SlideShare a Scribd company logo
14SQL SERVER: INTRODUCTION TO DATA MINING USING SQL SERVER
What is a Data Mining?Data mining is the process of analyzing a data set to find patternsData mining can also defined as deriving of knowledge from raw-data
AliasesData mining is also known  by the following terms:
Importance of Data miningThe Amount of data in the contemporary world is humungous. By studying this data and understanding the trend and patterns, one can understand the system better. Due to data mining, conclusions which are profitable for an organization  or decisions which may help a librarian manage books better: may be arrived at. Pervasiveness of data:CRM(Customer Relationship Management)ERP(Enterprise Resource Planning)Database serversData PoolWeb Server Logs
Data MiningThe traditional SQL queries that we learnt till now follow the method of ‘querying’ and based upon the response, ‘explore’ the system more. Query and Exploration MethodData Mining MethodThe Data mining methodology hence takes the opposite direction as that of query methodsHere, the important attribute on which the analysis is based is the ‘name’. Hence, it is called as the class
ApplicationsThe Application of data mining covers a wide domain. Any place where data is involved can be operated upon using data mining. Some of the real world applications of data mining are as follows:
Algorithms for Data miningThe Data mining systems utilize a wide variety of algorithms. The Four common algorithm types are:
Tasks involved in Data MiningThe Process of data mining is divided into various steps as follows:  Classification
  Clustering
  Association
  Regression
  ForecastingLet us have a look at them
ClassificationClassification is the process of grouping items into meaningful groups. The Groups are later treated as a single element and the relation between the groups are analyzed. Simply put, it is the task of assigning a group to each case.Example:Data Set
ClusteringClustering is the process of grouping data items based on some attributesExample:Data SetClustered based on nearness
Data mining algorithmsData Mining is a complex methodology which needs advanced algorithms operating on useful data.The Data mining algorithms are mainly divided into 2 types:Supervising algorithmUnsupervising algorithmIn a supervising algorithm, the system needs a target(may be a set of attributes) to learn againstWhereas the Unsupervising algorithm, iterates till the boundaries of the problem are reached
Ad

More Related Content

What's hot (17)

Data pre processing
Data pre processingData pre processing
Data pre processing
pommurajopt
 
data mining
data miningdata mining
data mining
manasa polu
 
Data mining nouman javed
Data mining   nouman javedData mining   nouman javed
Data mining nouman javed
nouman javed
 
Data Mining Technniques
Data Mining TechnniquesData Mining Technniques
Data Mining Technniques
Livares Technologies Pvt Ltd
 
Data reduction
Data reductionData reduction
Data reduction
kalavathisugan
 
Manage your Datasets
Manage your DatasetsManage your Datasets
Manage your Datasets
Eng Teong Cheah
 
Data mining
Data miningData mining
Data mining
snegacmr
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
ankur bhalla
 
XL-MINER: Associations
XL-MINER: AssociationsXL-MINER: Associations
XL-MINER: Associations
DataminingTools Inc
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
DataminingTools Inc
 
Elementary data organisation
Elementary data organisationElementary data organisation
Elementary data organisation
Muzamil Hussain
 
Knowledge Discovery & Representation
Knowledge Discovery & RepresentationKnowledge Discovery & Representation
Knowledge Discovery & Representation
Darshan Patil
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with Python
Davis David
 
A random decision tree frameworkfor privacy preserving data mining
A random decision tree frameworkfor privacy preserving data miningA random decision tree frameworkfor privacy preserving data mining
A random decision tree frameworkfor privacy preserving data mining
Venkat Projects
 
Data Dictionary in System Analysis and Design
Data Dictionary in System Analysis and DesignData Dictionary in System Analysis and Design
Data Dictionary in System Analysis and Design
Arafat Hossan
 
Data warehouse logical design
Data warehouse logical designData warehouse logical design
Data warehouse logical design
Er. Nawaraj Bhandari
 
Data Mining: Classification and analysis
Data Mining: Classification and analysisData Mining: Classification and analysis
Data Mining: Classification and analysis
DataminingTools Inc
 
Data pre processing
Data pre processingData pre processing
Data pre processing
pommurajopt
 
