Come può .NET contribuire alla Data Science? Cosa è .NET Interactive? Cosa c'entrano i notebook? E Apache Spark? E il pythonismo? E Azure? Vediamo in questa sessione di mettere in ordine le idee.
The Polyglot Data Scientist - Exploring R, Python, and SQL ServerSarah Dutkiewicz
This document provides an overview of a presentation on being a polyglot data scientist using multiple languages and tools. It discusses using SQL, R, and Python together in data science work. The presentation covers the challenges of being a polyglot, how SQL Server with R or Python can help solve problems more easily, and examples of analyzing sensor data with these tools. It also discusses resources for learning more about R, Python, and machine learning services in SQL Server.
Jupyter Notebooks and Apache Spark are first class citizens of the Data Science space, a truly requirement for the "modern" data scientist. Now with Azure Synapse these two computing powers are available to the .NET Developer. And .NET is available for all data scientists. Let's look what .net can do for notebooks and spark inside Azure Synapse and what are Synapse, notebooks and spark.
Extending Apache Spark APIs Without Going Near Spark Source or a Compiler wi...Databricks
The document discusses how to extend Apache Spark APIs without modifying Spark source code using Scala's "Enrich My Library" pattern. It provides an example of adding a .validate() method to Dataset objects to enable validation checks. The pattern involves defining an implicit class that augments existing types with new methods. This allows validation classes to integrate seamlessly with Spark jobs while keeping code concise, isolated and testable. Other uses like metrics collection and logging are also discussed.
Whirlpools in the Stream with Jayesh LalwaniDatabricks
This document summarizes some challenges and solutions related to structured streaming in Spark. It discusses issues with joining streaming and batch data due to lack of pushdown predicates. It also covers problems with caching batch dataframes, lack of a JDBC sink in streaming mode initially, issues with checkpoints being inconsistent, and limitations on aggregating aggregated dataframes. Solutions proposed include caching data outside Spark, looking up batch data in map/flatmap, direct database writes, using NFS for checkpoints, and custom aggregations without Spark SQL.
Stream All Things—Patterns of Modern Data Integration with Gwen ShapiraDatabricks
This document discusses patterns for modern data integration using streaming data. It outlines an evolution from data warehouses to data lakes to streaming data. It then describes four key patterns: 1) Stream all things (data) in one place, 2) Keep schemas compatible and process data on, 3) Enable ridiculously parallel single message transformations, and 4) Perform streaming data enrichment to add additional context to events. Examples are provided of using Apache Kafka and Kafka Connect to implement these patterns for a large hotel chain integrating various data sources and performing real-time analytics on customer events.
Bring Your Own Container: Using Docker Images In ProductionDatabricks
Condé Nast is a global leader in the media production space housing iconic brands such as The New Yorker, Wired, Vanity Fair, and Epicurious, among many others. Along with our content production, Condé Nast invests heavily in companion products to improve and enhance our audience’s experience. One such product solution is Spire, Condé Nast’s service for user segmentation and targeted advertising for over a hundred million users.
While Spire started as a set of databricks notebooks, we later utilized DBFS for deploying Spire distributions in the form of Python Whls, and more recently, we have packaged the entire production environment into docker images deployed onto our Databricks clusters. In this talk, we will walk through the process of evolving our python distributions and production environment into docker images, and discuss where this has streamlined our deployment workflow, where there were growing pains, and how to deal with them.
Getting Ready to Use Redis with Apache Spark with Tague GriffithDatabricks
This technical tutorial is designed to address integrating Redis with an Apache Spark deployment to increase the performance of serving complex decision models. The session starts with a quick introduction to Redis and the capabilities Redis provides. It will cover the basic data types provided by Redis and the module system. Using an ad serving use case, Griffith will look at how Redis can improve the performance and reduce the cost of using complex ML-models in production.
You will be guided through the key steps of setting up and integrating Redis with Spark, including how to train a model using Spark and then load and serve it using Redis, as well as how to work with the Spark Redis module. The capabilities of the Redis Machine Learning Module (redis-ml) will also be discussed, focusing primarily on decision trees and regression (linear and logistic) with code examples to demonstrate how to use these features.
By the end of the session, you should feel confident building a prototype/proof-of-concept application using Redis and Spark. You’ll understand how Redis complements Spark, and how to use Redis to serve complex, ML-models with high performance.
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Spark Summit
Here we present a general supervised framework for record deduplication and author-disambiguation via Spark. This work differentiates itself by – Application of Databricks and AWS makes this a scalable implementation. Compute resources are comparably lower than traditional legacy technology using big boxes 24/7. Scalability is crucial as Elsevier’s Scopus data, the biggest scientific abstract repository, covers roughly 250 million authorships from 70 million abstracts covering a few hundred years. – We create a fingerprint for each content by deep learning and/or word2vec algorithms to expedite pairwise similarity calculation. These encoders substantially reduce compute time while maintaining semantic similarity (unlike traditional TFIDF or predefined taxonomies). We will briefly discuss how to optimize word2vec training with high parallelization. Moreover, we show how these encoders can be used to derive a standard representation for all our entities namely such as documents, authors, users, journals, etc. This standard representation can simplify the recommendation problem into a pairwise similarity search and hence it can offer a basic recommender for cross-product applications where we may not have a dedicate recommender engine designed. – Traditional author-disambiguation or record deduplication algorithms are batch-processing with small to no training data. However, we have roughly 25 million authorships that are manually curated or corrected upon user feedback. Hence, it is crucial to maintain historical profiles and hence we have developed a machine learning implementation to deal with data streams and process them in mini batches or one document at a time. We will discuss how to measure the accuracy of such a system, how to tune it and how to process the raw data of pairwise similarity function into final clusters. Lessons learned from this talk can help all sort of companies where they want to integrate their data or deduplicate their user/customer/product databases.
Using Databricks as an Analysis PlatformDatabricks
Over the past year, YipitData spearheaded a full migration of its data pipelines to Apache Spark via the Databricks platform. Databricks now empowers its 40+ data analysts to independently create data ingestion systems, manage ETL workflows, and produce meaningful financial research for our clients.
