SlideShare a Scribd company logo
Natural language search in Solr
             Tommaso Teofili, Sourcesense
   t.teofili@sourcesense.com, October 19th 2011
Agenda
 An approach to natural language search in
  Solr
 Main points
  •   Solr-UIMA integration module
  •   Custom Lucene analyzers for UIMA
  •   OSS NLP algorithms in Lucene/Solr
  •   Orchestrating blocks to build a sample
      system able to understand natural language
      queries
 Results
My Background
 Software engineer at Sourcesense
  • Enterprise search consultant
 Member of the Apache Software Foundation
  •   UIMA
  •   Clerezza
  •   Stanbol
  •   DirectMemory
  •   ...
Google in ‘99
Google today
Google today
The Challenge
 Improved recall/precision
  • ‘articles about science’ (concepts)
  • ‘movies by K. Spacey’ vs ‘movies with K. Spacey’
 Easier experience for non-expert users
  • ‘people working at Google’ - ‘cities near London’
 Horizontal domains (e.g. Google)
 Vertical domains
Hurdles
 understanding documents’ text/user queries
 extract domain-specific/wide entities and
  concepts
 index/search performance
Use Case
   search engine for an online movies magazine
   Solr based
   non technical users
   time / cost
    • Solr 3.x setup : 2 mins
    • NLS setup / tweak : 5 days
 expecting
    • improved recall / precision
    • more time (clicks) on site ($)
Online movies magazine
General approach
 Natural language processing
 Processing documents at indexing time
  • document text analysis
  • write enriched text in (dedicated) fields
  • add custom types / payloads to terms
 Processing queries at searching time
  •   query analysis
  •   higher boosts to entities/concepts
  •   in-sentence search
  •   ...
NLP
 AI discipline
   • Computers understanding and managing
     information written in human language
 analyze text at various levels
 incrementally enrich / give structure
 extract concepts and named entities
Technical detail
 NLP algorithms plugged via Apache UIMA
 Indexing time
  • UpdateProcessor plugin (solr/contrib/uima)
  • Custom tokenizers/filters
 Search time
  • Custom QParserPlugin
Why Apache UIMA?
   OASIS standard for UIM
   TLP since March 2010
   Deploy pipelines of Analysis Engines
   AEs wrap NLP algorithms
   Scaling capabilities
NLP and OSS
 Sentence Split
   • OpenNLP, UIMA Addons, StanfordNLP
 PoS tagging
   • OpenNLP, UIMA Addons, StanfordNLP
 Chunking/Parsing
   • OpenNLP, StanfordNLP
 NER
   • OpenNLP, UIMA Addons, Stanbol, StanfordNLP
 Clustering/Classifying
   • Mahout, OpenNLP, StanfordNLP
 ...
Solr NLS architecture
UIMA Update Processor
Lucene analysis & UIMA
 Type : denote lexical types for tokens
 Payload : a byte array stored at each term
  position
 tokenize / filter tokens covered by a certain
  annotation type
 store UIMA annotations’ features in types /
  payloads
UIMA type-aware tokenizer
Solr NLS QParser
 analyze user query
 extract (and query on) concepts / entities
 use types/PoS in the query for
  • boosting terms
  • synonim expansion
 search within sentences
 faceting / clustering using entities
 identify ‘place queries’ and expand Solr spatial
  queries (for filtering / boosting)
Scaling architecture
Performance
 basic (in memory)
  • slower with NRT indexing
  • search could be significantly impacted
 ReST (SimpleServer)
  • faster
  • need to explictly digest results
 UIMA-AS
  • fast also with NRT indexing
  • fast search
  • scales nicely with lots of data
DisMax vs NLS
Wrap up
   general purpose architecture
   generally improved recall / precision
   NLP algorithms accuracy make the difference
   lots of OSS alternatives
   performances can be kept good
Sources
 Resources
  • http://svn.apache.org/repos/asf/lucene/dev/trunk/
    solr/contrib/uima/
  • https://github.com/tteofili/le11-nls
 Links
  • http://wiki.apache.org/solr/SolrUIMA
  • http://googleblog.blogspot.com/2010/01/helping-
    computers-understand-language.html
Thanks
 http://www.sourcesense.com

 t.teofili@sourcesense.com

 @tteofili
Ad

More Related Content

What's hot (20)

Elasticsearch for Logs & Metrics - a deep dive
Elasticsearch for Logs & Metrics - a deep diveElasticsearch for Logs & Metrics - a deep dive
Elasticsearch for Logs & Metrics - a deep dive
Sematext Group, Inc.
 