Data mining nouman javed
Data mining   nouman javedData mining   nouman javed
Data mining nouman javed
nouman javed
 
Data mining
Data miningData mining
Data mining
snegacmr
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
ankur bhalla
 
Elementary data organisation
Elementary data organisationElementary data organisation
Elementary data organisation
Muzamil Hussain
 
Knowledge Discovery & Representation
Knowledge Discovery & RepresentationKnowledge Discovery & Representation
Knowledge Discovery & Representation
Darshan Patil
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with Python
Davis David
 
A random decision tree frameworkfor privacy preserving data mining
A random decision tree frameworkfor privacy preserving data miningA random decision tree frameworkfor privacy preserving data mining
A random decision tree frameworkfor privacy preserving data mining
Venkat Projects
 
Data Dictionary in System Analysis and Design
Data Dictionary in System Analysis and DesignData Dictionary in System Analysis and Design
Data Dictionary in System Analysis and Design
Arafat Hossan
 
Data Mining: Classification and analysis
Data Mining: Classification and analysisData Mining: Classification and analysis
Data Mining: Classification and analysis
DataminingTools Inc
 

Viewers also liked (7)

Commands of DML in SQL
Commands of DML in SQLCommands of DML in SQL
Commands of DML in SQL
Ashish Gaurkhede
 
SQL for interview
SQL for interviewSQL for interview
SQL for interview
Aditya Kumar Tripathy
 
Database Systems - SQL - DDL Statements (Chapter 3/2)
Database Systems - SQL - DDL Statements (Chapter 3/2)Database Systems - SQL - DDL Statements (Chapter 3/2)
Database Systems - SQL - DDL Statements (Chapter 3/2)
Vidyasagar Mundroy
 
MS Sql Server: Introduction To Database Concepts
MS Sql Server: Introduction To Database ConceptsMS Sql Server: Introduction To Database Concepts
MS Sql Server: Introduction To Database Concepts
DataminingTools Inc
 
DML, DDL, DCL ,DRL/DQL and TCL Statements in SQL with Examples
DML, DDL, DCL ,DRL/DQL and TCL Statements in SQL with ExamplesDML, DDL, DCL ,DRL/DQL and TCL Statements in SQL with Examples
DML, DDL, DCL ,DRL/DQL and TCL Statements in SQL with Examples
LGS, GBHS&IC, University Of South-Asia, TARA-Technologies
 
Sql Server Basics
Sql Server BasicsSql Server Basics
Sql Server Basics
rainynovember12
 
Ad

Similar to MS SQL SERVER: Introduction To Datamining Suing Sql Server (20)

Data Warehousing AWS 12345
Data Warehousing AWS 12345Data Warehousing AWS 12345
Data Warehousing AWS 12345
AkhilSinghal21
 
Top 30 Data Analyst Interview Questions.pdf
Top 30 Data Analyst Interview Questions.pdfTop 30 Data Analyst Interview Questions.pdf
Top 30 Data Analyst Interview Questions.pdf
ShaikSikindar1
 
UNIT 2: Part 2: Data Warehousing and Data Mining
UNIT 2: Part 2: Data Warehousing and Data MiningUNIT 2: Part 2: Data Warehousing and Data Mining
UNIT 2: Part 2: Data Warehousing and Data Mining
Nandakumar P
 
Unit-V-Introduction to Data Mining.pptx
Unit-V-Introduction to  Data Mining.pptxUnit-V-Introduction to  Data Mining.pptx
Unit-V-Introduction to Data Mining.pptx
Harsha Patel
 
Seminar Presentation
Seminar PresentationSeminar Presentation
Seminar Presentation
Vaibhav Dhattarwal
 
Data mining , Knowledge Discovery Process, Classification
Data mining , Knowledge Discovery Process, ClassificationData mining , Knowledge Discovery Process, Classification
Data mining , Knowledge Discovery Process, Classification
Dr. Abdul Ahad Abro
 
Lecture2 (1).ppt
Lecture2 (1).pptLecture2 (1).ppt
Lecture2 (1).ppt
Minakshee Patil
 
Unit i
Unit iUnit i
Unit i
AishwaryaLakshmiA
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES) International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
irjes
 
