This paper presents the final results of the research project that aimed for the construction of a tool which
is aided by Artificial Intelligence through an Ontology with a model trained with Machine Learning, and is
aided by Natural Language Processing to support the semantic search of research projects of the Research
System of the University of Nariño. For the construction of NATURE, as this tool is called, a methodology
was used that includes the following stages: appropriation of knowledge, installation and configuration of
tools, libraries and technologies, collection, extraction and preparation of research projects, design and
development of the tool. The main results of the work were three: a) the complete construction of the
Ontology with classes, object properties (predicates), data properties (attributes) and individuals
(instances) in Protegé, SPARQL queries with Apache Jena Fuseki and the respective coding with
Owlready2 using Jupyter Notebook with Python within the virtual environment of anaconda; b) the
successful training of the model for which Machine Learning algorithms were used and specifically
Natural Language Processing algorithms such as: SpaCy, NLTK, Word2vec and Doc2vec, this was also
performed in Jupyter Notebook with Python within the virtual environment of anaconda and with
Elasticsearch; and c) the creation of NATURE by managing and unifying the queries for the Ontology and
for the Machine Learning model. The tests showed that NATURE was successful in all the searches that
were performed as its results were satisfactory