Node Labels in YARN
Node Labels in YARNNode Labels in YARN
Node Labels in YARN
DataWorks Summit
 
Introduction To Apache Lucene
Introduction To Apache LuceneIntroduction To Apache Lucene
Introduction To Apache Lucene
Mindfire Solutions
 
An Overview of Ambari
An Overview of AmbariAn Overview of Ambari
An Overview of Ambari
Chicago Hadoop Users Group
 
Hive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep DiveHive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep Dive
DataWorks Summit
 
Apache Arrow Flight: A New Gold Standard for Data Transport
Apache Arrow Flight: A New Gold Standard for Data TransportApache Arrow Flight: A New Gold Standard for Data Transport
Apache Arrow Flight: A New Gold Standard for Data Transport
Wes McKinney
 
elk_stack_alexander_szalonnas
elk_stack_alexander_szalonnaselk_stack_alexander_szalonnas
elk_stack_alexander_szalonnas
Alexander Szalonnas
 
Ansible, best practices
Ansible, best practicesAnsible, best practices
Ansible, best practices
Bas Meijer
 
Automating with Ansible
Automating with AnsibleAutomating with Ansible
Automating with Ansible
Ricardo Schmidt
 
Amazon Elastcsearch Service 소개 및 활용 방법 (윤석찬)
Amazon Elastcsearch Service 소개 및 활용 방법 (윤석찬) Amazon Elastcsearch Service 소개 및 활용 방법 (윤석찬)
Amazon Elastcsearch Service 소개 및 활용 방법 (윤석찬)
Amazon Web Services Korea
 
Kafka Connect and Streams (Concepts, Architecture, Features)
Kafka Connect and Streams (Concepts, Architecture, Features)Kafka Connect and Streams (Concepts, Architecture, Features)
Kafka Connect and Streams (Concepts, Architecture, Features)
Kai Wähner
 
Red Hat OpenStack 17 저자직강+스터디그룹_2주차
Red Hat OpenStack 17 저자직강+스터디그룹_2주차Red Hat OpenStack 17 저자직강+스터디그룹_2주차
Red Hat OpenStack 17 저자직강+스터디그룹_2주차
Nalee Jang
 
Optimizing Hive Queries
Optimizing Hive QueriesOptimizing Hive Queries
Optimizing Hive Queries
DataWorks Summit
 
ORC File - Optimizing Your Big Data
ORC File - Optimizing Your Big DataORC File - Optimizing Your Big Data
ORC File - Optimizing Your Big Data
DataWorks Summit
 
Red Hat OpenStack 17 저자직강+스터디그룹_1주차
Red Hat OpenStack 17 저자직강+스터디그룹_1주차Red Hat OpenStack 17 저자직강+스터디그룹_1주차
Red Hat OpenStack 17 저자직강+스터디그룹_1주차
Nalee Jang
 
Introduction to Apache Flink
Introduction to Apache FlinkIntroduction to Apache Flink
Introduction to Apache Flink
mxmxm
 
Impacts of Sharding, Partitioning, Encoding, and Sorting on Distributed Query...
Impacts of Sharding, Partitioning, Encoding, and Sorting on Distributed Query...Impacts of Sharding, Partitioning, Encoding, and Sorting on Distributed Query...
Impacts of Sharding, Partitioning, Encoding, and Sorting on Distributed Query...
InfluxData
 
What is the State of my Kafka Streams Application? Unleashing Metrics. | Neil...
What is the State of my Kafka Streams Application? Unleashing Metrics. | Neil...What is the State of my Kafka Streams Application? Unleashing Metrics. | Neil...
What is the State of my Kafka Streams Application? Unleashing Metrics. | Neil...
HostedbyConfluent
 
Hadoop介绍 基础篇
Hadoop介绍 基础篇Hadoop介绍 基础篇
Hadoop介绍 基础篇
cloudma
 
Apache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query Processing Apache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query Processing
DataWorks Summit
 
Elasticsearch for Logs & Metrics - a deep dive
Elasticsearch for Logs & Metrics - a deep diveElasticsearch for Logs & Metrics - a deep dive
Elasticsearch for Logs & Metrics - a deep dive
Sematext Group, Inc.
 