Deep Learning on Apache® Spark™ : Workflows and Best PracticesJen Aman
The combination of Deep Learning with Apache Spark has the potential for tremendous impact in many sectors of the industry. This webinar, based on the experience gained in assisting customers with the Databricks Virtual Analytics Platform, will present some best practices for building deep learning pipelines with Spark.
Rather than comparing deep learning systems or specific optimizations, this webinar will focus on issues that are common to deep learning frameworks when running on a Spark cluster, including:
* optimizing cluster setup;
* configuring the cluster;
* ingesting data; and
* monitoring long-running jobs.
We will demonstrate the techniques we cover using Google’s popular TensorFlow library. More specifically, we will cover typical issues users encounter when integrating deep learning libraries with Spark clusters.
Clusters can be configured to avoid task conflicts on GPUs and to allow using multiple GPUs per worker. Setting up pipelines for efficient data ingest improves job throughput, and monitoring facilitates both the work of configuration and the stability of deep learning jobs.
The document discusses lessons learned from building a real-time data processing platform using Spark and microservices. Key aspects include:
- A microservices-inspired architecture was used with Spark Streaming jobs processing data in parallel and communicating via Kafka.
- This modular approach allowed for independent development and deployment of new features without disrupting existing jobs.
- While Spark provided batch and streaming capabilities, managing resources across jobs and achieving low latency proved challenging.
- Alternative technologies like Kafka Streams and Confluent's Schema Registry were identified to improve resilience, schemas, and processing latency.
- Overall the platform demonstrated strengths in modularity, A/B testing, and empowering data scientists, but faced challenges around
Apache Spark At Apple with Sam Maclennan and Vishwanath LakkundiDatabricks
At Apple we rely on processing large datasets to power key components of Apple’s largest production services. Spark is continuing to replace and augment traditional MR workloads with its speed and low barrier to entry. Our current analytics infrastructure consists of over an exabyte of storage and close to a million cores. Our footprint is also growing further with the addition of new elastic services for streaming, adhoc and interactive analytics.
In this talk we will cover the challenges of working at scale with tricks and lessons learned managing large multi-tenant clusters. We will also discuss designing and building a self-service elastic analytics platform on Mesos.
Insights Without Tradeoffs: Using Structured StreamingDatabricks
Apache Spark 2.0 introduced Structured Streaming which allows users to continually and incrementally update your view of the world as new data arrives while still using the same familiar Spark SQL abstractions. Michael Armbrust from Databricks talks about the progress made since the release of Spark 2.0 on robustness, latency, expressiveness and observability, using examples of production end-to-end continuous applications.
Speaker: Michael Armbrust
Video: http://go.databricks.com/videos/spark-summit-east-2017/using-structured-streaming-apache-spark
This talk was originally presented at Spark Summit East 2017.
MLflow: Infrastructure for a Complete Machine Learning Life CycleDatabricks
ML development brings many new complexities beyond the traditional software development lifecycle. Unlike in traditional software development, ML developers want to try multiple algorithms, tools and parameters to get the best results, and they need to track this information to reproduce work. In addition, developers need to use many distinct systems to productionize models. To address these problems, many companies are building custom “ML platforms” that automate this lifecycle, but even these platforms are limited to a few supported algorithms and to each company’s internal infrastructure.
In this talk, we will present MLflow, a new open source project from Databricks that aims to design an open ML platform where organizations can use any ML library and development tool of their choice to reliably build and share ML applications. MLflow introduces simple abstractions to package reproducible projects, track results, and encapsulate models that can be used with many existing tools, accelerating the ML lifecycle for organizations of any size.
Real-Time Machine Learning with Redis, Apache Spark, Tensor Flow, and more wi...Databricks
Predictive intelligence from machine learning has the potential to change everything in our day to day experiences, from education to entertainment, from travel to healthcare, from business to leisure and everything in between. Modern ML frameworks are batch by nature and cannot pivot on the fly to changing user data or situations. Many simple ML applications such as those that enhance the user experience, can benefit from real-time robust predictive models that adapt on the fly.
Join this session to learn how common practices in machine learning such as running a trained model in production can be substantially accelerated and radically simplified by using Redis modules that natively store and execute common models generated by Spark ML and Tensorflow algorithms. We will also discuss the implementation of simple, real-time feed-forward neural networks with Neural Redis and scenarios that can benefit from such efficient, accelerated artificial intelligence.
Real-life implementations of these new techniques at a large consumer credit company for fraud analytics, at an online e-commerce provider for user recommendations and at a large media company for targeting content will also be discussed.
Empowering Zillow’s Developers with Self-Service ETLDatabricks
The document discusses Zillow's efforts to empower its developers with self-service extract, transform, load (ETL) tools. It describes two key components: Zetlas, a user-friendly tool that allows non-coding users to automate SQL workflows through a graphical interface; and Zagger, a developer-focused service that automates data engineering tasks and integrates with common ETL tools. The tools were developed to meet different user needs, lower the barrier to data work, and provide modular platforms that can be expanded over time. Zillow aims to continue growing adoption of these self-service ETL tools and unifying their backends.
Deep Learning and Streaming in Apache Spark 2.x with Matei ZahariaJen Aman
2017 continues to be an exciting year for Apache Spark. I will talk about new updates in two major areas in the Spark community this year: stream processing with Structured Streaming, and deep learning with high-level libraries such as Deep Learning Pipelines and TensorFlowOnSpark. In both areas, the community is making powerful new functionality available in the same high-level APIs used in the rest of the Spark ecosystem (e.g., DataFrames and ML Pipelines), and improving both the scalability and ease of use of stream processing and machine learning.
Time Series Anomaly Detection with Azure and .NETTMarco Parenzan
f you have any device or source that generates values over time (also a log from a service), you want to determine if in a time frame, the time serie is correct or you can detect some anomalies. What can you do as a developer (not a Data Scientist) with .NET o Azure? Let's see how in this session.
Data Build Tool (DBT) is an open source technology to set up your data lake using best practices from software engineering. This SQL first technology is a great marriage between Databricks and Delta. This allows you to maintain high quality data and documentation during the entire datalake life-cycle. In this talk I’ll do an introduction into DBT, and show how we can leverage Databricks to do the actual heavy lifting. Next, I’ll present how DBT supports Delta to enable upserting using SQL. Finally, we show how we integrate DBT+Databricks into the Azure cloud. Finally we show how we emit the pipeline metrics to Azure monitor to make sure that you have observability over your pipeline.
