A comprehensive tutorial on Convolutional Neural Networks (CNN) which talks about the motivation behind CNNs and Deep Learning in general, followed by a description of the various components involved in a typical CNN layer. It explains the theory involved with the different variants used in practice and also, gives a big picture of the whole network by putting everything together.
Next, there's a discussion of the various state-of-the-art frameworks being used to implement CNNs to tackle real-world classification and regression problems.
Finally, the implementation of the CNNs is demonstrated by implementing the paper 'Age ang Gender Classification Using Convolutional Neural Networks' by Hassner (2015).
Feature Engineering in Machine LearningKnoldus Inc.
In this Knolx we are going to explore Data Preprocessing and Feature Engineering Techniques. We will also understand what is Feature Engineering and its importance in Machine Learning. How Feature Engineering can help in getting the best results from the algorithms.
This document summarizes a seminar presentation on wireless sensor networks (WSNs). It begins with introductions to WSNs, describing them as networks of spatially distributed sensors that monitor conditions like temperature, sound or pollution. It then covers the architecture of WSNs, including special addressing requirements, the architecture of sensor nodes, and differences between WSNs and mobile ad hoc networks. The document discusses applications, design challenges, advantages and disadvantages of WSNs. It concludes by discussing the future potential of WSNs in applications like smart homes and offices.
Using synthetic data for computer vision model trainingUnity Technologies
During this webinar Unity’s computer vision team provides an overview of computer vision, walks through current real-world data workflows, and explains why companies are moving toward synthetically generated data as an alternate data source for model training.
Watch the webinar: https://resources.unity.com/ai-ml/cv-webinar-dec-2021
you will learn about brain tumor, types of brain tumor, grading of brain tumor, risk factors for brain tumor, diagnosis for brain tumor, treatment for brain tumor, supportive care and rehabilitation for patients with brain tumor.
The presentation is made on CNN's which is explained using the image classification problem, the presentation was prepared in perspective of understanding computer vision and its applications. I tried to explain the CNN in the most simple way possible as for my understanding. This presentation helps the beginners of CNN to have a brief idea about the architecture and different layers in the architecture of CNN with the example. Please do refer the references in the last slide for a better idea on working of CNN. In this presentation, I have also discussed the different types of CNN(not all) and the applications of Computer Vision.
This document provides an introduction to turbo jet engines, including their working principle and performance parameters. It explains that turbo jets work by compressing air in a rotating compressor, mixing it with fuel and igniting it to produce hot combustion gases, which expand through a turbine to extract power and drive the compressor. The high-velocity exhaust gases exiting the turbine nozzle produce thrust based on Newton's third law of motion. Key engine performance metrics are described as thrust, efficiency, and specific fuel consumption. Advantages of turbo jets include high power-to-weight ratio and compact size, while disadvantages are higher cost and slower response compared to reciprocating engines.
This document summarizes deep learning based object detection. It describes popular datasets like PASCAL VOC, COCO, and others that are used for training and evaluating object detection models. It also explains different types of object detection models including two-stage detectors like R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN and one-stage detectors like YOLO, YOLO v2, YOLO v3, SSD, and DSSD. It discusses the methodology and improvements of these models and concludes that while detecting all objects is an endless task, improved targeted detection is already possible and will continue to progress.
Tracking is the problem of estimating the trajectory of an object as it moves around a scene. Motion tracking involves collecting data on human movement using sensors to control outputs like music or lighting based on performer actions. Motion tracking differs from motion capture in that it requires less equipment, is less expensive, and is concerned with qualities of motion rather than highly accurate data collection. Optical flow estimates the pixel-wise motion between frames in a video by calculating velocity vectors for each pixel.
Computer vision has received great attention over the last two decades.
This research field is important not only in security-related software but also in the advanced interface between people and computers, advanced control methods, and many other areas.
[PR12] You Only Look Once (YOLO): Unified Real-Time Object DetectionTaegyun Jeon
The document summarizes the You Only Look Once (YOLO) object detection method. YOLO frames object detection as a single regression problem to directly predict bounding boxes and class probabilities from full images in one pass. This allows for extremely fast detection speeds of 45 frames per second. YOLO uses a feedforward convolutional neural network to apply a single neural network to the full image. This allows it to leverage contextual information and makes predictions about bounding boxes and class probabilities for all classes with one network.
Yinyin Liu presents a model for object detection and localization, called Fast-RCNN. She will show how to introduce a ROI pooling layer into neon, and how to add the PASCAL VOC dataset to interface with model training and inference. Lastly, Yinyin will run through a demo on how to apply the trained model to detect new objects.
This document summarizes several methods for real-time object detection and tracking in video sequences. Traditional methods like absolute differences and census transforms are compared to modern methods like KLT (Lucas-Kanade Technique) and Meanshift. Hardware requirements for real-time tracking like memory, frame rate, and processors are also discussed. The document provides examples of applications for object detection and tracking in traffic monitoring, surveillance, and mobile robotics.
Object Detection using Deep Neural NetworksUsman Qayyum
Recent Talk at PI school covering following contents
Object Detection
Recent Architecture of Deep NN for Object Detection
Object Detection on Embedded Computers (or for edge computing)
SqueezeNet for embedded computing
TinySSD (object detection for edge computing)
Object detection is an important computer vision technique with applications in several domains such as autonomous driving, personal and industrial robotics. The below slides cover the history of object detection from before deep learning until recent research. The slides aim to cover the history and future directions of object detection, as well as some guidelines for how to choose which type of object detector to use for your own project.