Hive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep DiveHive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep Dive
DataWorks Summit
 
Apache Arrow Flight: A New Gold Standard for Data Transport
Apache Arrow Flight: A New Gold Standard for Data TransportApache Arrow Flight: A New Gold Standard for Data Transport
Apache Arrow Flight: A New Gold Standard for Data Transport
Wes McKinney
 
Ansible, best practices
Ansible, best practicesAnsible, best practices
Ansible, best practices
Bas Meijer
 
Amazon Elastcsearch Service 소개 및 활용 방법 (윤석찬)
Amazon Elastcsearch Service 소개 및 활용 방법 (윤석찬) Amazon Elastcsearch Service 소개 및 활용 방법 (윤석찬)
Amazon Elastcsearch Service 소개 및 활용 방법 (윤석찬)
Amazon Web Services Korea
 
Kafka Connect and Streams (Concepts, Architecture, Features)
Kafka Connect and Streams (Concepts, Architecture, Features)Kafka Connect and Streams (Concepts, Architecture, Features)
Kafka Connect and Streams (Concepts, Architecture, Features)
Kai Wähner
 
Red Hat OpenStack 17 저자직강+스터디그룹_2주차
Red Hat OpenStack 17 저자직강+스터디그룹_2주차Red Hat OpenStack 17 저자직강+스터디그룹_2주차
Red Hat OpenStack 17 저자직강+스터디그룹_2주차
Nalee Jang
 
ORC File - Optimizing Your Big Data
ORC File - Optimizing Your Big DataORC File - Optimizing Your Big Data
ORC File - Optimizing Your Big Data
DataWorks Summit
 
Red Hat OpenStack 17 저자직강+스터디그룹_1주차
Red Hat OpenStack 17 저자직강+스터디그룹_1주차Red Hat OpenStack 17 저자직강+스터디그룹_1주차
Red Hat OpenStack 17 저자직강+스터디그룹_1주차
Nalee Jang
 
Introduction to Apache Flink
Introduction to Apache FlinkIntroduction to Apache Flink
Introduction to Apache Flink
mxmxm
 
Impacts of Sharding, Partitioning, Encoding, and Sorting on Distributed Query...
Impacts of Sharding, Partitioning, Encoding, and Sorting on Distributed Query...Impacts of Sharding, Partitioning, Encoding, and Sorting on Distributed Query...
Impacts of Sharding, Partitioning, Encoding, and Sorting on Distributed Query...
InfluxData
 
What is the State of my Kafka Streams Application? Unleashing Metrics. | Neil...
What is the State of my Kafka Streams Application? Unleashing Metrics. | Neil...What is the State of my Kafka Streams Application? Unleashing Metrics. | Neil...
What is the State of my Kafka Streams Application? Unleashing Metrics. | Neil...
HostedbyConfluent
 
Hadoop介绍 基础篇
Hadoop介绍 基础篇Hadoop介绍 基础篇
Hadoop介绍 基础篇
cloudma
 
Apache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query Processing Apache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query Processing
DataWorks Summit
 

Viewers also liked (20)

Webinar: Natural Language Search with Solr
Webinar: Natural Language Search with SolrWebinar: Natural Language Search with Solr
Webinar: Natural Language Search with Solr
Lucidworks
 
Shrinking the Haystack" using Solr and OpenNLP
Shrinking the Haystack" using Solr and OpenNLPShrinking the Haystack" using Solr and OpenNLP
Shrinking the Haystack" using Solr and OpenNLP
lucenerevolution
 
Webinar: OpenNLP and Solr for Superior Relevance
Webinar: OpenNLP and Solr for Superior RelevanceWebinar: OpenNLP and Solr for Superior Relevance
Webinar: OpenNLP and Solr for Superior Relevance
Lucidworks
 
Semantic & Multilingual Strategies in Lucene/Solr
Semantic & Multilingual Strategies in Lucene/SolrSemantic & Multilingual Strategies in Lucene/Solr
Semantic & Multilingual Strategies in Lucene/Solr
Trey Grainger
 
Apache UIMA Introduction
Apache UIMA IntroductionApache UIMA Introduction
Apache UIMA Introduction
Tommaso Teofili
 
Sais svcc
Sais svccSais svcc
Sais svcc
Pradeep Pujari
 
Pablo Duboue
Pablo DubouePablo Duboue
Pablo Duboue
ClusterCba
 
Advanced query parsing techniques
Advanced query parsing techniquesAdvanced query parsing techniques
Advanced query parsing techniques
lucenerevolution
 
An Introduction to NLP4L - Natural Language Processing Tool for Apache Lucene...
An Introduction to NLP4L - Natural Language Processing Tool for Apache Lucene...An Introduction to NLP4L - Natural Language Processing Tool for Apache Lucene...
An Introduction to NLP4L - Natural Language Processing Tool for Apache Lucene...
Lucidworks
 
Practical Machine Learning for Smarter Search with Spark+Solr
Practical Machine Learning for Smarter Search with Spark+SolrPractical Machine Learning for Smarter Search with Spark+Solr
Practical Machine Learning for Smarter Search with Spark+Solr
Jake Mannix
 
UIMA
UIMAUIMA
UIMA
otisg
 
Apache UIMA and Semantic Search
Apache UIMA and Semantic SearchApache UIMA and Semantic Search
Apache UIMA and Semantic Search
Tommaso Teofili
 