Introduction to Big Data Analytics using Apache Spark and Zeppelin on HDInsig...Alex Zeltov
Introduction to Big Data Analytics using Apache Spark on HDInsights on Azure (SaaS) and/or HDP on Azure(PaaS)
This workshop will provide an introduction to Big Data Analytics using Apache Spark using the HDInsights on Azure (SaaS) and/or HDP deployment on Azure(PaaS) . There will be a short lecture that includes an introduction to Spark, the Spark components.
Spark is a unified framework for big data analytics. Spark provides one integrated API for use by developers, data scientists, and analysts to perform diverse tasks that would have previously required separate processing engines such as batch analytics, stream processing and statistical modeling. Spark supports a wide range of popular languages including Python, R, Scala, SQL, and Java. Spark can read from diverse data sources and scale to thousands of nodes.
The lecture will be followed by demo . There will be a short lecture on Hadoop and how Spark and Hadoop interact and compliment each other. You will learn how to move data into HDFS using Spark APIs, create Hive table, explore the data with Spark and SQL, transform the data and then issue some SQL queries. We will be using Scala and/or PySpark for labs.
This document discusses Apache Zeppelin, an open-source web-based notebook that enables interactive data analytics. It provides an overview of Zeppelin's history and architecture, including how interpreters and notebook storage are pluggable. The document also outlines Zeppelin's roadmap for improving enterprise support through features like multi-tenancy, impersonation, job management and frontend performance.
This document discusses Apache Zeppelin, an open-source web-based notebook that allows for interactive data analytics. It can be used for data exploration, visualization, collaboration and publishing. Zeppelin has deep integration with Apache Spark and supports multiple languages including Scala, Python, and SQL. It provides a Spark interpreter that allows users to analyze data using Spark without having to configure Spark themselves. The document demonstrates Zeppelin's functionality through examples and encourages readers to try it out and get involved in the community.
This document summarizes a presentation on using SQL Server Integration Services (SSIS) with HDInsight. It introduces Tillmann Eitelberg and Oliver Engels, who are experts on SSIS and HDInsight. The agenda covers traditional ETL processes, challenges of big data, useful Apache Hadoop components for ETL, clarifying statements about Hadoop and ETL, using Hadoop in the ETL process, how SSIS is more than just an ETL tool, tools for working with HDInsight, getting started with Azure HDInsight, and using SSIS to load and transform data on HDInsight clusters.
Teaching Apache Spark Clusters to Manage Their Workers Elastically: Spark Sum...Spark Summit
Devops engineers have applied a great deal of creativity and energy to invent tools that automate infrastructure management, in the service of deploying capable and functional applications. For data-driven applications running on Apache Spark, the details of instantiating and managing the backing Spark cluster can be a distraction from focusing on the application logic. In the spirit of devops, automating Spark cluster management tasks allows engineers to focus their attention on application code that provides value to end-users.
Using Openshift Origin as a laboratory, we implemented a platform where Apache Spark applications create their own clusters and then dynamically manage their own scale via host-platform APIs. This makes it possible to launch a fully elastic Spark application with little more than the click of a button.
We will present a live demo of turn-key deployment for elastic Apache Spark applications, and share what we’ve learned about developing Spark applications that manage their own resources dynamically with platform APIs.
The audience for this talk will be anyone looking for ways to streamline their Apache Spark cluster management, reduce the workload for Spark application deployment, or create self-scaling elastic applications. Attendees can expect to learn about leveraging APIs in the Kubernetes ecosystem that enable application deployments to manipulate their own scale elastically.
BigDL: Bringing Ease of Use of Deep Learning for Apache Spark with Jason Dai ...Databricks
BigDL is a distributed deep learning framework for Apache Spark open sourced by Intel. BigDL helps make deep learning more accessible to the Big Data community, by allowing them to continue the use of familiar tools and infrastructure to build deep learning applications. With BigDL, users can write their deep learning applications as standard Spark programs, which can then directly run on top of existing Spark or Hadoop clusters.
In this session, we will introduce BigDL, how our customers use BigDL to build End to End ML/DL applications, platforms on which BigDL is deployed and also provide an update on the latest improvements in BigDL v0.1, and talk about further developments and new upcoming features of BigDL v0.2 release (e.g., support for TensorFlow models, 3D convolutions, etc.).
Accelerating Machine Learning on Databricks RuntimeDatabricks
"We all know the unprecedented potential impact for Machine Learning. But how do you take advantage of the myriad of data and ML tools now available? How do you streamline processes, speed up discovery, share knowledge, and scale up implementations for real-life scenarios?
In this talk, we'll cover some of the latest innovations brought into the Databricks Unified Analytics Platform for Machine Learning. In particular we will show you how to:
- Get started quickly using the Databricks Runtime for Machine Learning, that provides pre-configured Databricks clusters including the most popular ML frameworks and libraries, Conda support, performance optimizations, and more.
- Get started with most popular Deep Learning frameworks within a few minutes and go deep with state of the art model DL diagnostics tools.
- Scale up Deep Learning training workloads from a single machine to large clusters for the most demanding applications using the new HorovodRunner with ease.
- How all of these ML frameworks get exposed to large and distributed data using Databricks Runtime for Machine Learning."
The document summarizes the past, present, and future of Hadoop at LinkedIn. It describes how LinkedIn initially implemented PYMK on Oracle in 2006, then moved to Hadoop in 2008 with 20 nodes, scaling up to over 10,000 nodes and 1000 users by 2016 running various big data frameworks. It discusses the challenges of scaling hardware and processes, and how LinkedIn developed tools like HDFS Dynamometer, Dr. Elephant, Byte-Ray and SoakCycle to help with scaling, performance tuning, dependency management and integration testing of Hadoop clusters. The future may include the Dali project to make data more accessible through different views.
Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...Databricks
At the end of day, the only thing that data scientists want is tabular data for their analysis. They do not want to spend hours or days preparing data. How does a data engineer handle the massive amount of data that is being streamed at them from IoT devices and apps, and at the same time add structure to it so that data scientists can focus on finding insights and not preparing data? By the way, you need to do this within minutes (sometimes seconds). Oh… and there are a lot of other data sources that you need to ingest, and the current providers of data are changing their structure.
GoPro has massive amounts of heterogeneous data being streamed from their consumer devices and applications, and they have developed the concept of “dynamic DDL” to structure their streamed data on the fly using Spark Streaming, Kafka, HBase, Hive and S3. The idea is simple: Add structure (schema) to the data as soon as possible; allow the providers of the data to dictate the structure; and automatically create event-based and state-based tables (DDL) for all data sources to allow data scientists to access the data via their lingua franca, SQL, within minutes.
Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...Michael Rys
This presentation shows how you can build solutions that follow the modern data warehouse architecture and introduces the .NET for Apache Spark support (https://dot.net/spark, https://github.com/dotnet/spark)
.net developer for Jupyter Notebook and Apache Spark and viceversaMarco Parenzan
Jupyter Notebooks and Apache Spark are first class citizens of the Data Science space, a truly requirement for the "modern" data scientist. But there was a requirement: being a python developer. Now Microsoft is investing on C# as another first class citizen in this space. Let's look what .net can do for notebooks and spark and what are notebooks and spark.
Using Databricks as an Analysis PlatformDatabricks
Over the past year, YipitData spearheaded a full migration of its data pipelines to Apache Spark via the Databricks platform. Databricks now empowers its 40+ data analysts to independently create data ingestion systems, manage ETL workflows, and produce meaningful financial research for our clients.
Deep Learning on Apache® Spark™ : Workflows and Best PracticesJen Aman
The combination of Deep Learning with Apache Spark has the potential for tremendous impact in many sectors of the industry. This webinar, based on the experience gained in assisting customers with the Databricks Virtual Analytics Platform, will present some best practices for building deep learning pipelines with Spark.
Rather than comparing deep learning systems or specific optimizations, this webinar will focus on issues that are common to deep learning frameworks when running on a Spark cluster, including:
* optimizing cluster setup;
* configuring the cluster;
* ingesting data; and
* monitoring long-running jobs.
We will demonstrate the techniques we cover using Google’s popular TensorFlow library. More specifically, we will cover typical issues users encounter when integrating deep learning libraries with Spark clusters.
Clusters can be configured to avoid task conflicts on GPUs and to allow using multiple GPUs per worker. Setting up pipelines for efficient data ingest improves job throughput, and monitoring facilitates both the work of configuration and the stability of deep learning jobs.
The document discusses lessons learned from building a real-time data processing platform using Spark and microservices. Key aspects include:
- A microservices-inspired architecture was used with Spark Streaming jobs processing data in parallel and communicating via Kafka.
- This modular approach allowed for independent development and deployment of new features without disrupting existing jobs.
- While Spark provided batch and streaming capabilities, managing resources across jobs and achieving low latency proved challenging.
- Alternative technologies like Kafka Streams and Confluent's Schema Registry were identified to improve resilience, schemas, and processing latency.
- Overall the platform demonstrated strengths in modularity, A/B testing, and empowering data scientists, but faced challenges around
Apache Spark At Apple with Sam Maclennan and Vishwanath LakkundiDatabricks
At Apple we rely on processing large datasets to power key components of Apple’s largest production services. Spark is continuing to replace and augment traditional MR workloads with its speed and low barrier to entry. Our current analytics infrastructure consists of over an exabyte of storage and close to a million cores. Our footprint is also growing further with the addition of new elastic services for streaming, adhoc and interactive analytics.
In this talk we will cover the challenges of working at scale with tricks and lessons learned managing large multi-tenant clusters. We will also discuss designing and building a self-service elastic analytics platform on Mesos.
Insights Without Tradeoffs: Using Structured StreamingDatabricks
Apache Spark 2.0 introduced Structured Streaming which allows users to continually and incrementally update your view of the world as new data arrives while still using the same familiar Spark SQL abstractions. Michael Armbrust from Databricks talks about the progress made since the release of Spark 2.0 on robustness, latency, expressiveness and observability, using examples of production end-to-end continuous applications.
Speaker: Michael Armbrust
Video: http://go.databricks.com/videos/spark-summit-east-2017/using-structured-streaming-apache-spark
This talk was originally presented at Spark Summit East 2017.
MLflow: Infrastructure for a Complete Machine Learning Life CycleDatabricks
ML development brings many new complexities beyond the traditional software development lifecycle. Unlike in traditional software development, ML developers want to try multiple algorithms, tools and parameters to get the best results, and they need to track this information to reproduce work. In addition, developers need to use many distinct systems to productionize models. To address these problems, many companies are building custom “ML platforms” that automate this lifecycle, but even these platforms are limited to a few supported algorithms and to each company’s internal infrastructure.
In this talk, we will present MLflow, a new open source project from Databricks that aims to design an open ML platform where organizations can use any ML library and development tool of their choice to reliably build and share ML applications. MLflow introduces simple abstractions to package reproducible projects, track results, and encapsulate models that can be used with many existing tools, accelerating the ML lifecycle for organizations of any size.
Real-Time Machine Learning with Redis, Apache Spark, Tensor Flow, and more wi...Databricks
Predictive intelligence from machine learning has the potential to change everything in our day to day experiences, from education to entertainment, from travel to healthcare, from business to leisure and everything in between. Modern ML frameworks are batch by nature and cannot pivot on the fly to changing user data or situations. Many simple ML applications such as those that enhance the user experience, can benefit from real-time robust predictive models that adapt on the fly.
Join this session to learn how common practices in machine learning such as running a trained model in production can be substantially accelerated and radically simplified by using Redis modules that natively store and execute common models generated by Spark ML and Tensorflow algorithms. We will also discuss the implementation of simple, real-time feed-forward neural networks with Neural Redis and scenarios that can benefit from such efficient, accelerated artificial intelligence.
Real-life implementations of these new techniques at a large consumer credit company for fraud analytics, at an online e-commerce provider for user recommendations and at a large media company for targeting content will also be discussed.