Unit II.pdf
Unit II.pdfUnit II.pdf
Unit II.pdf
KennyPratheepKumar
 
Prescriptive Analytics-1.pptx
Prescriptive Analytics-1.pptxPrescriptive Analytics-1.pptx
Prescriptive Analytics-1.pptx
Karthik132344
 
Business Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptxBusiness Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptx
RupaRani28
 
Data mining
Data miningData mining
Data mining
hardavishah56
 
Data mining
Data miningData mining
Data mining
pradeepa n
 
Introduction to Data Mining.pptx
Introduction to Data Mining.pptxIntroduction to Data Mining.pptx
Introduction to Data Mining.pptx
OliverBrown75
 
Introduction to Data Mining
Introduction to Data Mining Introduction to Data Mining
Introduction to Data Mining
Sushil Kulkarni
 
Data mining concepts and work
Data mining concepts and workData mining concepts and work
Data mining concepts and work
Amr Abd El Latief
 
Part1
Part1Part1
Part1
sumit621
 
Data processing
Data processingData processing
Data processing
AnupamSingh211
 
Data Mining: Data mining classification and analysis
Data Mining: Data mining classification and analysisData Mining: Data mining classification and analysis
Data Mining: Data mining classification and analysis
Datamining Tools
 
Data Warehousing AWS 12345
Data Warehousing AWS 12345Data Warehousing AWS 12345
Data Warehousing AWS 12345
AkhilSinghal21
 
Top 30 Data Analyst Interview Questions.pdf
Top 30 Data Analyst Interview Questions.pdfTop 30 Data Analyst Interview Questions.pdf
Top 30 Data Analyst Interview Questions.pdf
ShaikSikindar1
 
UNIT 2: Part 2: Data Warehousing and Data Mining
UNIT 2: Part 2: Data Warehousing and Data MiningUNIT 2: Part 2: Data Warehousing and Data Mining
UNIT 2: Part 2: Data Warehousing and Data Mining
Nandakumar P
 
Unit-V-Introduction to Data Mining.pptx
Unit-V-Introduction to  Data Mining.pptxUnit-V-Introduction to  Data Mining.pptx
Unit-V-Introduction to Data Mining.pptx
Harsha Patel
 
Data mining , Knowledge Discovery Process, Classification
Data mining , Knowledge Discovery Process, ClassificationData mining , Knowledge Discovery Process, Classification
Data mining , Knowledge Discovery Process, Classification
Dr. Abdul Ahad Abro
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES) International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
irjes
 
Prescriptive Analytics-1.pptx
Prescriptive Analytics-1.pptxPrescriptive Analytics-1.pptx
Prescriptive Analytics-1.pptx
Karthik132344
 
Business Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptxBusiness Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptx
RupaRani28
 
Introduction to Data Mining.pptx
Introduction to Data Mining.pptxIntroduction to Data Mining.pptx
Introduction to Data Mining.pptx
OliverBrown75
 
Introduction to Data Mining
Introduction to Data Mining Introduction to Data Mining
Introduction to Data Mining
Sushil Kulkarni
 
Data mining concepts and work
Data mining concepts and workData mining concepts and work
Data mining concepts and work
Amr Abd El Latief
 
Data Mining: Data mining classification and analysis
Data Mining: Data mining classification and analysisData Mining: Data mining classification and analysis
Data Mining: Data mining classification and analysis
Datamining Tools
 
Ad

More from sqlserver content (20)

MS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining toolsMS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining tools
sqlserver content
 
MS SQL SERVER: SSIS and data mining
MS SQL SERVER: SSIS and data miningMS SQL SERVER: SSIS and data mining
MS SQL SERVER: SSIS and data mining
sqlserver content
 
MS SQL SERVER: Programming sql server data mining
MS SQL SERVER:  Programming sql server data miningMS SQL SERVER:  Programming sql server data mining
MS SQL SERVER: Programming sql server data mining
sqlserver content
 
MS SQL SERVER: Olap cubes and data mining
MS SQL SERVER:  Olap cubes and data miningMS SQL SERVER:  Olap cubes and data mining
MS SQL SERVER: Olap cubes and data mining
sqlserver content
 