Never Stop Exploring - Pushing the Limits of Solr: Presented by Anirudha Jadh...
Never Stop Exploring - Pushing the Limits of Solr: Presented by Anirudha Jadh...Never Stop Exploring - Pushing the Limits of Solr: Presented by Anirudha Jadh...
Never Stop Exploring - Pushing the Limits of Solr: Presented by Anirudha Jadh...
Lucidworks
 
Solr Query Parsing
Solr Query ParsingSolr Query Parsing
Solr Query Parsing
Erik Hatcher
 
Semantic & Multilingual Strategies in Lucene/Solr: Presented by Trey Grainger...
Semantic & Multilingual Strategies in Lucene/Solr: Presented by Trey Grainger...Semantic & Multilingual Strategies in Lucene/Solr: Presented by Trey Grainger...
Semantic & Multilingual Strategies in Lucene/Solr: Presented by Trey Grainger...
Lucidworks
 
Webinar: Simpler Semantic Search with Solr
Webinar: Simpler Semantic Search with SolrWebinar: Simpler Semantic Search with Solr
Webinar: Simpler Semantic Search with Solr
Lucidworks
 
Real-Time Analytics with Solr: Presented by Yonik Seeley, Cloudera
Real-Time Analytics with Solr: Presented by Yonik Seeley, ClouderaReal-Time Analytics with Solr: Presented by Yonik Seeley, Cloudera
Real-Time Analytics with Solr: Presented by Yonik Seeley, Cloudera
Lucidworks
 
Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...
Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...
Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...
Lucidworks
 
Presentation of OpenNLP
Presentation of OpenNLPPresentation of OpenNLP
Presentation of OpenNLP
Robert Viseur
 
Galene - LinkedIn's Search Architecture: Presented by Diego Buthay & Sriram S...
Galene - LinkedIn's Search Architecture: Presented by Diego Buthay & Sriram S...Galene - LinkedIn's Search Architecture: Presented by Diego Buthay & Sriram S...
Galene - LinkedIn's Search Architecture: Presented by Diego Buthay & Sriram S...
Lucidworks
 
Webinar: Natural Language Search with Solr
Webinar: Natural Language Search with SolrWebinar: Natural Language Search with Solr
Webinar: Natural Language Search with Solr
Lucidworks
 
Shrinking the Haystack" using Solr and OpenNLP
Shrinking the Haystack" using Solr and OpenNLPShrinking the Haystack" using Solr and OpenNLP
Shrinking the Haystack" using Solr and OpenNLP
lucenerevolution
 
Webinar: OpenNLP and Solr for Superior Relevance
Webinar: OpenNLP and Solr for Superior RelevanceWebinar: OpenNLP and Solr for Superior Relevance
Webinar: OpenNLP and Solr for Superior Relevance
Lucidworks
 
Semantic & Multilingual Strategies in Lucene/Solr
Semantic & Multilingual Strategies in Lucene/SolrSemantic & Multilingual Strategies in Lucene/Solr
Semantic & Multilingual Strategies in Lucene/Solr
Trey Grainger
 
Apache UIMA Introduction
Apache UIMA IntroductionApache UIMA Introduction
Apache UIMA Introduction
Tommaso Teofili
 
Advanced query parsing techniques
Advanced query parsing techniquesAdvanced query parsing techniques
Advanced query parsing techniques
lucenerevolution
 
An Introduction to NLP4L - Natural Language Processing Tool for Apache Lucene...
An Introduction to NLP4L - Natural Language Processing Tool for Apache Lucene...An Introduction to NLP4L - Natural Language Processing Tool for Apache Lucene...
An Introduction to NLP4L - Natural Language Processing Tool for Apache Lucene...
Lucidworks
 
Practical Machine Learning for Smarter Search with Spark+Solr
Practical Machine Learning for Smarter Search with Spark+SolrPractical Machine Learning for Smarter Search with Spark+Solr
Practical Machine Learning for Smarter Search with Spark+Solr
Jake Mannix
 
UIMA
UIMAUIMA
UIMA
otisg
 
Apache UIMA and Semantic Search
Apache UIMA and Semantic SearchApache UIMA and Semantic Search
Apache UIMA and Semantic Search
Tommaso Teofili
 
Never Stop Exploring - Pushing the Limits of Solr: Presented by Anirudha Jadh...
Never Stop Exploring - Pushing the Limits of Solr: Presented by Anirudha Jadh...Never Stop Exploring - Pushing the Limits of Solr: Presented by Anirudha Jadh...
Never Stop Exploring - Pushing the Limits of Solr: Presented by Anirudha Jadh...
Lucidworks
 
