few years several new monitoring systems have appeared with more powerful semantics and which are easier to run, which offer a way to vastly improve how your organisation operates and prepare you for a Cloud Native environment. Prometheus is one such system. This talk will look at the monitoring ideal and how whitebox monitoring with a time series database, multi-dimensional labels and a powerful querying/alerting language can free you from midnight pages.
The monolith to cloud-native, microservices evolution has driven a shift from monitoring to observability. OpenTelemetry, a merger of the OpenTracing and OpenCensus projects, is enabling Observability 2.0. This talk gives an overview of the OpenTelemetry project and then outlines some production-proven architectures for improving the observability of your applications and systems.
Logs/Metrics Gathering With OpenShift EFK StackJosef Karásek
This document summarizes a presentation about logs and metrics gathering with the OpenShift EFK stack. It introduces the OpenShift logging team and their objectives of collecting distributed logs in a common data model with security and scalability. It describes the main components of Fluendt for collection and normalization and Elasticsearch for storage. It provides examples of using the logging stack with OpenShift, OpenStack, and oVirt and advice for custom application logging.
This document provides an overview and introduction to Terraform, including:
- Terraform is an open-source tool for building, changing, and versioning infrastructure safely and efficiently across multiple cloud providers and custom solutions.
- It discusses how Terraform compares to other tools like CloudFormation, Puppet, Chef, etc. and highlights some key Terraform facts like its versioning, community, and issue tracking on GitHub.
- The document provides instructions on getting started with Terraform by installing it and describes some common Terraform commands like apply, plan, and refresh.
- Finally, it briefly outlines some key Terraform features and example use cases like cloud app setup, multi
Modern cloud-native applications are incredibly complex systems. Keeping the systems healthy and meeting SLAs for our customers is crucial for long-term success. In this session, we will dive into the three pillars of observability - metrics, logs, tracing - the foundation of successful troubleshooting in distributed systems. You'll learn the gotchas and pitfalls of rolling out the OpenTelemetry stack on Kubernetes to effectively collect all your signals without worrying about a vendor lock in. Additionally we will replace parts of the Prometheus stack to scrape metrics with OpenTelemetry collector and operator.
Presented at GDG Devfest Ukraine 2018.
Prometheus has become the defacto monitoring system for cloud native applications, with systems like Kubernetes and Etcd natively exposing Prometheus metrics. In this talk Tom will explore all the moving part for a working Prometheus-on-Kubernetes monitoring system, including kube-state-metrics, node-exporter, cAdvisor and Grafana. You will learn about the various methods for getting to a working setup: the manual approach, using CoreOS’s Prometheus Operator, or using Prometheus Ksonnet Mixin. Tom will also share some little tips and tricks for getting the most out of your Prometheus monitoring, including the common pitfalls and what you should be alerting on.
OpenTelemetry is a set of APIs, SDKs, tooling and integrations that are designed for the creation and management of telemetry data such as traces, metrics, and logs. It aims to enable effective observability by making high-quality, portable telemetry ubiquitous and vendor-agnostic. The OpenTelemetry Collector is an independent process that acts as a "universal agent" to collect, process, and export telemetry data in a highly performant and stable manner, supporting multiple types of telemetry through customizable pipelines consisting of receivers, processors, and exporters.
Systems Monitoring with Prometheus (Devops Ireland April 2015)Brian Brazil
Monitoring means many things to many people. This talk looks at Systems Monitoring, that is how to keep an eye on a given system and use this as part of overall management of a system. This talk will cover Why one monitors, What to monitor, How to monitor, the general design of a monitoring system and how Prometheus is a good fit for this in terms of instrumentation, consoles, alerts, general system health and sanity.
Prometheus is a next-generation monitoring system publicly announced earlier this year, developed by companies including SoundCloud, locals Boxever and Docker. Since launch there has been wide-spread interest, and many community contributions.
For more information see http://prometheus.io or http://www.boxever.com/tag/monitoring
Prometheus Design and Philosophy by Julius Volz at Docker Distributed System Summit
Prometheus - https://github.com/Prometheus
Liveblogging: http://canopy.mirage.io/Liveblog/MonitoringDDS2016
Grafana Loki: like Prometheus, but for LogsMarco Pracucci
Loki is a horizontally-scalable, highly-available log aggregation system inspired by Prometheus. It is designed to be very cost-effective and easy to operate, as it does not index the contents of the logs, but rather labels for each log stream.
In this talk, we will introduce Loki, its architecture and the design trade-offs in an approachable way. We’ll both cover Loki and Promtail, the agent used to scrape local logs to push to Loki, including the Prometheus-style service discovery used to dynamically discover logs and attach metadata from applications running in a Kubernetes cluster.
Finally, we’ll show how to query logs with Grafana using LogQL - the Loki query language - and the latest Grafana features to easily build dashboards mixing metrics and logs.
This document compares Terraform and Pulumi infrastructure as code tools. It provides overviews of each tool, including what they are, how they work, and why to use them. For Terraform, it describes it as an IaC tool that defines cloud and on-premise resources in configuration files. For Pulumi, it notes it uses familiar programming languages for IaC. The document also compares key differences like syntax, testing, structuring large projects, and state file troubleshooting. It ends with best practices for both tools.
Grafana is an open source analytics and monitoring tool that uses InfluxDB to store time series data and provide visualization dashboards. It collects metrics like application and server performance from Telegraf every 10 seconds, stores the data in InfluxDB using the line protocol format, and allows users to build dashboards in Grafana to monitor and get alerts on metrics. An example scenario is using it to collect and display load time metrics from a QA whitelist VM.
A comprehensive walkthrough of how to manage infrastructure-as-code using Terraform. This presentation includes an introduction to Terraform, a discussion of how to manage Terraform state, how to use Terraform modules, an overview of best practices (e.g. isolation, versioning, loops, if-statements), and a list of gotchas to look out for.