This document discusses object detection using the Single Shot Detector (SSD) algorithm with the MobileNet V1 architecture. It begins with an introduction to object detection and a literature review of common techniques. It then describes the basic architecture of convolutional neural networks and how they are used for feature extraction in SSD. The SSD framework uses multi-scale feature maps for detection and convolutional predictors. MobileNet V1 reduces model size and complexity through depthwise separable convolutions. This allows SSD with MobileNet V1 to perform real-time object detection with reduced parameters and computations compared to other models.
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance.
In Comparison with other object detection algorithms, YOLO proposes the use of an end-to-end neural network that makes predictions of bounding boxes and class probabilities all at once.
This document discusses and compares different methods for deep learning object detection, including region proposal-based methods like R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN as well as single shot methods like YOLO, YOLOv2, and SSD. Region proposal-based methods tend to have higher accuracy but are slower, while single shot methods are faster but less accurate. Newer methods like Faster R-CNN, R-FCN, YOLOv2, and SSD have improved speed and accuracy over earlier approaches.
The document discusses image classification using deep learning techniques. It introduces image classification and its goal to assign labels to images based on their content. It then discusses using the Anaconda platform and TensorFlow library for building neural networks to perform image classification in Python. Convolutional neural networks are proposed as an effective method, involving steps like convolution, pooling and fully connected layers to classify images. A demonstration of the technique and future applications like computer vision are also mentioned.
The document discusses human action recognition using spatio-temporal features. It proposes using optical flow and shape-based features to form motion descriptors, which are then classified using Adaboost. Targets are localized using background subtraction. Optical flows within localized regions are organized into a histogram to describe motion. Differential shape information is also captured. The descriptors are used to train a strong classifier with Adaboost that can recognize actions in testing videos.
Articulated human pose estimation by deep learningWei Yang
This document summarizes a research paper on articulated human pose estimation using deep learning techniques. It presents convolutional neural network (CNN) models for holistically regressing joint locations and locally capturing part presence and spatial relationships through deformable convolutions. For regression, different CNN architectures are evaluated on the LSP dataset, with a fully connected network achieving 60.9% mean PCP. For the deformable CNN approach, it achieves higher performance of 74.8% PCP on LSP and 91.1% on FLIC by incorporating local image patches and pairwise relationships. Future work to combine local and holistic models in an end-to-end system is discussed.
classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects.we'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded.
Deep learning based object detection basicsBrodmann17
The document discusses different approaches to object detection in images using deep learning. It begins with describing detection as classification, where an image is classified into categories for what objects are present. It then discusses approaches that involve separating detection into a classification head and localization head. The document also covers improvements like R-CNN which uses region proposals to first generate candidate object regions before running classification and bounding box regression on those regions using CNN features. This helps address issues with previous approaches like being too slow when running the CNN over the entire image at multiple locations and scales.
Slide for Multi Object Tracking by Md. Minhazul Haque, Rajshahi University of Engineering and Technology
* Object
* Object Tracking
* Application
* Background Study
* How it works
* Multi-Object Tracking
* Solution
* Future Works
The document proposes four methods for improving object detection performance by combining different types of information. The first method uses common fate Hough transform to combine motion and appearance information. The second detects emergency indicators by fusing motion and appearance features. The third utilizes mutual information between image features using pyramid match score. The fourth method aims to detect objects with in-plane rotations by analyzing votes from different keypoints. The methods are evaluated on various datasets and aim to better utilize additional information for more accurate detection.
Integrated Hidden Markov Model and Kalman Filter for Online Object Trackingijsrd.com
Visual prior from generic real-world images study to represent that objects in a scene. The existing work presented online tracking algorithm to transfers visual prior learned offline for online object tracking. To learn complete dictionary to represent visual prior with collection of real world images. Prior knowledge of objects is generic and training image set does not contain any observation of target object. Transfer learned visual prior to construct object representation using Sparse coding and Multiscale max pooling. Linear classifier is learned online to distinguish target from background and also to identify target and background appearance variations over time. Tracking is carried out within Bayesian inference framework and learned classifier is used to construct observation model. Particle filter is used to estimate the tracking result sequentially however, unable to work efficiently in noisy scenes. Time sift variance were not appropriated to track target object with observer value to prior information of object structure. Proposal HMM based kalman filter to improve online target tracking in noisy sequential image frames. The covariance vector is measured to identify noisy scenes. Discrete time steps are evaluated for identifying target object with background separation. Experiment conducted on challenging sequences of scene. To evaluate the performance of object tracking algorithm in terms of tracking success rate, Centre location error, Number of scenes, Learning object sizes, and Latency for tracking.
Tracking is the problem of estimating the trajectory of an object as it moves around a scene. Motion tracking involves collecting data on human movement using sensors to control outputs like music or lighting based on performer actions. Motion tracking differs from motion capture in that it requires less equipment, is less expensive, and is concerned with qualities of motion rather than highly accurate data collection. Optical flow estimates the pixel-wise motion between frames in a video by calculating velocity vectors for each pixel.
Computer vision has received great attention over the last two decades.
This research field is important not only in security-related software but also in the advanced interface between people and computers, advanced control methods, and many other areas.
[PR12] You Only Look Once (YOLO): Unified Real-Time Object DetectionTaegyun Jeon
The document summarizes the You Only Look Once (YOLO) object detection method. YOLO frames object detection as a single regression problem to directly predict bounding boxes and class probabilities from full images in one pass. This allows for extremely fast detection speeds of 45 frames per second. YOLO uses a feedforward convolutional neural network to apply a single neural network to the full image. This allows it to leverage contextual information and makes predictions about bounding boxes and class probabilities for all classes with one network.