Solr Query Parsing
Solr Query ParsingSolr Query Parsing
Solr Query Parsing
Erik Hatcher
 
Semantic & Multilingual Strategies in Lucene/Solr: Presented by Trey Grainger...
Semantic & Multilingual Strategies in Lucene/Solr: Presented by Trey Grainger...Semantic & Multilingual Strategies in Lucene/Solr: Presented by Trey Grainger...
Semantic & Multilingual Strategies in Lucene/Solr: Presented by Trey Grainger...
Lucidworks
 
Webinar: Simpler Semantic Search with Solr
Webinar: Simpler Semantic Search with SolrWebinar: Simpler Semantic Search with Solr
Webinar: Simpler Semantic Search with Solr
Lucidworks
 
Real-Time Analytics with Solr: Presented by Yonik Seeley, Cloudera
Real-Time Analytics with Solr: Presented by Yonik Seeley, ClouderaReal-Time Analytics with Solr: Presented by Yonik Seeley, Cloudera
Real-Time Analytics with Solr: Presented by Yonik Seeley, Cloudera
Lucidworks
 
Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...
Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...
Large Scale Log Analytics with Solr: Presented by Rafał Kuć & Radu Gheorghe, ...
Lucidworks
 
Presentation of OpenNLP
Presentation of OpenNLPPresentation of OpenNLP
Presentation of OpenNLP
Robert Viseur
 
Galene - LinkedIn's Search Architecture: Presented by Diego Buthay & Sriram S...
Galene - LinkedIn's Search Architecture: Presented by Diego Buthay & Sriram S...Galene - LinkedIn's Search Architecture: Presented by Diego Buthay & Sriram S...
Galene - LinkedIn's Search Architecture: Presented by Diego Buthay & Sriram S...
Lucidworks
 
Ad

Similar to Natural Language Search in Solr (20)

Let's Build an Inverted Index: Introduction to Apache Lucene/Solr
Let's Build an Inverted Index: Introduction to Apache Lucene/SolrLet's Build an Inverted Index: Introduction to Apache Lucene/Solr
Let's Build an Inverted Index: Introduction to Apache Lucene/Solr
Sease
 
Enterprise Search Using Apache Solr
Enterprise Search Using Apache SolrEnterprise Search Using Apache Solr
Enterprise Search Using Apache Solr
sagar chaturvedi
 
Building NLP solutions using Python
Building NLP solutions using PythonBuilding NLP solutions using Python
Building NLP solutions using Python
botsplash.com
 
Introduction to Lucene & Solr and Usecases
Introduction to Lucene & Solr and UsecasesIntroduction to Lucene & Solr and Usecases
Introduction to Lucene & Solr and Usecases
Rahul Jain
 
Introduction to Apache Lucene/Solr
Introduction to Apache Lucene/SolrIntroduction to Apache Lucene/Solr
Introduction to Apache Lucene/Solr
Rahul Jain
 
2010 10-building-global-listening-platform-with-solr
2010 10-building-global-listening-platform-with-solr2010 10-building-global-listening-platform-with-solr
2010 10-building-global-listening-platform-with-solr
Lucidworks (Archived)
 
Shrinking the haystack wes caldwell - final
Shrinking the haystack   wes caldwell - finalShrinking the haystack   wes caldwell - final
Shrinking the haystack wes caldwell - final
lucenerevolution
 
ElasticSearch in Production: lessons learned
ElasticSearch in Production: lessons learnedElasticSearch in Production: lessons learned
ElasticSearch in Production: lessons learned
BeyondTrees
 
Self-learned Relevancy with Apache Solr
Self-learned Relevancy with Apache SolrSelf-learned Relevancy with Apache Solr
Self-learned Relevancy with Apache Solr
Trey Grainger
 
How the Lucene More Like This Works
How the Lucene More Like This WorksHow the Lucene More Like This Works
How the Lucene More Like This Works
Sease
 
Apache Solr - Enterprise search platform
Apache Solr - Enterprise search platformApache Solr - Enterprise search platform
Apache Solr - Enterprise search platform
Tommaso Teofili
 
What's New in Lucene/Solr Presented by Grant Ingersoll at SolrExchage DC
What's New  in Lucene/Solr Presented by Grant Ingersoll at SolrExchage DCWhat's New  in Lucene/Solr Presented by Grant Ingersoll at SolrExchage DC
What's New in Lucene/Solr Presented by Grant Ingersoll at SolrExchage DC
Lucidworks (Archived)
 
Lucene BootCamp
Lucene BootCampLucene BootCamp
Lucene BootCamp
GokulD
 
Introduction to Solr
Introduction to SolrIntroduction to Solr
Introduction to Solr
Erik Hatcher
 