For a written and more in-depth version of this presentation, check out the "Comprehensive Guide to Terraform" blog post series: https://blog.gruntwork.io/a-comprehensive-guide-to-terraform-b3d32832baca
PromQL Deep Dive - The Prometheus Query Language Weaveworks
- What is PromQL
- PromQL operators
- PromQL functions
- Hands on: Building queries in PromQL
- Hands on: Visualizing PromQL in Grafana
- Prometheus alerts in PromQL
- Hands on: Creating an alert in Prometheus with PromQL
MeetUp Monitoring with Prometheus and Grafana (September 2018)Lucas Jellema
This presentation introduces the concept of monitoring - focusing on why and how and finally on the tools to use. It introduces Prometheus (metrics gathering, processing, alerting), application instrumentation and Prometheus exporters and finally it introduces Grafana as a common companion for dashboarding, alerting and notifications. This presentations also introduces the handson workshop - for which materials are available from https://github.com/lucasjellema/monitoring-workshop-prometheus-grafana
Here is the PPT of our recently happened workshop. You can also watch on our youtube channel. here is the link -https://www.youtube.com/channel/UCeLma6SpNYH7jjYKSBNSexw
How to Improve the Observability of Apache Cassandra and Kafka applications...Paul Brebner
As distributed cloud applications grow more complex, dynamic, and massively scalable, “observability” becomes more critical.
Observability is the practice of using metrics, monitoring and distributed tracing to understand how a system works.
We’ll explore two complementary Open Source technologies:
Prometheus for monitoring application metrics, and
OpenTracing and Jaeger for distributed tracing.
We’ll discover how they improve the observability of
an Anomaly Detection application, deployed on AWS Kubernetes, and using Instaclustr managed Apache Cassandra and Kafka clusters.
Prometheus has become the defacto monitoring system for cloud native applications, with systems like Kubernetes and Etcd natively exposing Prometheus metrics. In this talk Tom will explore all the moving part for a working Prometheus-on-Kubernetes monitoring system, including kube-state-metrics, node-exporter, cAdvisor and Grafana. You will learn about the various methods for getting to a working setup: the manual approach, using CoreOSs Prometheus Operator, or using Prometheus Ksonnet Mixin. Tom will also share some little tips and tricks for getting the most out of your Prometheus monitoring, including the common pitfalls and what you should be alerting on.
Infrastructure & System Monitoring using PrometheusMarco Pas
The document introduces infrastructure and system monitoring using Prometheus. It discusses the importance of monitoring, common things to monitor like services, applications, and OS metrics. It provides an overview of Prometheus including its main components and data format. The document demonstrates setting up Prometheus, adding host metrics using Node Exporter, configuring Grafana, monitoring Docker containers using cAdvisor, configuring alerting in Prometheus and Alertmanager, instrumenting application code, and integrating Consul for service discovery. Live code demos are provided for key concepts.
Prometheus is an open-source monitoring system that collects metrics from configured targets, stores time series data, and allows users to query and alert on that data. It is designed for dynamic cloud environments and has built-in service discovery integration. Core features include simplicity, efficiency, a dimensional data model, the PromQL query language, and service discovery.
An Introduction to Prometheus (GrafanaCon 2016)Brian Brazil
Often what you monitor and get alerted on is defined by your tools, rather than what makes the most sense to you and your organisation. Alerts on metrics such as CPU usage which are noisy and rarely spot real problems, while outages go undetected. Monitoring systems can also be challenging to maintain, and overall provide a poor return on investment.
In the past few years several new monitoring systems have appeared with more powerful semantics and which are easier to run, which offer a way to vastly improve how your organisation operates and prepare you for a Cloud Native environment. Prometheus is one such system. This talk will look at the monitoring ideal and how whitebox monitoring with a time series database, multi-dimensional labels and a powerful querying/alerting language can free you from midnight pages.
The monolith to cloud-native, microservices evolution has driven a shift from monitoring to observability. OpenTelemetry, a merger of the OpenTracing and OpenCensus projects, is enabling Observability 2.0. This talk gives an overview of the OpenTelemetry project and then outlines some production-proven architectures for improving the observability of your applications and systems.
Logs/Metrics Gathering With OpenShift EFK StackJosef Karásek
This document summarizes a presentation about logs and metrics gathering with the OpenShift EFK stack. It introduces the OpenShift logging team and their objectives of collecting distributed logs in a common data model with security and scalability. It describes the main components of Fluendt for collection and normalization and Elasticsearch for storage. It provides examples of using the logging stack with OpenShift, OpenStack, and oVirt and advice for custom application logging.
This document provides an overview and introduction to Terraform, including:
- Terraform is an open-source tool for building, changing, and versioning infrastructure safely and efficiently across multiple cloud providers and custom solutions.
- It discusses how Terraform compares to other tools like CloudFormation, Puppet, Chef, etc. and highlights some key Terraform facts like its versioning, community, and issue tracking on GitHub.
- The document provides instructions on getting started with Terraform by installing it and describes some common Terraform commands like apply, plan, and refresh.
- Finally, it briefly outlines some key Terraform features and example use cases like cloud app setup, multi
Modern cloud-native applications are incredibly complex systems. Keeping the systems healthy and meeting SLAs for our customers is crucial for long-term success. In this session, we will dive into the three pillars of observability - metrics, logs, tracing - the foundation of successful troubleshooting in distributed systems. You'll learn the gotchas and pitfalls of rolling out the OpenTelemetry stack on Kubernetes to effectively collect all your signals without worrying about a vendor lock in. Additionally we will replace parts of the Prometheus stack to scrape metrics with OpenTelemetry collector and operator.
Presented at GDG Devfest Ukraine 2018.
Prometheus has become the defacto monitoring system for cloud native applications, with systems like Kubernetes and Etcd natively exposing Prometheus metrics. In this talk Tom will explore all the moving part for a working Prometheus-on-Kubernetes monitoring system, including kube-state-metrics, node-exporter, cAdvisor and Grafana. You will learn about the various methods for getting to a working setup: the manual approach, using CoreOS’s Prometheus Operator, or using Prometheus Ksonnet Mixin. Tom will also share some little tips and tricks for getting the most out of your Prometheus monitoring, including the common pitfalls and what you should be alerting on.
OpenTelemetry is a set of APIs, SDKs, tooling and integrations that are designed for the creation and management of telemetry data such as traces, metrics, and logs. It aims to enable effective observability by making high-quality, portable telemetry ubiquitous and vendor-agnostic. The OpenTelemetry Collector is an independent process that acts as a "universal agent" to collect, process, and export telemetry data in a highly performant and stable manner, supporting multiple types of telemetry through customizable pipelines consisting of receivers, processors, and exporters.
Systems Monitoring with Prometheus (Devops Ireland April 2015)Brian Brazil
Monitoring means many things to many people. This talk looks at Systems Monitoring, that is how to keep an eye on a given system and use this as part of overall management of a system. This talk will cover Why one monitors, What to monitor, How to monitor, the general design of a monitoring system and how Prometheus is a good fit for this in terms of instrumentation, consoles, alerts, general system health and sanity.