Empowering Zillow’s Developers with Self-Service ETLDatabricks
The document discusses Zillow's efforts to empower its developers with self-service extract, transform, load (ETL) tools. It describes two key components: Zetlas, a user-friendly tool that allows non-coding users to automate SQL workflows through a graphical interface; and Zagger, a developer-focused service that automates data engineering tasks and integrates with common ETL tools. The tools were developed to meet different user needs, lower the barrier to data work, and provide modular platforms that can be expanded over time. Zillow aims to continue growing adoption of these self-service ETL tools and unifying their backends.
Deep Learning and Streaming in Apache Spark 2.x with Matei ZahariaJen Aman
2017 continues to be an exciting year for Apache Spark. I will talk about new updates in two major areas in the Spark community this year: stream processing with Structured Streaming, and deep learning with high-level libraries such as Deep Learning Pipelines and TensorFlowOnSpark. In both areas, the community is making powerful new functionality available in the same high-level APIs used in the rest of the Spark ecosystem (e.g., DataFrames and ML Pipelines), and improving both the scalability and ease of use of stream processing and machine learning.
Time Series Anomaly Detection with Azure and .NETTMarco Parenzan
f you have any device or source that generates values over time (also a log from a service), you want to determine if in a time frame, the time serie is correct or you can detect some anomalies. What can you do as a developer (not a Data Scientist) with .NET o Azure? Let's see how in this session.
Data Build Tool (DBT) is an open source technology to set up your data lake using best practices from software engineering. This SQL first technology is a great marriage between Databricks and Delta. This allows you to maintain high quality data and documentation during the entire datalake life-cycle. In this talk I’ll do an introduction into DBT, and show how we can leverage Databricks to do the actual heavy lifting. Next, I’ll present how DBT supports Delta to enable upserting using SQL. Finally, we show how we integrate DBT+Databricks into the Azure cloud. Finally we show how we emit the pipeline metrics to Azure monitor to make sure that you have observability over your pipeline.
Introduction to Big Data Analytics using Apache Spark and Zeppelin on HDInsig...Alex Zeltov
Introduction to Big Data Analytics using Apache Spark on HDInsights on Azure (SaaS) and/or HDP on Azure(PaaS)
This workshop will provide an introduction to Big Data Analytics using Apache Spark using the HDInsights on Azure (SaaS) and/or HDP deployment on Azure(PaaS) . There will be a short lecture that includes an introduction to Spark, the Spark components.
Spark is a unified framework for big data analytics. Spark provides one integrated API for use by developers, data scientists, and analysts to perform diverse tasks that would have previously required separate processing engines such as batch analytics, stream processing and statistical modeling. Spark supports a wide range of popular languages including Python, R, Scala, SQL, and Java. Spark can read from diverse data sources and scale to thousands of nodes.
The lecture will be followed by demo . There will be a short lecture on Hadoop and how Spark and Hadoop interact and compliment each other. You will learn how to move data into HDFS using Spark APIs, create Hive table, explore the data with Spark and SQL, transform the data and then issue some SQL queries. We will be using Scala and/or PySpark for labs.
This document discusses Apache Zeppelin, an open-source web-based notebook that enables interactive data analytics. It provides an overview of Zeppelin's history and architecture, including how interpreters and notebook storage are pluggable. The document also outlines Zeppelin's roadmap for improving enterprise support through features like multi-tenancy, impersonation, job management and frontend performance.
This document discusses Apache Zeppelin, an open-source web-based notebook that allows for interactive data analytics. It can be used for data exploration, visualization, collaboration and publishing. Zeppelin has deep integration with Apache Spark and supports multiple languages including Scala, Python, and SQL. It provides a Spark interpreter that allows users to analyze data using Spark without having to configure Spark themselves. The document demonstrates Zeppelin's functionality through examples and encourages readers to try it out and get involved in the community.
This document summarizes a presentation on using SQL Server Integration Services (SSIS) with HDInsight. It introduces Tillmann Eitelberg and Oliver Engels, who are experts on SSIS and HDInsight. The agenda covers traditional ETL processes, challenges of big data, useful Apache Hadoop components for ETL, clarifying statements about Hadoop and ETL, using Hadoop in the ETL process, how SSIS is more than just an ETL tool, tools for working with HDInsight, getting started with Azure HDInsight, and using SSIS to load and transform data on HDInsight clusters.
Teaching Apache Spark Clusters to Manage Their Workers Elastically: Spark Sum...Spark Summit
Devops engineers have applied a great deal of creativity and energy to invent tools that automate infrastructure management, in the service of deploying capable and functional applications. For data-driven applications running on Apache Spark, the details of instantiating and managing the backing Spark cluster can be a distraction from focusing on the application logic. In the spirit of devops, automating Spark cluster management tasks allows engineers to focus their attention on application code that provides value to end-users.
Using Openshift Origin as a laboratory, we implemented a platform where Apache Spark applications create their own clusters and then dynamically manage their own scale via host-platform APIs. This makes it possible to launch a fully elastic Spark application with little more than the click of a button.
We will present a live demo of turn-key deployment for elastic Apache Spark applications, and share what we’ve learned about developing Spark applications that manage their own resources dynamically with platform APIs.
The audience for this talk will be anyone looking for ways to streamline their Apache Spark cluster management, reduce the workload for Spark application deployment, or create self-scaling elastic applications. Attendees can expect to learn about leveraging APIs in the Kubernetes ecosystem that enable application deployments to manipulate their own scale elastically.
BigDL: Bringing Ease of Use of Deep Learning for Apache Spark with Jason Dai ...Databricks
BigDL is a distributed deep learning framework for Apache Spark open sourced by Intel. BigDL helps make deep learning more accessible to the Big Data community, by allowing them to continue the use of familiar tools and infrastructure to build deep learning applications. With BigDL, users can write their deep learning applications as standard Spark programs, which can then directly run on top of existing Spark or Hadoop clusters.
In this session, we will introduce BigDL, how our customers use BigDL to build End to End ML/DL applications, platforms on which BigDL is deployed and also provide an update on the latest improvements in BigDL v0.1, and talk about further developments and new upcoming features of BigDL v0.2 release (e.g., support for TensorFlow models, 3D convolutions, etc.).