The Apache Solr Smart Data Ecosystem
The Apache Solr Smart Data EcosystemThe Apache Solr Smart Data Ecosystem
The Apache Solr Smart Data Ecosystem
Trey Grainger
 
Elasticsearch Basics
Elasticsearch BasicsElasticsearch Basics
Elasticsearch Basics
Shifa Khan
 
ICIC 2013 Conference Proceedings Andreas Pesenhofer max.recall
ICIC 2013 Conference Proceedings Andreas Pesenhofer max.recallICIC 2013 Conference Proceedings Andreas Pesenhofer max.recall
ICIC 2013 Conference Proceedings Andreas Pesenhofer max.recall
Dr. Haxel Consult
 
Apache solr
Apache solrApache solr
Apache solr
Dipen Rangwani
 
Lucene for Solr Developers
Lucene for Solr DevelopersLucene for Solr Developers
Lucene for Solr Developers
Erik Hatcher
 
Apache Lucene 4
Apache Lucene 4Apache Lucene 4
Apache Lucene 4
Grant Ingersoll
 
Let's Build an Inverted Index: Introduction to Apache Lucene/Solr
Let's Build an Inverted Index: Introduction to Apache Lucene/SolrLet's Build an Inverted Index: Introduction to Apache Lucene/Solr
Let's Build an Inverted Index: Introduction to Apache Lucene/Solr
Sease
 
Enterprise Search Using Apache Solr
Enterprise Search Using Apache SolrEnterprise Search Using Apache Solr
Enterprise Search Using Apache Solr
sagar chaturvedi
 
Building NLP solutions using Python
Building NLP solutions using PythonBuilding NLP solutions using Python
Building NLP solutions using Python
botsplash.com
 
Introduction to Lucene & Solr and Usecases
Introduction to Lucene & Solr and UsecasesIntroduction to Lucene & Solr and Usecases
Introduction to Lucene & Solr and Usecases
Rahul Jain
 
Introduction to Apache Lucene/Solr
Introduction to Apache Lucene/SolrIntroduction to Apache Lucene/Solr
Introduction to Apache Lucene/Solr
Rahul Jain
 
2010 10-building-global-listening-platform-with-solr
2010 10-building-global-listening-platform-with-solr2010 10-building-global-listening-platform-with-solr
2010 10-building-global-listening-platform-with-solr
Lucidworks (Archived)
 
Shrinking the haystack wes caldwell - final
Shrinking the haystack   wes caldwell - finalShrinking the haystack   wes caldwell - final
Shrinking the haystack wes caldwell - final
lucenerevolution
 
ElasticSearch in Production: lessons learned
ElasticSearch in Production: lessons learnedElasticSearch in Production: lessons learned
ElasticSearch in Production: lessons learned
BeyondTrees
 
Self-learned Relevancy with Apache Solr
Self-learned Relevancy with Apache SolrSelf-learned Relevancy with Apache Solr
Self-learned Relevancy with Apache Solr
Trey Grainger
 
How the Lucene More Like This Works
How the Lucene More Like This WorksHow the Lucene More Like This Works
How the Lucene More Like This Works
Sease
 
Apache Solr - Enterprise search platform
Apache Solr - Enterprise search platformApache Solr - Enterprise search platform
Apache Solr - Enterprise search platform
Tommaso Teofili
 
What's New in Lucene/Solr Presented by Grant Ingersoll at SolrExchage DC
What's New  in Lucene/Solr Presented by Grant Ingersoll at SolrExchage DCWhat's New  in Lucene/Solr Presented by Grant Ingersoll at SolrExchage DC
What's New in Lucene/Solr Presented by Grant Ingersoll at SolrExchage DC
Lucidworks (Archived)
 
Lucene BootCamp
Lucene BootCampLucene BootCamp
Lucene BootCamp
GokulD
 
Introduction to Solr
Introduction to SolrIntroduction to Solr
Introduction to Solr
Erik Hatcher
 
The Apache Solr Smart Data Ecosystem
The Apache Solr Smart Data EcosystemThe Apache Solr Smart Data Ecosystem
The Apache Solr Smart Data Ecosystem
Trey Grainger
 
Elasticsearch Basics
Elasticsearch BasicsElasticsearch Basics
Elasticsearch Basics
Shifa Khan
 
ICIC 2013 Conference Proceedings Andreas Pesenhofer max.recall
ICIC 2013 Conference Proceedings Andreas Pesenhofer max.recallICIC 2013 Conference Proceedings Andreas Pesenhofer max.recall
ICIC 2013 Conference Proceedings Andreas Pesenhofer max.recall
Dr. Haxel Consult
 