MS SQL SERVER: Microsoft time series algorithm
MS SQL SERVER: Microsoft time series algorithmMS SQL SERVER: Microsoft time series algorithm
MS SQL SERVER: Microsoft time series algorithm
sqlserver content
 
MS SQL SERVER: Microsoft sequence clustering and association rules
MS SQL SERVER: Microsoft sequence clustering and association rulesMS SQL SERVER: Microsoft sequence clustering and association rules
MS SQL SERVER: Microsoft sequence clustering and association rules
sqlserver content
 
MS SQL SERVER: Neural network and logistic regression
MS SQL SERVER: Neural network and logistic regressionMS SQL SERVER: Neural network and logistic regression
MS SQL SERVER: Neural network and logistic regression
sqlserver content
 
MS SQL SERVER: Microsoft naive bayes algorithm
MS SQL SERVER: Microsoft naive bayes algorithmMS SQL SERVER: Microsoft naive bayes algorithm
MS SQL SERVER: Microsoft naive bayes algorithm
sqlserver content
 
MS SQL SERVER: Decision trees algorithm
MS SQL SERVER: Decision trees algorithmMS SQL SERVER: Decision trees algorithm
MS SQL SERVER: Decision trees algorithm
sqlserver content
 
MS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmxMS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmx
sqlserver content
 
MS Sql Server: Reporting models
MS Sql Server: Reporting modelsMS Sql Server: Reporting models
MS Sql Server: Reporting models
sqlserver content
 
MS Sql Server: Reporting manipulating data
MS Sql Server: Reporting manipulating dataMS Sql Server: Reporting manipulating data
MS Sql Server: Reporting manipulating data
sqlserver content
 
MS Sql Server: Reporting introduction
MS Sql Server: Reporting introductionMS Sql Server: Reporting introduction
MS Sql Server: Reporting introduction
sqlserver content
 
MS Sql Server: Reporting basics
MS Sql  Server: Reporting basicsMS Sql  Server: Reporting basics
MS Sql Server: Reporting basics
sqlserver content
 
MS Sql Server: Datamining Introduction
MS Sql Server: Datamining IntroductionMS Sql Server: Datamining Introduction
MS Sql Server: Datamining Introduction
sqlserver content
 
MS Sql Server: Business Intelligence
MS Sql Server: Business IntelligenceMS Sql Server: Business Intelligence
MS Sql Server: Business Intelligence
sqlserver content
 
MS SQLSERVER:Feeding Data Into Database
MS SQLSERVER:Feeding Data Into DatabaseMS SQLSERVER:Feeding Data Into Database
MS SQLSERVER:Feeding Data Into Database
sqlserver content
 
MS SQLSERVER:Doing Calculations With Functions
MS SQLSERVER:Doing Calculations With FunctionsMS SQLSERVER:Doing Calculations With Functions
MS SQLSERVER:Doing Calculations With Functions
sqlserver content
 
MS SQLSERVER:Deleting A Database
MS SQLSERVER:Deleting A DatabaseMS SQLSERVER:Deleting A Database
MS SQLSERVER:Deleting A Database
sqlserver content
 
MS SQLSERVER:Customizing Your D Base Design
MS SQLSERVER:Customizing Your D Base DesignMS SQLSERVER:Customizing Your D Base Design
MS SQLSERVER:Customizing Your D Base Design
sqlserver content
 
MS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining toolsMS SQL SERVER: Using the data mining tools
MS SQL SERVER: Using the data mining tools
sqlserver content
 
MS SQL SERVER: SSIS and data mining
MS SQL SERVER: SSIS and data miningMS SQL SERVER: SSIS and data mining
MS SQL SERVER: SSIS and data mining
sqlserver content
 
MS SQL SERVER: Programming sql server data mining
MS SQL SERVER:  Programming sql server data miningMS SQL SERVER:  Programming sql server data mining
MS SQL SERVER: Programming sql server data mining
sqlserver content
 
MS SQL SERVER: Olap cubes and data mining
MS SQL SERVER:  Olap cubes and data miningMS SQL SERVER:  Olap cubes and data mining
MS SQL SERVER: Olap cubes and data mining
sqlserver content
 
MS SQL SERVER: Microsoft time series algorithm
MS SQL SERVER: Microsoft time series algorithmMS SQL SERVER: Microsoft time series algorithm
MS SQL SERVER: Microsoft time series algorithm
sqlserver content
 