Yinyin Liu presents a model for object detection and localization, called Fast-RCNN. She will show how to introduce a ROI pooling layer into neon, and how to add the PASCAL VOC dataset to interface with model training and inference. Lastly, Yinyin will run through a demo on how to apply the trained model to detect new objects.
This document summarizes several methods for real-time object detection and tracking in video sequences. Traditional methods like absolute differences and census transforms are compared to modern methods like KLT (Lucas-Kanade Technique) and Meanshift. Hardware requirements for real-time tracking like memory, frame rate, and processors are also discussed. The document provides examples of applications for object detection and tracking in traffic monitoring, surveillance, and mobile robotics.
Object Detection using Deep Neural NetworksUsman Qayyum
Recent Talk at PI school covering following contents
Object Detection
Recent Architecture of Deep NN for Object Detection
Object Detection on Embedded Computers (or for edge computing)
SqueezeNet for embedded computing
TinySSD (object detection for edge computing)
Object detection is an important computer vision technique with applications in several domains such as autonomous driving, personal and industrial robotics. The below slides cover the history of object detection from before deep learning until recent research. The slides aim to cover the history and future directions of object detection, as well as some guidelines for how to choose which type of object detector to use for your own project.
This document discusses object detection using the Single Shot Detector (SSD) algorithm with the MobileNet V1 architecture. It begins with an introduction to object detection and a literature review of common techniques. It then describes the basic architecture of convolutional neural networks and how they are used for feature extraction in SSD. The SSD framework uses multi-scale feature maps for detection and convolutional predictors. MobileNet V1 reduces model size and complexity through depthwise separable convolutions. This allows SSD with MobileNet V1 to perform real-time object detection with reduced parameters and computations compared to other models.
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance.
In Comparison with other object detection algorithms, YOLO proposes the use of an end-to-end neural network that makes predictions of bounding boxes and class probabilities all at once.
This document discusses and compares different methods for deep learning object detection, including region proposal-based methods like R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN as well as single shot methods like YOLO, YOLOv2, and SSD. Region proposal-based methods tend to have higher accuracy but are slower, while single shot methods are faster but less accurate. Newer methods like Faster R-CNN, R-FCN, YOLOv2, and SSD have improved speed and accuracy over earlier approaches.
The document discusses image classification using deep learning techniques. It introduces image classification and its goal to assign labels to images based on their content. It then discusses using the Anaconda platform and TensorFlow library for building neural networks to perform image classification in Python. Convolutional neural networks are proposed as an effective method, involving steps like convolution, pooling and fully connected layers to classify images. A demonstration of the technique and future applications like computer vision are also mentioned.
The document discusses human action recognition using spatio-temporal features. It proposes using optical flow and shape-based features to form motion descriptors, which are then classified using Adaboost. Targets are localized using background subtraction. Optical flows within localized regions are organized into a histogram to describe motion. Differential shape information is also captured. The descriptors are used to train a strong classifier with Adaboost that can recognize actions in testing videos.
Articulated human pose estimation by deep learningWei Yang
This document summarizes a research paper on articulated human pose estimation using deep learning techniques. It presents convolutional neural network (CNN) models for holistically regressing joint locations and locally capturing part presence and spatial relationships through deformable convolutions. For regression, different CNN architectures are evaluated on the LSP dataset, with a fully connected network achieving 60.9% mean PCP. For the deformable CNN approach, it achieves higher performance of 74.8% PCP on LSP and 91.1% on FLIC by incorporating local image patches and pairwise relationships. Future work to combine local and holistic models in an end-to-end system is discussed.
classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects.we'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded.
Deep learning based object detection basicsBrodmann17
The document discusses different approaches to object detection in images using deep learning. It begins with describing detection as classification, where an image is classified into categories for what objects are present. It then discusses approaches that involve separating detection into a classification head and localization head. The document also covers improvements like R-CNN which uses region proposals to first generate candidate object regions before running classification and bounding box regression on those regions using CNN features. This helps address issues with previous approaches like being too slow when running the CNN over the entire image at multiple locations and scales.
Slide for Multi Object Tracking by Md. Minhazul Haque, Rajshahi University of Engineering and Technology
* Object
* Object Tracking
* Application
* Background Study
* How it works
* Multi-Object Tracking
* Solution
* Future Works
The document proposes four methods for improving object detection performance by combining different types of information. The first method uses common fate Hough transform to combine motion and appearance information. The second detects emergency indicators by fusing motion and appearance features. The third utilizes mutual information between image features using pyramid match score. The fourth method aims to detect objects with in-plane rotations by analyzing votes from different keypoints. The methods are evaluated on various datasets and aim to better utilize additional information for more accurate detection.
Integrated Hidden Markov Model and Kalman Filter for Online Object Trackingijsrd.com
Visual prior from generic real-world images study to represent that objects in a scene. The existing work presented online tracking algorithm to transfers visual prior learned offline for online object tracking. To learn complete dictionary to represent visual prior with collection of real world images. Prior knowledge of objects is generic and training image set does not contain any observation of target object. Transfer learned visual prior to construct object representation using Sparse coding and Multiscale max pooling. Linear classifier is learned online to distinguish target from background and also to identify target and background appearance variations over time. Tracking is carried out within Bayesian inference framework and learned classifier is used to construct observation model. Particle filter is used to estimate the tracking result sequentially however, unable to work efficiently in noisy scenes. Time sift variance were not appropriated to track target object with observer value to prior information of object structure. Proposal HMM based kalman filter to improve online target tracking in noisy sequential image frames. The covariance vector is measured to identify noisy scenes. Discrete time steps are evaluated for identifying target object with background separation. Experiment conducted on challenging sequences of scene. To evaluate the performance of object tracking algorithm in terms of tracking success rate, Centre location error, Number of scenes, Learning object sizes, and Latency for tracking.