Lucene for Solr Developers
Lucene for Solr DevelopersLucene for Solr Developers
Lucene for Solr Developers
Erik Hatcher
 
Ad

More from Tommaso Teofili (16)

Affect Enriched Word Embeddings for News IR
Affect Enriched Word Embeddings for News IRAffect Enriched Word Embeddings for News IR
Affect Enriched Word Embeddings for News IR
Tommaso Teofili
 
Flexible search in Apache Jackrabbit Oak
Flexible search in Apache Jackrabbit OakFlexible search in Apache Jackrabbit Oak
Flexible search in Apache Jackrabbit Oak
Tommaso Teofili
 
Data replication in Sling
Data replication in SlingData replication in Sling
Data replication in Sling
Tommaso Teofili
 
Search engines in the industry
Search engines in the industrySearch engines in the industry
Search engines in the industry
Tommaso Teofili
 
Scaling search in Oak with Solr
Scaling search in Oak with Solr Scaling search in Oak with Solr
Scaling search in Oak with Solr
Tommaso Teofili
 
Text categorization with Lucene and Solr
Text categorization with Lucene and SolrText categorization with Lucene and Solr
Text categorization with Lucene and Solr
Tommaso Teofili
 
Machine learning with Apache Hama
Machine learning with Apache HamaMachine learning with Apache Hama
Machine learning with Apache Hama
Tommaso Teofili
 
Adapting Apache UIMA to OSGi
Adapting Apache UIMA to OSGiAdapting Apache UIMA to OSGi
Adapting Apache UIMA to OSGi
Tommaso Teofili
 
Oak / Solr integration
Oak / Solr integrationOak / Solr integration
Oak / Solr integration
Tommaso Teofili
 
Domeo, Text Mining, UIMA and Clerezza
Domeo, Text Mining, UIMA and ClerezzaDomeo, Text Mining, UIMA and Clerezza
Domeo, Text Mining, UIMA and Clerezza
Tommaso Teofili
 
Apache Solr crash course
Apache Solr crash courseApache Solr crash course
Apache Solr crash course
Tommaso Teofili
 
Apache UIMA - Hands on code
Apache UIMA - Hands on codeApache UIMA - Hands on code
Apache UIMA - Hands on code
Tommaso Teofili
 
OSS Enterprise Search EU Tour
OSS Enterprise Search EU TourOSS Enterprise Search EU Tour
OSS Enterprise Search EU Tour
Tommaso Teofili
 
Information Extraction with UIMA - Usecases
Information Extraction with UIMA - UsecasesInformation Extraction with UIMA - Usecases
Information Extraction with UIMA - Usecases
Tommaso Teofili
 
Apache UIMA and Metadata Generation
Apache UIMA and Metadata GenerationApache UIMA and Metadata Generation
Apache UIMA and Metadata Generation
Tommaso Teofili
 
Data and Information Extraction on the Web
Data and Information Extraction on the WebData and Information Extraction on the Web
Data and Information Extraction on the Web
Tommaso Teofili
 
Affect Enriched Word Embeddings for News IR
Affect Enriched Word Embeddings for News IRAffect Enriched Word Embeddings for News IR
Affect Enriched Word Embeddings for News IR
Tommaso Teofili
 
Flexible search in Apache Jackrabbit Oak
Flexible search in Apache Jackrabbit OakFlexible search in Apache Jackrabbit Oak
Flexible search in Apache Jackrabbit Oak
Tommaso Teofili
 
Data replication in Sling
Data replication in SlingData replication in Sling
Data replication in Sling
Tommaso Teofili
 
Search engines in the industry
Search engines in the industrySearch engines in the industry
Search engines in the industry
Tommaso Teofili
 
Scaling search in Oak with Solr
Scaling search in Oak with Solr Scaling search in Oak with Solr
Scaling search in Oak with Solr
Tommaso Teofili
 
Text categorization with Lucene and Solr
Text categorization with Lucene and SolrText categorization with Lucene and Solr
Text categorization with Lucene and Solr
Tommaso Teofili
 
Machine learning with Apache Hama
Machine learning with Apache HamaMachine learning with Apache Hama
Machine learning with Apache Hama
Tommaso Teofili
 
Adapting Apache UIMA to OSGi
Adapting Apache UIMA to OSGiAdapting Apache UIMA to OSGi
Adapting Apache UIMA to OSGi
Tommaso Teofili
 
Domeo, Text Mining, UIMA and Clerezza
Domeo, Text Mining, UIMA and ClerezzaDomeo, Text Mining, UIMA and Clerezza
Domeo, Text Mining, UIMA and Clerezza
Tommaso Teofili
 