Prometheus is a next-generation monitoring system publicly announced earlier this year, developed by companies including SoundCloud, locals Boxever and Docker. Since launch there has been wide-spread interest, and many community contributions.
For more information see http://prometheus.io or http://www.boxever.com/tag/monitoring
Prometheus Design and Philosophy by Julius Volz at Docker Distributed System Summit
Prometheus - https://github.com/Prometheus
Liveblogging: http://canopy.mirage.io/Liveblog/MonitoringDDS2016
Grafana Loki: like Prometheus, but for LogsMarco Pracucci
Loki is a horizontally-scalable, highly-available log aggregation system inspired by Prometheus. It is designed to be very cost-effective and easy to operate, as it does not index the contents of the logs, but rather labels for each log stream.
In this talk, we will introduce Loki, its architecture and the design trade-offs in an approachable way. We’ll both cover Loki and Promtail, the agent used to scrape local logs to push to Loki, including the Prometheus-style service discovery used to dynamically discover logs and attach metadata from applications running in a Kubernetes cluster.
Finally, we’ll show how to query logs with Grafana using LogQL - the Loki query language - and the latest Grafana features to easily build dashboards mixing metrics and logs.
This document compares Terraform and Pulumi infrastructure as code tools. It provides overviews of each tool, including what they are, how they work, and why to use them. For Terraform, it describes it as an IaC tool that defines cloud and on-premise resources in configuration files. For Pulumi, it notes it uses familiar programming languages for IaC. The document also compares key differences like syntax, testing, structuring large projects, and state file troubleshooting. It ends with best practices for both tools.
Grafana is an open source analytics and monitoring tool that uses InfluxDB to store time series data and provide visualization dashboards. It collects metrics like application and server performance from Telegraf every 10 seconds, stores the data in InfluxDB using the line protocol format, and allows users to build dashboards in Grafana to monitor and get alerts on metrics. An example scenario is using it to collect and display load time metrics from a QA whitelist VM.
A comprehensive walkthrough of how to manage infrastructure-as-code using Terraform. This presentation includes an introduction to Terraform, a discussion of how to manage Terraform state, how to use Terraform modules, an overview of best practices (e.g. isolation, versioning, loops, if-statements), and a list of gotchas to look out for.
For a written and more in-depth version of this presentation, check out the "Comprehensive Guide to Terraform" blog post series: https://blog.gruntwork.io/a-comprehensive-guide-to-terraform-b3d32832baca
PromQL Deep Dive - The Prometheus Query Language Weaveworks
- What is PromQL
- PromQL operators
- PromQL functions
- Hands on: Building queries in PromQL
- Hands on: Visualizing PromQL in Grafana
- Prometheus alerts in PromQL
- Hands on: Creating an alert in Prometheus with PromQL
MeetUp Monitoring with Prometheus and Grafana (September 2018)Lucas Jellema
This presentation introduces the concept of monitoring - focusing on why and how and finally on the tools to use. It introduces Prometheus (metrics gathering, processing, alerting), application instrumentation and Prometheus exporters and finally it introduces Grafana as a common companion for dashboarding, alerting and notifications. This presentations also introduces the handson workshop - for which materials are available from https://github.com/lucasjellema/monitoring-workshop-prometheus-grafana
Here is the PPT of our recently happened workshop. You can also watch on our youtube channel. here is the link -https://www.youtube.com/channel/UCeLma6SpNYH7jjYKSBNSexw
How to Improve the Observability of Apache Cassandra and Kafka applications...Paul Brebner
As distributed cloud applications grow more complex, dynamic, and massively scalable, “observability” becomes more critical.
Observability is the practice of using metrics, monitoring and distributed tracing to understand how a system works.
We’ll explore two complementary Open Source technologies:
Prometheus for monitoring application metrics, and
OpenTracing and Jaeger for distributed tracing.
We’ll discover how they improve the observability of
an Anomaly Detection application, deployed on AWS Kubernetes, and using Instaclustr managed Apache Cassandra and Kafka clusters.
Monitoring in Big Data Platform - Albert Lewandowski, GetInDataGetInData
Did you like it? Check out our blog to stay up to date: https://getindata.com/blog
The webinar was organized by GetinData on 2020. During the webinar we explaned the concept of monitoring and observability with focus on data analytics platforms.
Watch more here: https://www.youtube.com/watch?v=qSOlEN5XBQc
Whitepaper - Monitoring ang Observability for Data Platform: https://getindata.com/blog/white-paper-big-data-monitoring-observability-data-platform/
Speaker: Albert Lewandowski
Linkedin: https://www.linkedin.com/in/albert-lewandowski/
___
Getindata is a company founded in 2014 by ex-Spotify data engineers. From day one our focus has been on Big Data projects. We bring together a group of best and most experienced experts in Poland, working with cloud and open-source Big Data technologies to help companies build scalable data architectures and implement advanced analytics over large data sets.
Our experts have vast production experience in implementing Big Data projects for Polish as well as foreign companies including i.a. Spotify, Play, Truecaller, Kcell, Acast, Allegro, ING, Agora, Synerise, StepStone, iZettle and many others from the pharmaceutical, media, finance and FMCG industries.
https://getindata.com
Google Cloud Platform monitoring with ZabbixMax Kuzkin
This presentation describes how to configure Zabbix (https://zabbix.com/) to configure Google Cloud Platform events through its Monitoring API, using gcpmetrics (https://github.com/odin-public/gcpmetrics/) command line tool.
Timely Year Two: Lessons Learned Building a Scalable Metrics Analytic SystemAccumulo Summit
Timely was born to visualize and analyze metric data at a scale untenable for existing solutions. We're returning to talk about what we've achieved over the past year, provide a detailed look into production architecture and discuss additional features added within the past year including alerting and support for external analytics.
– Speakers –
Drew Farris
Chief Technologist, Booz Allen Hamilton
Drew Farris is a software developer and technology consultant at Booz Allen Hamilton where he helps his client solve problems related to large scale analytics, distributed computing and machine learning. He is a member of the Apache Software Foundation and a contributing author to Manning Publications’ “Taming Text” and the Booz Allen Hamilton “Field Guide to Data Science”.
Bill Oley
Senior Lead Engineer, Booz Allen Hamilton
Bill Oley is a senior lead software engineer at Booz Allen Hamilton where he helps his clients analyze and solve problems related to large scale data ingest, storage, retrieval, and analysis. He is particularly interested in improving visibility into large scale systems by making actionable metrics scalable and usable. He has 16 years of experience designing and developing fault-tolerant distributed systems that operate on continuous streams of data. He holds a bachelor's degree in computer science from the United States Naval Academy and a master's degree in computer science from The Johns Hopkins University.