This document reviews various methods for object tracking in video sequences. It discusses object detection, classification, and tracking techniques reported in previous research. The key methods covered include background subtraction, optical flow, Kalman filtering, and particle filtering. The document also provides a table summarizing several papers on object tracking, listing the techniques proposed and results achieved in each. It concludes that existing probability-based tracking works well for single objects but proposes improving the technique to track multiple objects.
Survey on video object detection & trackingijctet
This document summarizes previous work on video object detection and tracking techniques. It discusses research papers that used techniques like active contour modeling, gradient-based attraction fields, neural fuzzy networks, and region-based contour extraction for object tracking. Background subtraction, frame differencing, optical flow, spatio-temporal features, Kalman filtering, and contour tracking are described as common video object detection techniques. The challenges of multi-object data association and state estimation for tracking multiple objects are also mentioned.
This document summarizes a research paper on detecting and tracking human motion based on background subtraction. The proposed method initializes the background using the median of multiple frames. It then extracts moving objects by subtracting the current frame from the background and applying a dynamic threshold. Noise is removed using filters and morphology operations. Shadows are accounted for using projection analysis to accurately detect human bodies. Tracking involves computing the centroid of detected objects in each frame to analyze position and velocity over time. Experimental results showed the method runs quickly and accurately for real-time detection of human motion.
1) The document presents a system for detecting militants and weapons in images using machine learning. It aims to automatically detect dangerous situations by identifying knives, firearms, and militants in CCTV footage.
2) The proposed system uses a YOLO convolutional neural network model trained on a dataset of annotated images. It extracts features from images and uses the trained model to detect militants and classify weapon types in real-time video streams.
3) If militants or weapons are detected, the system alerts security operators. It is intended to reduce operator workload from monitoring multiple CCTV feeds and enhance security by automating threat detection.
A New Algorithm for Tracking Objects in Videos of Cluttered ScenesZac Darcy
The work presented in this paper describes a novel algorithm for automatic video object tracking based on
a process of subtraction of successive frames, where the prediction of the direction of movement of the
object being tracked is carried out by analyzing the changing areas generated as result of the object’s
motion, specifically in regions of interest defined inside the object being tracked in both the current and the
next frame. Simultaneously, it is initiated a minimization process which seeks to determine the location of
the object being tracked in the next frame using a function which measures the grade of dissimilarity
between the region of interest defined inside the object being tracked in the current frame and a moving
region in a next frame. This moving region is displaced in the direction of the object’s motion predicted on
the process of subtraction of successive frames. Finally, the location of the moving region of interest in the
next frame that minimizes the proposed function of dissimilarity corresponds to the predicted location of
the object being tracked in the next frame. On the other hand, it is also designed a testing platform which is
used to create virtual scenarios that allow us to assess the performance of the proposed algorithm. These
virtual scenarios are exposed to heavily cluttered conditions where areas which surround the object being
tracked present a high variability. The results obtained with the proposed algorithm show that the tracking
process was successfully carried out in a set of virtual scenarios under different challenging conditions.
This document presents a method for tracking moving objects in video sequences using affine flow parameters combined with illumination insensitive template matching. The method extracts affine flow parameters from frames to model local object motion using affine transformations. It then applies template matching with illumination compensation to track objects across frames while being robust to illumination changes. The method is evaluated on various indoor and outdoor database videos and is shown to effectively track objects without false detections, handling issues like illumination variations, camera motion and dynamic backgrounds better than other methods.
Exploration of Normalized Cross Correlation to Track the Object through Vario...iosrjce
Object tracking is a process devoted to locate the pathway of moving object in the succession of
frames. The tracking of the object has been emerged as a challenging facet in the fields of robot navigation,
military, traffic monitoring and video surveillance etc. In the first phase of contributions, the tracking of object
is exercised by means of matching between the template and exhaustive image through the Normalized Cross
Correlation (NCCR). In order to update the template, the moving objects are detected using frame difference
technique at regular interval of frames. Subsequently, NCCR or Principal Component Analysis (PCA) or
Histogram Regression Line (HRL) of the template and moving objects are estimated to find the best match to
update the template. The second phase discusses the tracking of object between the template and partitioned
image through the NCCR with reduced computational aspects. However, the updating schemes remain same.
Here, an exploration with varied bench mark dataset has been carried out. Further, the comparative analysis of
the proposed systems with different updating schemes such as NCCR, PCA and HRL has been succeeded. The
offered systems considerably reveal the capability to track an object indisputably under diverse illumination conditions.
This document proposes a linear recurrent convolutional neural network model for segment-based multiple object tracking in video. The model takes images as input and uses a CNN to classify superpixels, then performs segmentation and uses nonlinear NNs and a linear recurrent tracker layer to match segments over time. The objectives are to improve the tracker layer efficiency by modifying the matrix inverse and determine parameters for the model. Evaluation will use a dataset with ground truth segmentation and optical flow to train and compare to state-of-the-art methods.
Abnormal Object Detection under Various Environments Using Self-Organizing In...Hongwei Huang
Abnormal moving objects detection is an essential issue for video surveillance. In order to judge whether the behavior of objects is abnormal, such as pedestrians walk back and forth, walk across the street, or scooters drive the wrong way, the main method is through computer vision technique to analyze objects as pedestrians, cars, and so on in video. Traditional abnormal moving objects detection aims at particular circumstances or requirement to predefine particular detection rules which the application of abnormal moving objects detection is restricted. Besides, if numerous abnormal moving objects are detected at the same time, surveillance system is overloaded with operation. Owing to this reason, in this paper, we expect to design a set of learning model which does not predefine abnormal rules and can detect a variety of abnormal moving objects automatically in different environments.