Accelerating Machine Learning on Databricks RuntimeDatabricks
"We all know the unprecedented potential impact for Machine Learning. But how do you take advantage of the myriad of data and ML tools now available? How do you streamline processes, speed up discovery, share knowledge, and scale up implementations for real-life scenarios?
In this talk, we'll cover some of the latest innovations brought into the Databricks Unified Analytics Platform for Machine Learning. In particular we will show you how to:
- Get started quickly using the Databricks Runtime for Machine Learning, that provides pre-configured Databricks clusters including the most popular ML frameworks and libraries, Conda support, performance optimizations, and more.
- Get started with most popular Deep Learning frameworks within a few minutes and go deep with state of the art model DL diagnostics tools.
- Scale up Deep Learning training workloads from a single machine to large clusters for the most demanding applications using the new HorovodRunner with ease.
- How all of these ML frameworks get exposed to large and distributed data using Databricks Runtime for Machine Learning."
The document summarizes the past, present, and future of Hadoop at LinkedIn. It describes how LinkedIn initially implemented PYMK on Oracle in 2006, then moved to Hadoop in 2008 with 20 nodes, scaling up to over 10,000 nodes and 1000 users by 2016 running various big data frameworks. It discusses the challenges of scaling hardware and processes, and how LinkedIn developed tools like HDFS Dynamometer, Dr. Elephant, Byte-Ray and SoakCycle to help with scaling, performance tuning, dependency management and integration testing of Hadoop clusters. The future may include the Dali project to make data more accessible through different views.
Dynamic DDL: Adding Structure to Streaming Data on the Fly with David Winters...Databricks
At the end of day, the only thing that data scientists want is tabular data for their analysis. They do not want to spend hours or days preparing data. How does a data engineer handle the massive amount of data that is being streamed at them from IoT devices and apps, and at the same time add structure to it so that data scientists can focus on finding insights and not preparing data? By the way, you need to do this within minutes (sometimes seconds). Oh… and there are a lot of other data sources that you need to ingest, and the current providers of data are changing their structure.
GoPro has massive amounts of heterogeneous data being streamed from their consumer devices and applications, and they have developed the concept of “dynamic DDL” to structure their streamed data on the fly using Spark Streaming, Kafka, HBase, Hive and S3. The idea is simple: Add structure (schema) to the data as soon as possible; allow the providers of the data to dictate the structure; and automatically create event-based and state-based tables (DDL) for all data sources to allow data scientists to access the data via their lingua franca, SQL, within minutes.
Building data pipelines for modern data warehouse with Apache® Spark™ and .NE...Michael Rys
This presentation shows how you can build solutions that follow the modern data warehouse architecture and introduces the .NET for Apache Spark support (https://dot.net/spark, https://github.com/dotnet/spark)
.net developer for Jupyter Notebook and Apache Spark and viceversaMarco Parenzan
Jupyter Notebooks and Apache Spark are first class citizens of the Data Science space, a truly requirement for the "modern" data scientist. But there was a requirement: being a python developer. Now Microsoft is investing on C# as another first class citizen in this space. Let's look what .net can do for notebooks and spark and what are notebooks and spark.
Bringing the Power and Familiarity of .NET, C# and F# to Big Data Processing ...Michael Rys
This document introduces .NET for Apache Spark, which allows .NET developers to use the Apache Spark analytics engine for big data and machine learning. It discusses why .NET support is needed for Apache Spark given that much business logic is written in .NET. It provides an overview of .NET for Apache Spark's capabilities including Spark DataFrames, machine learning, and performance that is on par or faster than PySpark. Examples and demos are shown. Future plans are discussed to improve the tooling, expand programming experiences, and provide out-of-box experiences on platforms like Azure HDInsight and Azure Databricks. Readers are encouraged to engage with the open source project and provide feedback.
This presentation focuses on the value proposition for Azure Databricks for Data Science. First, the talk includes an overview of the merits of Azure Databricks and Spark. Second, the talk includes demos of data science on Azure Databricks. Finally, the presentation includes some ideas for data science production.
Apache Arrow at DataEngConf Barcelona 2018Wes McKinney
Wes McKinney is a leading open source developer who created Python's pandas library and now leads the Apache Arrow project. Apache Arrow is an open standard for in-memory analytics that aims to improve data sharing and reuse across systems by defining a common columnar data format and memory layout. It allows data to be accessed and algorithms to be reused across different programming languages with near-zero data copying. Arrow is being integrated into various data systems and is working to expand its computational libraries and language support.
Apache Spark™ + IBM Watson + Twitter DataPalooza SF 2015Mike Broberg
Use Apache Spark Streaming in with IBM Watson on Bluemix to perform sentiment analysis and track how a conversation is trending on Twitter.
By David Taieb: https://twitter.com/DTAIEB55
Video: https://youtu.be/KLc_wazud3s
Tutorial: https://developer.ibm.com/clouddataservices/sentiment-analysis-of-twitter-hashtags/
Architecting an Open Source AI Platform 2018 editionDavid Talby
How to build a scalable AI platform using open source software. The end-to-end architecture covers data integration, interactive queries & visualization, machine learning & deep learning, deploying models to production, and a full 24x7 operations toolset in a high-compliance environment.
Simplifying AI integration on Apache SparkDatabricks
Spark is an ETL and Data Processing engine especially suited for big data. Most of the time an organization has different teams working on different languages, frameworks and libraries, which needs to be integrated in the ETL Pipelines or for general data processing. For example, a Spark ETL job may be written in Scala by data engineering team, but there is a need to integrate a machine learning solution written in python/R developed by Data Science team. These kinds of solutions are not very straightforward to integrate with spark engine, and it required great amount of collaboration between different teams, hence increasing overall project time and cost. Furthermore, these solutions will keep on changing/upgrading with time using latest versions of the technologies and with improved design and implementation, especially in Machine Learning domain where ML models/algorithms keep on improving with new data and new approaches. And so there is significant downtime involved in integrating the these upgraded version.