— More Information —
For more information see http://www.accumulosummit.com/
This document discusses monitoring systems and infrastructure. It recommends monitoring everything, including networks, machines, and applications, to learn from infrastructure, anticipate failures, and speed up changes. It presents Graphite as an open-source tool for storing and visualizing real-time time-series data efficiently. Graphite includes components for receiving metrics data, storing data long-term in Whisper, and visualizing data in Graphite Web. It also discusses using StatsD and CollectD to monitor application and system metrics and send them to Graphite. Case studies show how two companies use monitoring to track simulations and the interactions of image processing applications. The document emphasizes that monitoring and testing are both important but serve different purposes.
This document discusses performance engineering for batch and web applications. It begins by outlining why performance testing is important. Key factors that influence performance testing include response time, throughput, tuning, and benchmarking. Throughput represents the number of transactions processed in a given time period and should increase linearly with load. Response time is the duration between a request and first response. Tuning improves performance by configuring parameters without changing code. The performance testing process involves test planning, creating test scripts, executing tests, monitoring tests, and analyzing results. Methods for analyzing heap dumps and thread dumps to identify bottlenecks are also provided. The document concludes with tips for optimizing PostgreSQL performance by adjusting the shared_buffers configuration parameter.
This document provides an overview of ASP.net performance monitoring and analysis. It discusses key performance metrics like response time, throughput, and resource utilization. It also outlines various tools that can be used to monitor performance, including system performance counters, profiling tools, log files, and application instrumentation. Specific counters are described to monitor the processor, memory, network, and disk usage. The document emphasizes the importance of instrumentation in collecting application-specific performance data.
System Monitor is a Microsoft Windows utility that allows administrators to capture performance counters about hardware, operating systems, and applications. It uses a polling architecture to gather numeric statistics from counters exposed by components at user-defined intervals. The counters are organized in a three-level hierarchy of counter object, counter, and counter instance. System Monitor can be used to analyze hardware bottlenecks by monitoring queue lengths for processors, disks, and networks. It also helps optimize SQL Server performance by capturing events using SQL Server Profiler.
System Monitor is a Microsoft Windows utility that allows administrators to capture performance counters about hardware, operating systems, and applications. It uses a polling architecture to gather numeric statistics from counters exposed by components at user-defined intervals. The counters are organized in a three-level hierarchy of counter object, counter, and counter instance. System Monitor can be used to capture counter logs for analysis to troubleshoot issues like bottlenecks. It is recommended to select counter objects instead of individual counters to ensure all necessary data is captured.
Webinar - Building Custom Extensions With AppDynamicsTodd Radel
The webinar discusses how to build custom extensions for AppDynamics to import additional metrics. It covers writing script and Java extensions, configuring extensions, and best practices. The presenter demonstrates extensions that count files and import metrics from Linux collectd. Attendees learn how extensions plug into the machine agent and use custom metrics in dashboards and health rules.
ApacheCon2019 Talk: Improving the Observability of Cassandra, Kafka and Kuber...Paul Brebner
As distributed applications grow more complex, dynamic, and massively scalable, “observability” becomes more critical. Observability is the practice of using metrics, monitoring and distributed tracing to understand how a system works. In this presentation we’ll explore two complementary Open Source technologies: Prometheus for monitoring application metrics; and OpenTracing and Jaeger for distributed tracing. We’ll discover how they improve the observability of a massively scalable Anomaly Detection system - an application which is built around Apache Cassandra and Apache Kafka for the data layers, and dynamically deployed and scaled on Kubernetes, a container orchestration technology. We will give an overview of Prometheus and OpenTracing/Jaeger, explain how the application is instrumented, and describe how Prometheus and OpenTracing are deployed and configured in a production environment running Kubernetes, to dynamically monitor the application at scale. We conclude by exploring the benefits of monitoring and tracing technologies for understanding, debugging and tuning complex dynamic distributed systems built on Kafka, Cassandra and Kubernetes, and introduce a new use case to enable Cassandra Elastic Autoscaling, by combining Prometheus alerts, Instaclustr’s Provisioning API for Dynamic Resizing, and the new Prometheus monitoring API.
- Discuss the role of Observability (Logging; Tracing; and Metric) in modern architecture.
- How to implement observability in Golang using OpenCensus.
- The 4 golden signals when designing the metrics.
- How to apply observability into the process.
How to Monitor Application Performance in a Container-Based WorldKen Owens
Monitoring applications that consists of multiple containers is not easy or available as part of any container solution or orchestration platform. This talk looks at how to address application performance leveraging business service level objectives and the architecture for implementing the solution. The solution has been prototyped at ciscoshipped.io and we would love your thoughts.
Microservices and Prometheus (Microservices NYC 2016)Brian Brazil
Brian Brazil is an engineer passionate about reliable systems. He has experience at Google SRE and Boxever. He is the founder of Robust Perception and a contributor to open source projects including Prometheus. Prometheus is a monitoring system designed for microservices that allows inclusive, scalable monitoring across languages and services. It uses labels, queries, and federation to provide powerful yet manageable monitoring of dynamic environments.
Apache Eagle at Hadoop Summit 2016 San JoseHao Chen
Apache Eagle is a distributed real-time monitoring and alerting engine for Hadoop that was created by eBay and later open sourced as an Apache Incubator project. It provides security for Hadoop systems by instantly identifying access to sensitive data, recognizing attacks/malicious activity, and blocking access in real time through complex policy definitions and stream processing. Eagle was designed to handle the huge volume of metrics and logs generated by large-scale Hadoop deployments through its distributed architecture and linear scalability.
Apache Eagle is a distributed real-time monitoring and alerting engine for Hadoop that was created by eBay and later open sourced as an Apache Incubator project. It provides security for Hadoop systems by instantly identifying access to sensitive data, recognizing attacks/malicious activity, and blocking access in real time through complex policy definitions and stream processing. Eagle was designed to handle the huge volume of metrics and logs generated by large-scale Hadoop deployments through its distributed architecture and use of technologies like Apache Storm and Kafka.
Monitoring Kubernetes with Prometheus (Kubernetes Ireland, 2016)Brian Brazil
Prometheus is a next-generation monitoring system. Since being publicly announced last year it has seen wide-spread interest and adoption. This talk will look at the concepts behind monitoring with Prometheus, and how to use it with Kubernetes which has direct support for Prometheus.