To achieve the above goal, the first thing is to detect the moving objects in video. The proposed method in this paper utilizes Gaussian Mixture Model (GMM) to detect foreground objects and remove shadows of objects by shadow removal. Then, adoptive mean shift algorithm with Kalman filter is proposed to track these moving objects. Finally, Kalman filter is used to smooth trajectory.
After collecting the trajectories of moving objects, abnormal moving object detection process proceeds. At first, for this trajectory information, take advantage of Self-Organizing Incremental Neural Network (SOINN) to learn and build a normal trajectory model which is a foundation to determine whether follow-up moving objects are abnormal. The average learning time is 7 to 55 seconds.
The experiment monitors and analyzes different circumstances, such as School campus, roads, and one-way street. The system based on the proposed method can detect abnormal moving objects with the accuracy 100% in school campus, 98.3% in roads, and 98.8% in one-way street. The overall execution time is short and about 0.033 to 0.067 seconds, and it can be executed in real-time.
This document presents a study on object detection using SSD-MobileNet. The researchers developed a lightweight object detection model using SSD-MobileNet that can perform real-time object detection on embedded systems with limited processing resources. They tested the model on images and video captured using webcams. The model was able to detect objects like people, cars, and animals with good accuracy. The SSD-MobileNet framework provides fast and efficient object detection for applications like autonomous driving assistance systems that require real-time performance on low-power devices.
Detection and Tracking of Moving Object: A SurveyIJERA Editor
Object tracking is the process of locating moving object or multiple objects in sequence of frames. Object
tracking is basically a challenging problem. Difficulties in tracking of an object may arise due to abrupt changes
in environment, motion of object, noise etc. To overcome such problems different tracking algorithms have been
proposed. This paper presents various techniques related to object detection and tracking..The goal of this paper
is to present a survey of these techniques.
Object Discovery using CNN Features in Egocentric VideosMarc Bolaños Solà
This document proposes a method for object discovery in egocentric videos using convolutional neural networks (CNN). The method aims to characterize the environment of the person wearing an egocentric camera. It uses an objectness detector to sample object candidates, extracts CNN features to represent objects, and employs a refill strategy and clustering to discover new concepts in an iterative manner. The method is validated on a dataset of 1,000 images labeled with the most frequent objects, outperforming state-of-the-art approaches. Future work includes discovering objects, scenes and people to further characterize the environment.
A survey on moving object tracking in videoijitjournal
The ongoing research on object tracking in video sequences has attracted many researchers. Detecting
the objects in the video and tracking its motion to identify its characteristics has been emerging as a
demanding research area in the domain of image processing and computer vision. This paper proposes a
literature review on the state of the art tracking methods, categorize them into different categories, and
then identify useful tracking methods. Most of the methods include object segmentation using background
subtraction. The tracking strategies use different methodologies like Mean-shift, Kalman filter, Particle
filter etc. The performance of the tracking methods vary with respect to background information. In this
survey, we have discussed the feature descriptors that are used in tracking to describe the appearance of
objects which are being tracked as well as object detection techniques. In this survey, we have classified
the tracking methods into three groups, and a providing a detailed description of representative methods in
each group, and find out their positive and negative aspects.
IRJET- Comparative Analysis of Video Processing Object DetectionIRJET Journal
This document summarizes research on comparative analysis of video processing object detection techniques. It begins with an abstract describing the goal of object detection in images and videos and challenges involved. It then discusses benefits of object detection and provides a literature review summarizing the approaches of 15 other research papers on object detection, including approaches using background subtraction, segmentation, feature extraction and deep learning algorithms. The document concludes by stating that object detection has wide applications and research is ongoing to improve accuracy and robustness of detection.
IRJET- Real-Time Object Detection using Deep Learning: A SurveyIRJET Journal
This document summarizes recent advances in real-time object detection using deep learning. It first provides an overview of object detection and deep learning. It then reviews popular object detection models including CNNs, R-CNNs, Fast R-CNN, Faster R-CNN, YOLO, and SSD. The document proposes modifications to existing models to improve small object detection accuracy. Specifically, it proposes using Darknet-53 with feature map upsampling and concatenation at multiple scales to detect objects of different sizes. It also describes using k-means clustering to select anchor boxes tailored to each detection scale.
This document discusses object detection using deep learning. It provides an introduction to object detection and outlines the history from traditional methods to modern deep learning-based approaches. Several popular deep learning models for object detection are described, including R-CNN, SSD, and YOLO. Three research papers on object detection are reviewed that evaluate methods like YOLOv4, R-CNN, and convolutional neural networks. The results of one proposed approach are presented along with a comparison of test speeds between algorithms. Finally, the conclusion states that deep learning networks can detect objects with more efficiency and accuracy than previous methods.
Real Time Object Detection System with YOLO and CNN Models: A ReviewSpringer
The field of artificial intelligence is built on object detection techniques. YOU ONLY LOOK
ONCE (YOLO) algorithm and it's more evolved versions are briefly described in this research survey. This
survey is all about YOLO and convolution neural networks (CNN) in the direction of real time object detection.