Spark + AI Summit 2020 had over 35,000 attendees from 125 countries. The majority of participants were data engineers and data scientists. Apache Spark is now widely used with Python and SQL. Spark 3.0 includes improvements like adaptive query execution that accelerate queries by 2-18x. Delta Engine is a new high performance query engine for data lakes built on Spark 3.0.
Teaching Apache Spark: Demonstrations on the Databricks Cloud PlatformYao Yao
Yao Yao Mooyoung Lee
https://github.com/yaowser/learn-spark/tree/master/Final%20project
https://www.youtube.com/watch?v=IVMbSDS4q3A
https://www.academia.edu/35646386/Teaching_Apache_Spark_Demonstrations_on_the_Databricks_Cloud_Platform
https://www.slideshare.net/YaoYao44/teaching-apache-spark-demonstrations-on-the-databricks-cloud-platform-86063070/
Apache Spark is a fast and general engine for big data analytics processing with libraries for SQL, streaming, and advanced analytics
Cloud Computing, Structured Streaming, Unified Analytics Integration, End-to-End Applications
Ananth Ravishankar has over 9 years of experience developing web and distributed applications using Java/J2EE technologies. He has expertise in all phases of the software development lifecycle and experience working with agile methodologies. Ananth has worked on projects in various domains including retail, investment banking, and media research. He is proficient in technologies such as Java, JSP, Servlets, Struts, Hadoop, Hive, and relational databases.
Ai & Data Analytics 2018 - Azure Databricks for data scientistAlberto Diaz Martin
This document summarizes a presentation given by Alberto Diaz Martin on Azure Databricks for data scientists. The presentation covered how Databricks can be used for infrastructure management, data exploration and visualization at scale, reducing time to value through model iterations and integrating various ML tools. It also discussed challenges for data scientists and how Databricks addresses them through features like notebooks, frameworks, and optimized infrastructure for deep learning. Demo sections showed EDA, ML pipelines, model export, and deep learning modeling capabilities in Databricks.
Presentation on the struggles with traditional architectures and an overview of the Lambda Architecture utilizing Spark to drive massive amounts of both batch and streaming data for processing and analytics
In this session we will delve into the world of Azure Databricks and analyze why it is becoming a tool for data Scientist and/or fundamental data Engineer in conjunction with Azure services
Big Data and NoSQL for Database and BI ProsAndrew Brust
This document provides an agenda and overview for a conference session on Big Data and NoSQL for database and BI professionals held from April 10-12 in Chicago, IL. The session will include an overview of big data and NoSQL technologies, then deeper dives into Hadoop, NoSQL databases like HBase, and tools like Hive, Pig, and Sqoop. There will also be demos of technologies like HDInsight, Elastic MapReduce, Impala, and running MapReduce jobs.
Using PySpark to Process Boat Loads of DataRobert Dempsey
Learn how to use PySpark for processing massive amounts of data. Combined with the GitHub repo - https://github.com/rdempsey/pyspark-for-data-processing - this presentation will help you gain familiarity with processing data using Python and Spark.
If you're thinking about machine learning and not sure if it can help improve your business, but want to find out, set up a free 20-minute consultation with us: https://calendly.com/robertwdempsey/free-consultation
Venkata Kumar has over 8 years of experience as a senior Python developer. He has extensive experience developing web and mobile applications using Python frameworks like Django and Flask. He has also worked on backend development with databases like MongoDB, MySQL, Oracle, and SQL Server. Some of his responsibilities have included designing and developing RESTful APIs, building automated workflows using Python, and implementing responsive user interfaces with HTML, CSS, JavaScript, and frameworks like AngularJS.
Normalmente parliamo e presentiamo Azure IoT (Central) con un taglio un po' da "maker". In questa sessione, invece, vediamo di parlare allo SCADA engineer. Come si configura Azure IoT Central per il mondo industriale? Dov'è OPC/UA? Cosa c'entra IoT Plug & Play in tutto questo? E Azure IoT Central...quali vantaggi ci da? Cerchiamo di rispondere a queste e ad altre domande in questa sessione...
Allo sviluppatore Azure piacciono i servizi PaaS perchè sono "pronti all'uso". Ma quando proponiamo le nostre soluzioni alle aziende, ci scontriamo con l'IT che apprezza gli elementi infrastrutturali, IaaS. Perchè non (ri)scoprirli aggiungendo anche un pizzico di Hybrid che con il recente Azure Kubernetes Services Edge Essentials si può anche usare in un hardware che si può tenere anche in casa? Quindi scopriremo in questa sessione, tra gli altri, le VNET, le VPN S2S, Azure Arc, i Private Endpoints, e AKS EE.
Static abstract members nelle interfacce di C# 11 e dintorni di .NET 7.pptxMarco Parenzan
Did interfaces in C# need evolution? Maybe yes. Are they violating some fundamental principles? We see. Are we asking for some hoops? Let's see all this by telling a story (of code, of course)
Azure Synapse Analytics for your IoT SolutionsMarco Parenzan
Let's find out in this session how Azure Synapse Analytics, with its SQL Serverless Pool, ADX, Data Factory, Notebooks, Spark can be useful for managing data analysis in an IoT solution.
Power BI Streaming Data Flow e Azure IoT Central Marco Parenzan
Dal 2015 gli utilizzatori di Power BI hanno potuto analizzare dati in real-time grazie all'integrazione con altri prodotti e servizi Microsoft. Con streaming dataflow, si porterà l'analisi in tempo reale completamente all'interno di Power BI, rimuovendo la maggior parte delle restrizioni che avevamo, integrando al contempo funzionalità di analisi chiave come la preparazione dei dati in streaming e nessuna creazione di codice. Per vederlo in funzione, studieremo un caso specifico di streaming come l'IoT con Azure IoT Central.
Power BI Streaming Data Flow e Azure IoT CentralMarco Parenzan
Dal 2015 gli utilizzatori di Power BI hanno potuto analizzare dati in real-time grazie all'integrazione con altri prodotti e servizi Microsoft. Con streaming dataflow, si porterà l'analisi in tempo reale completamente all'interno di Power BI, rimuovendo la maggior parte delle restrizioni che avevamo, integrando al contempo funzionalità di analisi chiave come la preparazione dei dati in streaming e nessuna creazione di codice. Per vederlo in funzione, studieremo un caso specifico di streaming come l'IoT con Azure IoT Central.