Monitoring Node.js Microservices on CloudFoundry with Open Source Tools and a...Tony Erwin
While microservice architectures offer lots of great benefits, there’s also a downside. Perhaps most notably, there is an increased complexity in monitoring the overall reliability and performance of the system. In addition, when problems are identified, finding a root cause can be a challenge. To ease these pains in managing the IBM Bluemix UI (made up of more than twenty microservices running on CloudFoundry), we’ve built a lightweight system using Node.js and other opensource tools to capture key metrics for all microservices (such as memory usage, CPU usage, speed and response codes for all inbound/outbound requests, etc.). In this approach, each microservice publishes lightweight messages (using MQTT) for all measurable events while a separate monitoring microservice subscribes to these messages. When the monitoring microservice receives a message, it stores the data in a time series DB (InfluxDB) and sends notifications if thresholds are violated. Once the data is stored, it can be visualized in Grafana to identify trends and bottlenecks. Tony Erwin will discuss the details of the Node.js implementation, real-world examples of how this system has been used to keep the Bluemix UI running smoothly without spending a lot of money, and how it’s acted as a “canary” to find problems in non-UI subsystems before the relevant teams even knew there was an issue!
Presented at Cloud Foundry Summit 2017: http://sched.co/AJmn
Continuous Test Automation, by Richard Langlois P. Eng. and Yuri Pechenko.Richard Langlois P. Eng.
This document discusses different levels of software testing including unit testing, integration testing, functional testing, and acceptance testing. It provides details on tools and frameworks for each level including JUnit and Maven for unit testing, the Failsafe plugin for integration testing, Selenium for functional testing, and Cucumber for acceptance testing. Continuous testing and test automation best practices are also covered.
This document provides an overview of reactive programming in Java and Spring 5. It discusses reactive programming concepts like reactive streams specification, Reactor library, and operators. It also covers how to build reactive applications with Spring WebFlux, including creating reactive controllers, routing with functional endpoints, using WebClient for HTTP requests, and testing with WebTestClient.
The document discusses what's new in Java 9. Key changes include the introduction of a module system that allows modularization of the Java platform and custom configurations. The tools javac, jlink and java now accept options to specify module paths. The JDK itself has been modularized. Most internal APIs are now inaccessible by default. The version string format was simplified. New tools introduced include JShell for REPL functionality and jlink to assemble custom runtime images. Enhancements were made for security, deployment, language features and streams.
This document provides an overview of DevOps and the Elastic Stack. It defines IT operations (Ops) and describes the historical separation between development and operations teams. This led to bottlenecks and slow delivery. DevOps aims to break down barriers through practices like continuous integration, monitoring, and automation. The Elastic Stack is a suite of open source tools for logging, monitoring, and security including Elasticsearch, Kibana, Logstash, Beats, and X-Pack. It allows users to collect and analyze logs and metrics from multiple sources in real-time.
The document discusses the next generation of the JUnit testing framework, JUnit 5. It introduces the new modular architecture of JUnit 5, which consists of the JUnit Platform, JUnit Jupiter, and JUnit Vintage. It describes some of the new features in JUnit 5 like new annotations, assertions, assumptions, tagging tests, extensions, and dynamic tests. Finally, it provides some migration tips for moving from JUnit 4 to JUnit 5.
The document provides an introduction to reactive microservices architecture. It discusses how microservices address issues with monolithic architectures like poor scalability and lack of resilience. Key aspects of microservices covered include having independent, isolated services communicating over the network via APIs. The document also discusses reactive principles of being responsive, resilient, and elastic. Specific microservices patterns like circuit breakers, bulkheads, and back pressure are explained for improving failure isolation and scalability.
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfTechSoup
In this webinar we will dive into the essentials of generative AI, address key AI concerns, and demonstrate how nonprofits can benefit from using Microsoft’s AI assistant, Copilot, to achieve their goals.
This event series to help nonprofits obtain Copilot skills is made possible by generous support from Microsoft.
What You’ll Learn in Part 2:
Explore real-world nonprofit use cases and success stories.
Participate in live demonstrations and a hands-on activity to see how you can use Microsoft 365 Copilot in your own work!
Avast Premium Security Crack FREE Latest Version 2025mu394968
🌍📱👉COPY LINK & PASTE ON GOOGLE https://dr-kain-geera.info/👈🌍
Avast Premium Security is a paid subscription service that provides comprehensive online security and privacy protection for multiple devices. It includes features like antivirus, firewall, ransomware protection, and website scanning, all designed to safeguard against a wide range of online threats, according to Avast.
Key features of Avast Premium Security:
Antivirus: Protects against viruses, malware, and other malicious software, according to Avast.
Firewall: Controls network traffic and blocks unauthorized access to your devices, as noted by All About Cookies.
Ransomware protection: Helps prevent ransomware attacks, which can encrypt your files and hold them hostage.
Website scanning: Checks websites for malicious content before you visit them, according to Avast.
Email Guardian: Scans your emails for suspicious attachments and phishing attempts.
Multi-device protection: Covers up to 10 devices, including Windows, Mac, Android, and iOS, as stated by 2GO Software.
Privacy features: Helps protect your personal data and online privacy.
In essence, Avast Premium Security provides a robust suite of tools to keep your devices and online activity safe and secure, according to Avast.
Explaining GitHub Actions Failures with Large Language Models Challenges, In...ssuserb14185
GitHub Actions (GA) has become the de facto tool that developers use to automate software workflows, seamlessly building, testing, and deploying code. Yet when GA fails, it disrupts development, causing delays and driving up costs. Diagnosing failures becomes especially challenging because error logs are often long, complex and unstructured. Given these difficulties, this study explores the potential of large language models (LLMs) to generate correct, clear, concise, and actionable contextual descriptions (or summaries) for GA failures, focusing on developers’ perceptions of their feasibility and usefulness. Our results show that over 80% of developers rated LLM explanations positively in terms of correctness for simpler/small logs. Overall, our findings suggest that LLMs can feasibly assist developers in understanding common GA errors, thus, potentially reducing manual analysis. However, we also found that improved reasoning abilities are needed to support more complex CI/CD scenarios. For instance, less experienced developers tend to be more positive on the described context, while seasoned developers prefer concise summaries. Overall, our work offers key insights for researchers enhancing LLM reasoning, particularly in adapting explanations to user expertise.
https://arxiv.org/abs/2501.16495
Join Ajay Sarpal and Miray Vu to learn about key Marketo Engage enhancements. Discover improved in-app Salesforce CRM connector statistics for easy monitoring of sync health and throughput. Explore new Salesforce CRM Synch Dashboards providing up-to-date insights into weekly activity usage, thresholds, and limits with drill-down capabilities. Learn about proactive notifications for both Salesforce CRM sync and product usage overages. Get an update on improved Salesforce CRM synch scale and reliability coming in Q2 2025.