YOLO does generalized object representation more effectively without precision losses than other object
detection models. CNN architecture models have the ability to eliminate highlights and identify objects in any
given image. When implemented appropriately, CNN models can address issues like deformity diagnosis,
creating educational or instructive application, etc. This article reached at number of observations and
perspective findings through the analysis. Also it provides support for the focused visual information and
feature extraction in the financial and other industries, highlights the method of target detection and feature
selection, and briefly describes the development process of yolo algorithm
Computer Graphics: Application of Computer Graphics.
OpenGL: Introduction to OpenGL,coordinate reference frames, specifying two-dimensional world coordinate
reference frames in OpenGL, OpenGL point functions, OpenGL line functions, point attributes, line attributes,
curve attributes, OpenGL fill area functions, OpenGL Vertex arrays, Line drawing algorithm- Bresenham'S
In tube drawing process, a tube is pulled out through a die and a plug to reduce its diameter and thickness as per the requirement. Dimensional accuracy of cold drawn tubes plays a vital role in the further quality of end products and controlling rejection in manufacturing processes of these end products. Springback phenomenon is the elastic strain recovery after removal of forming loads, causes geometrical inaccuracies in drawn tubes. Further, this leads to difficulty in achieving close dimensional tolerances. In the present work springback of EN 8 D tube material is studied for various cold drawing parameters. The process parameters in this work include die semi-angle, land width and drawing speed. The experimentation is done using Taguchi’s L36 orthogonal array, and then optimization is done in data analysis software Minitab 17. The results of ANOVA shows that 15 degrees die semi-angle,5 mm land width and 6 m/min drawing speed yields least springback. Furthermore, optimization algorithms named Particle Swarm Optimization (PSO), Simulated Annealing (SA) and Genetic Algorithm (GA) are applied which shows that 15 degrees die semi-angle, 10 mm land width and 8 m/min drawing speed results in minimal springback with almost 10.5 % improvement. Finally, the results of experimentation are validated with Finite Element Analysis technique using ANSYS.
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. Originally applied to water (hydromechanics), it found applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
It can be divided into fluid statics, the study of various fluids at rest, and fluid dynamics.
Fluid statics, also known as hydrostatics, is the study of fluids at rest, specifically when there's no relative motion between fluid particles. It focuses on the conditions under which fluids are in stable equilibrium and doesn't involve fluid motion.
Fluid kinematics is the branch of fluid mechanics that focuses on describing and analyzing the motion of fluids, such as liquids and gases, without considering the forces that cause the motion. It deals with the geometrical and temporal aspects of fluid flow, including velocity and acceleration. Fluid dynamics, on the other hand, considers the forces acting on the fluid.
Fluid dynamics is the study of the effect of forces on fluid motion. It is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a macroscopic viewpoint rather than from microscopic.
Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems are partly or wholly unsolved and are best addressed by numerical methods, typically using computers. A modern discipline, called computational fluid dynamics (CFD), is devoted to this approach. Particle image velocimetry, an experimental method for visualizing and analyzing fluid flow, also takes advantage of the highly visual nature of fluid flow.
Fundamentally, every fluid mechanical system is assumed to obey the basic laws :
Conservation of mass
Conservation of energy
Conservation of momentum
The continuum assumption
For example, the assumption that mass is conserved means that for any fixed control volume (for example, a spherical volume)—enclosed by a control surface—the rate of change of the mass contained in that volume is equal to the rate at which mass is passing through the surface from outside to inside, minus the rate at which mass is passing from inside to outside. This can be expressed as an equation in integral form over the control volume.
The continuum assumption is an idealization of continuum mechanics under which fluids can be treated as continuous, even though, on a microscopic scale, they are composed of molecules. Under the continuum assumption, macroscopic (observed/measurable) properties such as density, pressure, temperature, and bulk velocity are taken to be well-defined at "infinitesimal" volume elements—small in comparison to the characteristic length scale of the system, but large in comparison to molecular length scale
Reese McCrary_ The Role of Perseverance in Engineering Success.pdfReese McCrary
Furthermore, perseverance in engineering goes hand in hand with ongoing professional growth. The best engineers never stop learning. Whether improving technical skills or learning new software tools, they understand that innovation doesn’t stop with completing one project. They habitually stay current with the latest advancements, seeking continuous improvement and refining their expertise.
Interfacing PMW3901 Optical Flow Sensor with ESP32CircuitDigest
Learn how to connect a PMW3901 Optical Flow Sensor with an ESP32 to measure surface motion and movement without GPS! This project explains how to set up the sensor using SPI communication, helping create advanced robotics like autonomous drones and smart robots.
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfMohamedAbdelkader115
Glad to be one of only 14 members inside Kuwait to hold this credential.
Please check the members inside kuwait from this link:
https://www.rics.org/networking/find-a-member.html?firstname=&lastname=&town=&country=Kuwait&member_grade=(AssocRICS)&expert_witness=&accrediation=&page=1
PRIZ Academy - Functional Modeling In Action with PRIZ.pdfPRIZ Guru
This PRIZ Academy deck walks you step-by-step through Functional Modeling in Action, showing how Subject-Action-Object (SAO) analysis pinpoints critical functions, ranks harmful interactions, and guides fast, focused improvements. You’ll see:
Core SAO concepts and scoring logic
A wafer-breakage case study that turns theory into practice
A live PRIZ Platform demo that builds the model in minutes
Ideal for engineers, QA managers, and innovation leads who need clearer system insight and faster root-cause fixes. Dive in, map functions, and start improving what really matters.
In modern aerospace engineering, uncertainty is not an inconvenience — it is a defining feature. Lightweight structures, composite materials, and tight performance margins demand a deeper understanding of how variability in material properties, geometry, and boundary conditions affects dynamic response. This keynote presentation tackles the grand challenge: how can we model, quantify, and interpret uncertainty in structural dynamics while preserving physical insight?