Apache Solr crash course
Apache Solr crash courseApache Solr crash course
Apache Solr crash course
Tommaso Teofili
 
Apache UIMA - Hands on code
Apache UIMA - Hands on codeApache UIMA - Hands on code
Apache UIMA - Hands on code
Tommaso Teofili
 
OSS Enterprise Search EU Tour
OSS Enterprise Search EU TourOSS Enterprise Search EU Tour
OSS Enterprise Search EU Tour
Tommaso Teofili
 
Information Extraction with UIMA - Usecases
Information Extraction with UIMA - UsecasesInformation Extraction with UIMA - Usecases
Information Extraction with UIMA - Usecases
Tommaso Teofili
 
Apache UIMA and Metadata Generation
Apache UIMA and Metadata GenerationApache UIMA and Metadata Generation
Apache UIMA and Metadata Generation
Tommaso Teofili
 
Data and Information Extraction on the Web
Data and Information Extraction on the WebData and Information Extraction on the Web
Data and Information Extraction on the Web
Tommaso Teofili
 

Recently uploaded (20)

UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 

Natural Language Search in Solr

  • 1. Natural language search in Solr Tommaso Teofili, Sourcesense [email protected], October 19th 2011
  • 2. Agenda  An approach to natural language search in Solr  Main points • Solr-UIMA integration module • Custom Lucene analyzers for UIMA • OSS NLP algorithms in Lucene/Solr • Orchestrating blocks to build a sample system able to understand natural language queries  Results
  • 3. My Background  Software engineer at Sourcesense • Enterprise search consultant  Member of the Apache Software Foundation • UIMA • Clerezza • Stanbol • DirectMemory • ...
  • 7. The Challenge  Improved recall/precision • ‘articles about science’ (concepts) • ‘movies by K. Spacey’ vs ‘movies with K. Spacey’  Easier experience for non-expert users • ‘people working at Google’ - ‘cities near London’  Horizontal domains (e.g. Google)  Vertical domains
  • 8. Hurdles  understanding documents’ text/user queries  extract domain-specific/wide entities and concepts  index/search performance
  • 9. Use Case  search engine for an online movies magazine  Solr based  non technical users  time / cost • Solr 3.x setup : 2 mins • NLS setup / tweak : 5 days  expecting • improved recall / precision • more time (clicks) on site ($)
  • 11. General approach  Natural language processing  Processing documents at indexing time • document text analysis • write enriched text in (dedicated) fields • add custom types / payloads to terms  Processing queries at searching time • query analysis • higher boosts to entities/concepts • in-sentence search • ...
  • 12. NLP  AI discipline • Computers understanding and managing information written in human language  analyze text at various levels  incrementally enrich / give structure  extract concepts and named entities
  • 13. Technical detail  NLP algorithms plugged via Apache UIMA  Indexing time • UpdateProcessor plugin (solr/contrib/uima) • Custom tokenizers/filters  Search time • Custom QParserPlugin
  • 14. Why Apache UIMA?  OASIS standard for UIM  TLP since March 2010  Deploy pipelines of Analysis Engines  AEs wrap NLP algorithms  Scaling capabilities
  • 15. NLP and OSS  Sentence Split • OpenNLP, UIMA Addons, StanfordNLP  PoS tagging • OpenNLP, UIMA Addons, StanfordNLP  Chunking/Parsing • OpenNLP, StanfordNLP  NER • OpenNLP, UIMA Addons, Stanbol, StanfordNLP  Clustering/Classifying • Mahout, OpenNLP, StanfordNLP  ...
  • 18. Lucene analysis & UIMA  Type : denote lexical types for tokens  Payload : a byte array stored at each term position  tokenize / filter tokens covered by a certain annotation type  store UIMA annotations’ features in types / payloads
  • 20. Solr NLS QParser  analyze user query  extract (and query on) concepts / entities  use types/PoS in the query for • boosting terms • synonim expansion  search within sentences  faceting / clustering using entities  identify ‘place queries’ and expand Solr spatial queries (for filtering / boosting)
  • 22. Performance  basic (in memory) • slower with NRT indexing • search could be significantly impacted  ReST (SimpleServer) • faster • need to explictly digest results  UIMA-AS • fast also with NRT indexing • fast search • scales nicely with lots of data
  • 24. Wrap up  general purpose architecture  generally improved recall / precision  NLP algorithms accuracy make the difference  lots of OSS alternatives  performances can be kept good
  • 25. Sources  Resources • http://svn.apache.org/repos/asf/lucene/dev/trunk/ solr/contrib/uima/ • https://github.com/tteofili/le11-nls  Links • http://wiki.apache.org/solr/SolrUIMA • http://googleblog.blogspot.com/2010/01/helping- computers-understand-language.html