Key Takeaways:
Improved Salesforce CRM User Experience: Learn how self-service visibility enhances satisfaction.
Utilize Salesforce CRM Synch Dashboards: Explore real-time weekly activity data.
Monitor Performance Against Limits: See threshold limits for each product level.
Get Usage Over-Limit Alerts: Receive notifications for exceeding thresholds.
Learn About Improved Salesforce CRM Scale: Understand upcoming cloud-based incremental sync.
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)Andre Hora
Software testing plays a crucial role in the contribution process of open-source projects. For example, contributions introducing new features are expected to include tests, and contributions with tests are more likely to be accepted. Although most real-world projects require contributors to write tests, the specific testing practices communicated to contributors remain unclear. In this paper, we present an empirical study to understand better how software testing is approached in contribution guidelines. We analyze the guidelines of 200 Python and JavaScript open-source software projects. We find that 78% of the projects include some form of test documentation for contributors. Test documentation is located in multiple sources, including CONTRIBUTING files (58%), external documentation (24%), and README files (8%). Furthermore, test documentation commonly explains how to run tests (83.5%), but less often provides guidance on how to write tests (37%). It frequently covers unit tests (71%), but rarely addresses integration (20.5%) and end-to-end tests (15.5%). Other key testing aspects are also less frequently discussed: test coverage (25.5%) and mocking (9.5%). We conclude by discussing implications and future research.
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...Egor Kaleynik
This case study explores how we partnered with a mid-sized U.S. healthcare SaaS provider to help them scale from a successful pilot phase to supporting over 10,000 users—while meeting strict HIPAA compliance requirements.
Faced with slow, manual testing cycles, frequent regression bugs, and looming audit risks, their growth was at risk. Their existing QA processes couldn’t keep up with the complexity of real-time biometric data handling, and earlier automation attempts had failed due to unreliable tools and fragmented workflows.
We stepped in to deliver a full QA and DevOps transformation. Our team replaced their fragile legacy tests with Testim’s self-healing automation, integrated Postman and OWASP ZAP into Jenkins pipelines for continuous API and security validation, and leveraged AWS Device Farm for real-device, region-specific compliance testing. Custom deployment scripts gave them control over rollouts without relying on heavy CI/CD infrastructure.
The result? Test cycle times were reduced from 3 days to just 8 hours, regression bugs dropped by 40%, and they passed their first HIPAA audit without issue—unlocking faster contract signings and enabling them to expand confidently. More than just a technical upgrade, this project embedded compliance into every phase of development, proving that SaaS providers in regulated industries can scale fast and stay secure.
Who Watches the Watchmen (SciFiDevCon 2025)Allon Mureinik
Tests, especially unit tests, are the developers’ superheroes. They allow us to mess around with our code and keep us safe.
We often trust them with the safety of our codebase, but how do we know that we should? How do we know that this trust is well-deserved?
Enter mutation testing – by intentionally injecting harmful mutations into our code and seeing if they are caught by the tests, we can evaluate the quality of the safety net they provide. By watching the watchmen, we can make sure our tests really protect us, and we aren’t just green-washing our IDEs to a false sense of security.
Talk from SciFiDevCon 2025
https://www.scifidevcon.com/courses/2025-scifidevcon/contents/680efa43ae4f5
This presentation explores code comprehension challenges in scientific programming based on a survey of 57 research scientists. It reveals that 57.9% of scientists have no formal training in writing readable code. Key findings highlight a "documentation paradox" where documentation is both the most common readability practice and the biggest challenge scientists face. The study identifies critical issues with naming conventions and code organization, noting that 100% of scientists agree readable code is essential for reproducible research. The research concludes with four key recommendations: expanding programming education for scientists, conducting targeted research on scientific code quality, developing specialized tools, and establishing clearer documentation guidelines for scientific software.
Presented at: The 33rd International Conference on Program Comprehension (ICPC '25)
Date of Conference: April 2025
Conference Location: Ottawa, Ontario, Canada
Preprint: https://arxiv.org/abs/2501.10037
WinRAR Crack for Windows (100% Working 2025)sh607827
copy and past on google ➤ ➤➤ https://hdlicense.org/ddl/
WinRAR Crack Free Download is a powerful archive manager that provides full support for RAR and ZIP archives and decompresses CAB, ARJ, LZH, TAR, GZ, ACE, UUE, .
F-Secure Freedome VPN 2025 Crack Plus Activation New Versionsaimabibi60507
Copy & Past Link 👉👉
https://dr-up-community.info/
F-Secure Freedome VPN is a virtual private network service developed by F-Secure, a Finnish cybersecurity company. It offers features such as Wi-Fi protection, IP address masking, browsing protection, and a kill switch to enhance online privacy and security .
Exploring Wayland: A Modern Display Server for the FutureICS
Wayland is revolutionizing the way we interact with graphical interfaces, offering a modern alternative to the X Window System. In this webinar, we’ll delve into the architecture and benefits of Wayland, including its streamlined design, enhanced performance, and improved security features.
Download Wondershare Filmora Crack [2025] With Latesttahirabibi60507
Copy & Past Link 👉👉
http://drfiles.net/
Wondershare Filmora is a video editing software and app designed for both beginners and experienced users. It's known for its user-friendly interface, drag-and-drop functionality, and a wide range of tools and features for creating and editing videos. Filmora is available on Windows, macOS, iOS (iPhone/iPad), and Android platforms.
Get & Download Wondershare Filmora Crack Latest [2025]saniaaftab72555
Copy & Past Link 👉👉
https://dr-up-community.info/
Wondershare Filmora is a video editing software and app designed for both beginners and experienced users. It's known for its user-friendly interface, drag-and-drop functionality, and a wide range of tools and features for creating and editing videos. Filmora is available on Windows, macOS, iOS (iPhone/iPad), and Android platforms.