This talk reflects over two decades of research at the intersection of structural mechanics, stochastic modelling, and computational dynamics. Rather than adopting black-box probabilistic methods that obscure interpretation, the approaches outlined here are rooted in engineering-first thinking — anchored in modal analysis, physical realism, and practical implementation within standard finite element frameworks.
The talk is structured around three major pillars:
1. Parametric Uncertainty via Random Eigenvalue Problems
* Analytical and asymptotic methods are introduced to compute statistics of natural frequencies and mode shapes.
* Key insight: eigenvalue sensitivity depends on spectral gaps — a critical factor for systems with clustered modes (e.g., turbine blades, panels).
2. Parametric Uncertainty in Dynamic Response using Modal Projection
* Spectral function-based representations are presented as a frequency-adaptive alternative to classical stochastic expansions.
* Efficient Galerkin projection techniques handle high-dimensional random fields while retaining mode-wise physical meaning.
3. Nonparametric Uncertainty using Random Matrix Theory
* When system parameters are unknown or unmeasurable, Wishart-distributed random matrices offer a principled way to encode uncertainty.
* A reduced-order implementation connects this theory to real-world systems — including experimental validations with vibrating plates and large-scale aerospace structures.
Across all topics, the focus is on reduced computational cost, physical interpretability, and direct applicability to aerospace problems.
The final section outlines current integration with FE tools (e.g., ANSYS, NASTRAN) and ongoing research into nonlinear extensions, digital twin frameworks, and uncertainty-informed design.
Whether you're a researcher, simulation engineer, or design analyst, this presentation offers a cohesive, physics-based roadmap to quantify what we don't know — and to do so responsibly.
Key words
Stochastic Dynamics, Structural Uncertainty, Aerospace Structures, Uncertainty Quantification, Random Matrix Theory, Modal Analysis, Spectral Methods, Engineering Mechanics, Finite Element Uncertainty, Wishart Distribution, Parametric Uncertainty, Nonparametric Modelling, Eigenvalue Problems, Reduced Order Modelling, ASME SSDM2025
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...Infopitaara
A Boiler Feed Pump (BFP) is a critical component in thermal power plants. It supplies high-pressure water (feedwater) to the boiler, ensuring continuous steam generation.
⚙️ How a Boiler Feed Pump Works
Water Collection:
Feedwater is collected from the deaerator or feedwater tank.
Pressurization:
The pump increases water pressure using multiple impellers/stages in centrifugal types.
Discharge to Boiler:
Pressurized water is then supplied to the boiler drum or economizer section, depending on design.
🌀 Types of Boiler Feed Pumps
Centrifugal Pumps (most common):
Multistage for higher pressure.
Used in large thermal power stations.
Positive Displacement Pumps (less common):
For smaller or specific applications.
Precise flow control but less efficient for large volumes.
🛠️ Key Operations and Controls
Recirculation Line: Protects the pump from overheating at low flow.
Throttle Valve: Regulates flow based on boiler demand.
Control System: Often automated via DCS/PLC for variable load conditions.
Sealing & Cooling Systems: Prevent leakage and maintain pump health.
⚠️ Common BFP Issues
Cavitation due to low NPSH (Net Positive Suction Head).
Seal or bearing failure.
Overheating from improper flow or recirculation.
https://www.infopitaara.in/
Input to Code Generator
Output of Code Generator
Memory Management
Instruction Selection
Register Allocation
Evaluation Order
Approaches to code generation
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...Infopitaara
A feed water heater is a device used in power plants to preheat water before it enters the boiler. It plays a critical role in improving the overall efficiency of the power generation process, especially in thermal power plants.
🔧 Function of a Feed Water Heater:
It uses steam extracted from the turbine to preheat the feed water.
This reduces the fuel required to convert water into steam in the boiler.
It supports Regenerative Rankine Cycle, increasing plant efficiency.
🔍 Types of Feed Water Heaters:
Open Feed Water Heater (Direct Contact)
Steam and water come into direct contact.
Mixing occurs, and heat is transferred directly.
Common in low-pressure stages.
Closed Feed Water Heater (Surface Type)
Steam and water are separated by tubes.
Heat is transferred through tube walls.
Common in high-pressure systems.
⚙️ Advantages:
Improves thermal efficiency.
Reduces fuel consumption.
Lowers thermal stress on boiler components.
Minimizes corrosion by removing dissolved gases.
ML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdframeshwarchintamani
Ad
Moving Object Detection And Tracking Using CNN
1. Moving Object Detection And Tracking
Using Convolutional Neural Networks
April 13, 2021
Presented by-
Nitish Kumar (2011EE09)
Jeny Khan (2011EE06)
Submitted to:
Dr. Maheshkumar H.Kolekar
Associate Professor
Department of Electrical Engineering
Indian Institute of Technology Patna, Bihar
2. Contents
Motivation
introduction
CNN
TensorFlow Object Detection API
Methodology
Object Detection Algorithm
Object Tracking Algorithm
Results of the proposed algorithm
Quantitative Analysis
References
Moving Object Detection And Tracking Using Convolutional Ne
3. Motivation
The background subtraction is affected by mostly
non-stationary background and illumination changes.
This drawback can be removing by the optical flow algorithm
but it is produces false alarm for tracking algorithms under
cluttered conditions.
In most of the cases of background subtraction, the object
trackers are influenced by background information but it lead
to the misclassification.
To overcome this limitation, in this approach a novel and
generalized Tensor flow based object detection and CNN
based object tracking algorithm has been presented.