MS SQL SERVER: Microsoft sequence clustering and association rules
MS SQL SERVER: Microsoft sequence clustering and association rulesMS SQL SERVER: Microsoft sequence clustering and association rules
MS SQL SERVER: Microsoft sequence clustering and association rules
sqlserver content
 
MS SQL SERVER: Neural network and logistic regression
MS SQL SERVER: Neural network and logistic regressionMS SQL SERVER: Neural network and logistic regression
MS SQL SERVER: Neural network and logistic regression
sqlserver content
 
MS SQL SERVER: Microsoft naive bayes algorithm
MS SQL SERVER: Microsoft naive bayes algorithmMS SQL SERVER: Microsoft naive bayes algorithm
MS SQL SERVER: Microsoft naive bayes algorithm
sqlserver content
 
MS SQL SERVER: Decision trees algorithm
MS SQL SERVER: Decision trees algorithmMS SQL SERVER: Decision trees algorithm
MS SQL SERVER: Decision trees algorithm
sqlserver content
 
MS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmxMS SQL Server: Data mining concepts and dmx
MS SQL Server: Data mining concepts and dmx
sqlserver content
 
MS Sql Server: Reporting models
MS Sql Server: Reporting modelsMS Sql Server: Reporting models
MS Sql Server: Reporting models
sqlserver content
 
MS Sql Server: Reporting manipulating data
MS Sql Server: Reporting manipulating dataMS Sql Server: Reporting manipulating data
MS Sql Server: Reporting manipulating data
sqlserver content
 
MS Sql Server: Reporting introduction
MS Sql Server: Reporting introductionMS Sql Server: Reporting introduction
MS Sql Server: Reporting introduction
sqlserver content
 
MS Sql Server: Reporting basics
MS Sql  Server: Reporting basicsMS Sql  Server: Reporting basics
MS Sql Server: Reporting basics
sqlserver content
 
MS Sql Server: Datamining Introduction
MS Sql Server: Datamining IntroductionMS Sql Server: Datamining Introduction
MS Sql Server: Datamining Introduction
sqlserver content
 
MS Sql Server: Business Intelligence
MS Sql Server: Business IntelligenceMS Sql Server: Business Intelligence
MS Sql Server: Business Intelligence
sqlserver content
 
MS SQLSERVER:Feeding Data Into Database
MS SQLSERVER:Feeding Data Into DatabaseMS SQLSERVER:Feeding Data Into Database
MS SQLSERVER:Feeding Data Into Database
sqlserver content
 
MS SQLSERVER:Doing Calculations With Functions
MS SQLSERVER:Doing Calculations With FunctionsMS SQLSERVER:Doing Calculations With Functions
MS SQLSERVER:Doing Calculations With Functions
sqlserver content
 
MS SQLSERVER:Deleting A Database
MS SQLSERVER:Deleting A DatabaseMS SQLSERVER:Deleting A Database
MS SQLSERVER:Deleting A Database
sqlserver content
 
MS SQLSERVER:Customizing Your D Base Design
MS SQLSERVER:Customizing Your D Base DesignMS SQLSERVER:Customizing Your D Base Design
MS SQLSERVER:Customizing Your D Base Design
sqlserver content
 

Recently uploaded (20)

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
TrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
TrsLabs - AI Agents for All - Chatbots to Multi-Agents SystemsTrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
TrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
Trs Labs
 
Build 3D Animated Safety Induction - Tech EHS
Build 3D Animated Safety Induction - Tech EHSBuild 3D Animated Safety Induction - Tech EHS
Build 3D Animated Safety Induction - Tech EHS
TECH EHS Solution
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
TrsLabs - Leverage the Power of UPI Payments
TrsLabs - Leverage the Power of UPI PaymentsTrsLabs - Leverage the Power of UPI Payments
TrsLabs - Leverage the Power of UPI Payments
Trs Labs
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
TrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
TrsLabs - AI Agents for All - Chatbots to Multi-Agents SystemsTrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
TrsLabs - AI Agents for All - Chatbots to Multi-Agents Systems
Trs Labs
 