Interactive Odoo Dashboard for various business needs can provide users with dynamic, visually appealing dashboards tailored to their specific requirements. such a module that could support multiple dashboards for different aspects of a business
✅Visit And Buy Now : https://bit.ly/3VojWza
✅This Interactive Odoo dashboard module allow user to create their own odoo interactive dashboards for various purpose.
App download now :
Odoo 18 : https://bit.ly/3VojWza
Odoo 17 : https://bit.ly/4h9Z47G
Odoo 16 : https://bit.ly/3FJTEA4
Odoo 15 : https://bit.ly/3W7tsEB
Odoo 14 : https://bit.ly/3BqZDHg
Odoo 13 : https://bit.ly/3uNMF2t
Try Our website appointment booking odoo app : https://bit.ly/3SvNvgU
👉Want a Demo ?📧 [email protected]
➡️Contact us for Odoo ERP Set up : 091066 49361
👉Explore more apps: https://bit.ly/3oFIOCF
👉Want to know more : 🌐 https://www.axistechnolabs.com/
#odoo #odoo18 #odoo17 #odoo16 #odoo15 #odooapps #dashboards #dashboardsoftware #odooerp #odooimplementation #odoodashboardapp #bestodoodashboard #dashboardapp #odoodashboard #dashboardmodule #interactivedashboard #bestdashboard #dashboard #odootag #odooservices #odoonewfeatures #newappfeatures #odoodashboardapp #dynamicdashboard #odooapp #odooappstore #TopOdooApps #odooapp #odooexperience #odoodevelopment #businessdashboard #allinonedashboard #odooproducts
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...Andre Hora
Unittest and pytest are the most popular testing frameworks in Python. Overall, pytest provides some advantages, including simpler assertion, reuse of fixtures, and interoperability. Due to such benefits, multiple projects in the Python ecosystem have migrated from unittest to pytest. To facilitate the migration, pytest can also run unittest tests, thus, the migration can happen gradually over time. However, the migration can be timeconsuming and take a long time to conclude. In this context, projects would benefit from automated solutions to support the migration process. In this paper, we propose TestMigrationsInPy, a dataset of test migrations from unittest to pytest. TestMigrationsInPy contains 923 real-world migrations performed by developers. Future research proposing novel solutions to migrate frameworks in Python can rely on TestMigrationsInPy as a ground truth. Moreover, as TestMigrationsInPy includes information about the migration type (e.g., changes in assertions or fixtures), our dataset enables novel solutions to be verified effectively, for instance, from simpler assertion migrations to more complex fixture migrations. TestMigrationsInPy is publicly available at: https://github.com/altinoalvesjunior/TestMigrationsInPy.
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentShubham Joshi
A secure test infrastructure ensures that the testing process doesn’t become a gateway for vulnerabilities. By protecting test environments, data, and access points, organizations can confidently develop and deploy software without compromising user privacy or system integrity.
⭕️➡️ FOR DOWNLOAD LINK : http://drfiles.net/ ⬅️⭕️
Maxon Cinema 4D 2025 is the latest version of the Maxon's 3D software, released in September 2024, and it builds upon previous versions with new tools for procedural modeling and animation, as well as enhancements to particle, Pyro, and rigid body simulations. CG Channel also mentions that Cinema 4D 2025.2, released in April 2025, focuses on spline tools and unified simulation enhancements.
Key improvements and features of Cinema 4D 2025 include:
Procedural Modeling: New tools and workflows for creating models procedurally, including fabric weave and constellation generators.
Procedural Animation: Field Driver tag for procedural animation.
Simulation Enhancements: Improved particle, Pyro, and rigid body simulations.
Spline Tools: Enhanced spline tools for motion graphics and animation, including spline modifiers from Rocket Lasso now included for all subscribers.
Unified Simulation & Particles: Refined physics-based effects and improved particle systems.
Boolean System: Modernized boolean system for precise 3D modeling.
Particle Node Modifier: New particle node modifier for creating particle scenes.
Learning Panel: Intuitive learning panel for new users.
Redshift Integration: Maxon now includes access to the full power of Redshift rendering for all new subscriptions.
In essence, Cinema 4D 2025 is a major update that provides artists with more powerful tools and workflows for creating 3D content, particularly in the fields of motion graphics, VFX, and visualization.
3. Monitoring
3
Monitoring is the tools and processes by which you measure your technology systems.
A monitoring system has two customers:
• Technology (Engineering, Operations, DevOps)
• The business (measure the value that technology delivers to business)
If you’re building a specification or user stories for your application:
include metrics and monitoring for each component of your application.
Don’t wait until the end of a project or just before deployment.
4. Monitoring
Approach to Monitoring
4
A good approach to your monitoring is to design a top-down monitoring plan based on
value.
Identify the parts of the application that deliver value and monitor those first, working
your way down the stack.
Monitoring for the correctness of a service first
e.g. monitor the content or rates of a business transaction rather than the uptime
of the web server it runs on.
5. Monitoring
Monitoring Approaches
5
2 major approaches:
• Probing monitoring probes the outside of an application (black-box monitoring).
e.g. Nagios
• Introspection monitoring looks at what’s inside the application (white-box monitoring)
application is instrumented and returns measurements of its state
6. Monitoring
Pull vs Push
6
Two approaches to how monitoring checks are executed:
• Pull-based: systems scrape or check a remote application—for example, an endpoint
containing metrics.
• Push-based: applications emit events that are received by the monitoring system.
Prometheus is primarily a pull-based system, but it also supports receiving events pushed
into a gateway.
7. Monitoring
Metric
7
Metrics are measures of properties of components of software or hardware.
To make a metric useful we keep track of its state, generally recording data points over time (called
observations).
An observation consists of:
value,
a timestamp,
and sometimes a series of properties that describe the observation such as a source or tags.
A collection of observations is called a time series.
Time series data is a chronologically ordered list of these observations.
Time series metrics are often visualized as a two-dimensional plot with data values on the y-axis and
time on the x-axis.
8. Monitoring
Types of monitoring data
8
Monitoring tools can collect 2 types of data:
• Metrics are stored as time series data that record the state of measures of your
applications.
• Logs are (usually textual) events emitted from an application.
Prometheus is primarily focused on collecting time series data.
9. Monitoring
Type of Metrics
9
Variety of different types of metrics:
Gauges: are numbers that are expected to go up or down. A snapshot of a specific measurement.
e.g. Disk usage, number of customers present on a site.
Counters: are numbers that increase over time and never decrease.
e.g. system uptime, number of sales in a month
Histograms: is a metric that samples observations. Each observation is counted and placed into
buckets.