Moving Object Detection And Tracking Using Convolutional Ne
4. Convolutional Neural Network
A convolutional neural network (CNN, or ConvNet) is a class
of deep neural networks, most commonly applied to analyzing
visual imagery.
Architecture:
Figure: CNN Architecture
A convolutional neural network consists of an input layer,
hidden layers and an output layer. In any feed-forward neural
network, any middle layers are called hidden because their
inputs and outputs are masked by the activation function and
final convolution.
Moving Object Detection And Tracking Using Convolutional Ne
5. CNN Cont’d
Convolutional layers:
Convolutional layers convolve the input and pass its result to the
next layer.
Figure: Convolutional layers
Moving Object Detection And Tracking Using Convolutional Ne
6. CNN Cont’d
Pooling layers:
Pooling layers reduce the dimensions of data by combining the
outputs of neuron clusters at one layer into a single neuron in the
next layer.
There are two common types of pooling in popular use: max and
average.
Figure: Max pooling
Moving Object Detection And Tracking Using Convolutional Ne
7. TensorFlow Object Detection API
The TensorFlow object detection API is the framework for
creating a deep learning network that solves object detection
problems.
There are already pretrained models in their framework which
they refer to as Model Zoo. This includes a collection of
pretrained models trained on the COCO dataset, the KITTI
dataset, and the Open Images Dataset.
AP is averaged over all categories. Traditionally, this is called
“mean average precision” (mAP).
Moving Object Detection And Tracking Using Convolutional Ne
8. METHODOLOGY
The proposed CNN based moving object detection algorithm
consists of two phase: Object detection and tracking.
The generalized block diagram of the proposed system is
shown in Fig:
Figure: Block Diagram of proposed system
In this system, the video is feed to the system as an input.
Frames are extracted for further processing.
Moving Object Detection And Tracking Using Convolutional Ne
9. Object Detection Algorithm
The object detection is explained in detail in below flow:
Figure: TensorFlow Based Object detection flowchart
Moving Object Detection And Tracking Using Convolutional Ne
10. Object Detection Algorithm Cont’d
TensorFlow based object detection API is an open source
platform which make simple to construct, train and detection
models.
firstly the necessary libraries are imported then import the
pre-trained object detection model.
The weights are initializing along with box and tensor class.
After initialization of all the parameters of the tensor flow
model, the image in which object to be detected is read.
Apply the loaded tensor flow model on the image, the
TensorFlow based model test the image and return the
location (x, y, w, h) of the object in the image.
The success rate of this approach is better and it is applicable
to RGB images.
Moving Object Detection And Tracking Using Convolutional Ne
12. Object Tracking Algorithm Cont’d
After detecting the object, their locations are important to
start the tracking process.
For tracking to be robust, requires object knowledge and
understanding like motion and its variation over time. Tracker
must be able to its model and adopted for new observations.
The model is capable of incorporating the temporal
information. Rather than focusing on the objects in the
testing time, the pre-trained model which is trained on large
variety of objects in real time.
This lightweight model has ability to track the object at the
speed of 150 frames per second.
The initial positions are learned by the model and the same
points are search in the net frames by testing process of CNN
model.
Moving Object Detection And Tracking Using Convolutional Ne
13. Results of the proposed algorithm (cdv sequence)
Moving Object Detection And Tracking Using Convolutional Ne
14. Results of the proposed algorithm (mdv sequence)
Moving Object Detection And Tracking Using Convolutional Ne
15. Quantitative Analysis
The quantitative analysis is performed using sensitivity, specificity
and accuracy parameter. These parameters are calculated using
True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN).
TP: moving object correctly identified moving object.
FP: Stationary object incorrectly identified as moving object
TN: Stationary object correctly identified as Stationary object
FN: moving object incorrectly identified as Stationary object
Moving Object Detection And Tracking Using Convolutional Ne
16. Quantitative Analysis Cont’d
The mathematical representation of the quality metrics is given as:
Sensitivity: It is the ratio of truly object present in the scene
who are correctly identify as an object.
Sensitivity =
TP
TP + FN
Specificity: It is the ratio of truly stationary object present in
the scene that are correctly identify as a stationary object.
Specificity =
TN
TN + FN
Accuracy: Accuracy is the overall performance of the system
including sensitivity and specificity.
Accuracy =
TP + TN
TP + TN + FP + FN
Moving Object Detection And Tracking Using Convolutional Ne
17. Quantitative Analysis Cont’d
CONCLUSION:
The proposed approach achieves the sensitivity of 92.14%,
specificity of 91.24% and accuracy of 90.88%.
The moving object detection is performed using TensorFlow
object detection API. The object detection module robustly
detects the object. The detected object is tracked using CNN
algorithm.
Moving Object Detection And Tracking Using Convolutional Ne
18. References
Mane, Shraddha, and Supriya Mangale. "Moving object
detection and tracking using convolutional neural networks."
2018 Second International Conference on Intelligent
Computing and Control Systems (ICICCS). IEEE, 2018.
Chen, Y, X. Yang, B. Zhong, S. Pan, D. Chen, and H. Zhang,
“Cnn tracker: Online discriminative object tracking via deep
convolutional neural network”. Applied Soft Computing, 2016.
Junda Zhu, Yuanwei Lao, and Yuan F. Zheng, “Object
tracking in structured environment for video surveillance
applications”, IEEE transactions on circuits and systems for
video technology, vol.20, February 2010.
Moving Object Detection And Tracking Using Convolutional Ne
19. Open to ask questions...!
Moving Object Detection And Tracking Using Convolutional Ne