Build 3D Animated Safety Induction - Tech EHS
Build 3D Animated Safety Induction - Tech EHSBuild 3D Animated Safety Induction - Tech EHS
Build 3D Animated Safety Induction - Tech EHS
TECH EHS Solution
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
TrsLabs - Leverage the Power of UPI Payments
TrsLabs - Leverage the Power of UPI PaymentsTrsLabs - Leverage the Power of UPI Payments
TrsLabs - Leverage the Power of UPI Payments
Trs Labs
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 

MS SQL SERVER: Introduction To Datamining Suing Sql Server

  • 1. 14SQL SERVER: INTRODUCTION TO DATA MINING USING SQL SERVER
  • 2. What is a Data Mining?Data mining is the process of analyzing a data set to find patternsData mining can also defined as deriving of knowledge from raw-data
  • 3. AliasesData mining is also known by the following terms:
  • 4. Importance of Data miningThe Amount of data in the contemporary world is humungous. By studying this data and understanding the trend and patterns, one can understand the system better. Due to data mining, conclusions which are profitable for an organization or decisions which may help a librarian manage books better: may be arrived at. Pervasiveness of data:CRM(Customer Relationship Management)ERP(Enterprise Resource Planning)Database serversData PoolWeb Server Logs
  • 5. Data MiningThe traditional SQL queries that we learnt till now follow the method of ‘querying’ and based upon the response, ‘explore’ the system more. Query and Exploration MethodData Mining MethodThe Data mining methodology hence takes the opposite direction as that of query methodsHere, the important attribute on which the analysis is based is the ‘name’. Hence, it is called as the class
  • 6. ApplicationsThe Application of data mining covers a wide domain. Any place where data is involved can be operated upon using data mining. Some of the real world applications of data mining are as follows:
  • 7. Algorithms for Data miningThe Data mining systems utilize a wide variety of algorithms. The Four common algorithm types are:
  • 8. Tasks involved in Data MiningThe Process of data mining is divided into various steps as follows: Classification
  • 12. ForecastingLet us have a look at them
  • 13. ClassificationClassification is the process of grouping items into meaningful groups. The Groups are later treated as a single element and the relation between the groups are analyzed. Simply put, it is the task of assigning a group to each case.Example:Data Set
  • 14. ClusteringClustering is the process of grouping data items based on some attributesExample:Data SetClustered based on nearness
  • 15. Data mining algorithmsData Mining is a complex methodology which needs advanced algorithms operating on useful data.The Data mining algorithms are mainly divided into 2 types:Supervising algorithmUnsupervising algorithmIn a supervising algorithm, the system needs a target(may be a set of attributes) to learn againstWhereas the Unsupervising algorithm, iterates till the boundaries of the problem are reached
  • 16. Regression and ForecastingREGRESSION:In some problems, the analysis, instead of looking for patterns that describe prime attributes (classes), we look for patterns in numerical valuesThere are 2 types of regression: 1.Linear regression 2. Logostic RegressionRegression is used to solve many business problems like predicting sea-wave patterns, temperature, air pressure, and humidity.FORECASTING:As the name suggests, it is the fore telling of data from that which currently exists.Eg: Election results forecast
  • 17. Steps to takeThe Process of data mining consists of various steps which are listed below:Data Collection: Collect dataData Cleaning: Eliminate unwanted, irrelevant and wrong dataData Transformation: Change data into a word that can be used for data mining. The Types of data transformations are:Numerical TransformationGroupingAggregation: Form groups of minute data items and handle them as aggregates. It makes the process much easier.Missing Value handling: Predict missing values or eliminate all such valuesRemoving Outliers: Remove invalid dataModel Building: Build the data mining model.Model Assessment Test with a large amount of data. If a model needs change, make it immediately.
  • 18. What to do next?The Microsoft Office 2007 supports a wide variety of data mining tools. Visit the site www.sqlserverdatamining.com and download the MS Access 2007 Add-on for data mining. Install the add-on.Working with the Access 07 Data mining tools will be handled in the next set of presentations.Summary Data mining
  • 24. Steps involvedVisit more self help tutorialsPick a tutorial of your choice and browse through it at your own pace.The tutorials section is free, self-guiding and will not involve any additional support.Visit us at www.dataminingtools.net