Metric Summaries: mathematical transformations applied to metrics
• Average
• Median
• Standard Deviation
• Percentile
11. Micrometer
Intro
11
Micrometer is a metrics instrumentation library allowing to instrument JVM-based
application code without vendor lock-in.
It provides a simple façade over the instrumentation clients for the most popular monitoring
systems.
Think SLF4J, but for application metrics.
As of Spring Boot 2.0.0.M5, Micrometer is the instrumentation library used by Spring.
Some supported monitoring systems:
• Datadog
• Graphite
• Influx
• JMX
• New Relic
• Prometheus
• SignalFX
• StatsD
12. Micrometer
API
12
Meter is the interface for collecting a set of measurements (called metrics).
MeterRegistry: eters are created from and held in a Meter Registry
Each supported monitoring system has an implementation of MeterRegistry.
SimpleMeterRegistry: Automatically autowired in Spring-based apps.
MeterRegistry registry = new SimpleMeterRegistry.
Set of meter primitives:
Timer, Counter, Gauge, DistributionSummary, LongTaskTimer, FunctionCounter, FunctionTimer
and TimeGauge.
Dimensions allow a particular named metric to be sliced to drill down.
E.g. Registry.counter(“http.server.requests”, “uri”, “/api/users”)
Fluent builder:
Counter counter = Counter .builder("counter")
.baseUnit(“ms")
.description("a description of what this counter does")
.tags("region", "test")
.register(registry);
14. Prometheus
Intro
14
Prometheus is a simple, effective open-source monitoring system.
Promoted from incubation to graduation (in August 2018), in Cloud Native Computing Foundation (CNCF)
Prometheus works by scraping (pulling) time series data exposed from applications.
The time series data is exposed by the applications themselves often via client libraries or via proxies
called exporters, as HTTP endpoints.
15. Prometheus
Concepts
15
Prometheus calls the source of metrics it can scrape endpoints.
An endpoint usually corresponds to a single process, host, service, or application.
The resulting time series data is collected
and stored locally on the Prometheus server (15 days retention)
and can be sent from the server to external storage or to another time series database.
Prometheus can also define Rules for alerting.
16. Prometheus
PromQL – inbuilt querying language
16
The Prometheus server also comes with an inbuilt querying language, PromQL, allowing to
query and aggregate metrics.
Use this query language in the query input box in the Expression Browser.
e.g: Query all metrics with a label of quantile=“0.5”:
18. Prometheus
Scalability
18
Designed to scale to millions of time series from many thousands of hosts.
Its data storage format is designed to keep disk use down and provide fast retrieval of time series
during queries and aggregations.
SSD disks are recommended for Prometheus servers, for speed and reliability.
Redundant Prometheus Architecture:
19. Prometheus
Data Model
19
Prometheus collects time series data.
Format:
<time series name>{<label name>=<label value>, ...}
Each time series is uniquely identified by the combination of names and key/value pairs
called labels (provide the dimensions).
Name usually describes the general nature of the time series data being collected
e.g. total_website_visits as the total number of website visits.
Labels enable the Prometheus dimensional data model, they add context to a specific
time series.
e.g. the name of the website, IP of the requester
20. Prometheus
Time Series Notation
20
Example
total_website_visits{site=“alithya.com", location="NJ", instance="webserver“, job="web"}
All time series generally have
• an instance label, which identifies the source host or application
• a job label, which contains the name of the job that scraped the specific time series.
Actual value of the time series is called a sample.
Consists of:
• A float64 value.
• A millisecond-precision timestamp.
21. Prometheus configuration
prometheus.yml
21
Prometheus is configured via YAML configuration files.
Default Configuration file has the following 4 YAML blocks defined:
Global: contains global settings for controlling the Prometheus server’s behavior.
Alerting: configures Prometheus’ alerting.
rule_files: specifies a list of files that can contain recording or alerting rules.
scrape_configs: specifies all of the targets that Prometheus will scrape.
22. Prometheus and Spring Boot
22
Spring Boot auto-configures a composite MeterRegistry and adds a registry to the composite for each of the supported
implementations that it finds on the classpath.
pom.xml:
<dependency>
<groupId>io.prometheus</groupId>
<artifactId>simpleclient_spring_boot</artifactId>
<version>0.1.0</version>
</dependency>
<dependency>
<groupId>io.prometheus</groupId>
<artifactId>simpleclient_hotspot</artifactId>
<version>0.1.0</version>
</dependency
The simpleclient_spring_boot dependency provides the @EnablePrometheusEndpoint annotation.
Adding it to a @configuration class, creates a HTTP endpoint accessible via /actuator/prometheus that exposes all registered
(actuator) metrics in a Prometheus data format.
23. Prometheus configuration
Scrape Config for Spring Boot application
23
Prometheus scrapes the following 2 endpoints
• /prometheus endpoint: contains Spring boot metrics
• /metrics endpoint: Prometheus own metrics
scrape_configs:
# The job name is added as a label `job=<job_name>` to any time series scraped from this config.
- job_name: 'prometheus'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['PROM_IP:9090']
- job_name: 'spring-boot'
metrics_path: '/prometheus'
scrape_interval: 5s
static_configs:
- targets: ['App_IP:8080']
25. Prometheus
Alerting
25
Alerting is provided by a tool called Alertmanager
Alerting rules are defined on the Prometheus server.
When the threshold or criteria is met, an alert will be generated and pushed to Alertmanager.
The alerts are received on an HTTP endpoint on the Alertmanager.
Alertmanager handles deduplicating, grouping, and routing alerts to receivers (e.g. email, SMS, PagerDuty)
28. Prometheus
Pushgateway
28
Metrics can be pushed to Pushgateway when there isn’t a target from which to scrape metrics because:
• can’t reach the target resources because of security
• target resource has too short a lifespan (e.g. container starting, executing, and stopping).
• target resource doesn’t have an endpoint, (e.g. batch job).
Pushgateway sits between an application sending metrics and the Prometheus server.
Pushgateway is scraped as a target to deliver the metrics to the Prometheus server.
30. Grafana
30
Prometheus UI is not really nice.
Alternative: Grafana is open source metrics Dashboard platform.
It supports multiple backend time-series databases including:
Prometheus , InfluxDB, Elasticsearch, Cloudwatch …
Example of Grafana dashboard:
33. Grafana
Prometheus as Datasource
33
Name: your choice
Default: Check to tell Grafana to search for data in this source by default
Type: Prometheus
URL: URL of the Prometheus server to query.