Power BI Streaming Data Flow e Azure IoT CentralMarco Parenzan
Since 2015, Power BI users have been able to analyze data in real-time thanks to the integration with other Microsoft products and services. With streaming dataflow, you'll bring real-time analytics completely within Power BI, removing most of the restrictions we had, while integrating key analytics features like streaming data preparation and no coding. To see it in action, we will study a specific case of streaming such as IoT with Azure IoT Central.
What are the actors? What are they used for? And how can we develop them? And how are they published and used on Azure? Let's see how it's done in this session
Generic Math, funzionalità ora schedulata per .NET 7, e Azure IoT PnP mi hanno risvegliato un argomento che nel mio passato mi hanno portato a fare due/tre viaggi, grazie all'Università di Trieste, a Cambridge (2006/2007 circa) e a Seattle (2010, quando ho parlato pubblicamente per la prima volta di Azure :) e che mi ha fatto conoscere il mito Don Box!), a parlare di codice in .NET che aveva a che fare con la matematica e con la fisica: le unità di misura e le matrici. L'avvento dei Notebook nel mondo .NET e un vecchio sogno legato alla libreria ANTLR (e tutti i miei esercizi di Code Generation) mi portano a mettere in ordine 'sto minestrone di idee...o almeno ci provo (non so se sta tutto in piedi).
322 / 5,000
Translation results
.NET is better every year for a developer who still dreams of developing a video game. Without pretensions and without talking about Unity or any other framework, just "barebones" .NET code, we will try to write a game (or parts of it) in the 80's style (because I was a kid in those years). In Christmas style.
Building IoT infrastructure on edge with .net, Raspberry PI and ESP32 to conn...Marco Parenzan
The document discusses building an IoT infrastructure on the edge with .NET that connects devices like Raspberry Pis and ESP32s to Azure. It describes setting up a network of Raspberry Pi devices running .NET Core and connecting sensors to collect data and send events to an Apache Kafka cluster. The events are then aggregated using Apache Spark on another Raspberry Pi and the results routed to the cloud. Issues encountered include Kafka's Java dependencies, Spark's complex processing model, and lack of documentation around integrating Pi, Kafka and Spark. While the technologies work individually, configuring and integrating them presented challenges at the edge.
How can you handle defects? If you are in a factory, production can produce objects with defects. Or values from sensors can tell you over time that some values are not "normal". What can you do as a developer (not a Data Scientist) with .NET o Azure to detect these anomalies? Let's see how in this session.
Quali vantaggi ci da Azure? Dal punto di vista dello sviluppo software, uno di questi è certamente la varietà dei servizi di gestione dei dati. Questo ci permette di cominciare a non essere SQL centrici ma utilizzare il servizio giusto per il problema giusto fino ad applicare una strategia di Polyglot Persistence (e vedremo cosa significa) nel rispetto di una corretta gestione delle risorse IT e delle pratiche di DevOps.
- Azure IoT Central provides a fully managed platform for building IoT solutions that is compliant with the Azure IoT platform.
- It offers predictable pricing per device, forces useful modeling practices like device twins and plug and play, and provides industry templates to accelerate solution building.
- While it handles much of the complexity, it also maintains compatibility with customizing solutions using the full Azure IoT platform and other Azure services.
Come puoi gestire i difetti? Se sei in una fabbrica, la produzione può produrre oggetti con difetti. Oppure i valori dei sensori possono dirti nel tempo che alcuni valori non sono "normali". Cosa puoi fare come sviluppatore (non come Data Scientist) con .NET o Azure per rilevare queste anomalie? Vediamo come in questa sessione.
It happens that we have to develop several services and deploy them in Azure. They are small, repetitive but different, often not very different. Why not use code generation techniques to simplify the development and implementation of these services? Let's see with .NET comes to meet us and helps us to deploy in Azure.
Running Kafka and Spark on Raspberry PI with Azure and some .net magicMarco Parenzan
IoT scenarios necessarily pass through the Edge component and the Raspberry PI is a great way to explore this world. If we need to receive IoT events from sensors, how do I implement an MQTT endpoint? Kafka is a clever way to do this. And how do I process the data in Kafka? Spark is another clever way of doing this. How do we write custom code for these environments? .NET, now in version 6 is another clever way to do it! And maybe, we also communicate with Azure. We'll see in this session if we can make it all work!
It happens that we have to develop several services and deploy them in Azure. They are small, repetitive but different, often not very different. Why not use code generation techniques to simplify the development and implementation of these services? Let's see with .NET comes to meet us and helps us to deploy in Azure.
Adobe Master Collection CC Crack Advance Version 2025kashifyounis067
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe Master Collection CC (Creative Cloud) is a comprehensive subscription-based package that bundles virtually all of Adobe's creative software applications. It provides access to a wide range of tools for graphic design, video editing, web development, photography, and more. Essentially, it's a one-stop-shop for creatives needing a broad set of professional tools.
Key Features and Benefits:
All-in-one access:
The Master Collection includes apps like Photoshop, Illustrator, InDesign, Premiere Pro, After Effects, Audition, and many others.
Subscription-based:
You pay a recurring fee for access to the latest versions of all the software, including new features and updates.
Comprehensive suite:
It offers tools for a wide variety of creative tasks, from photo editing and illustration to video editing and web development.
Cloud integration:
Creative Cloud provides cloud storage, asset sharing, and collaboration features.
Comparison to CS6:
While Adobe Creative Suite 6 (CS6) was a one-time purchase version of the software, Adobe Creative Cloud (CC) is a subscription service. CC offers access to the latest versions, regular updates, and cloud integration, while CS6 is no longer updated.
Examples of included software:
Adobe Photoshop: For image editing and manipulation.
Adobe Illustrator: For vector graphics and illustration.
Adobe InDesign: For page layout and desktop publishing.
Adobe Premiere Pro: For video editing and post-production.
Adobe After Effects: For visual effects and motion graphics.
Adobe Audition: For audio editing and mixing.
Landscape of Requirements Engineering for/by AI through Literature ReviewHironori Washizaki
Hironori Washizaki, "Landscape of Requirements Engineering for/by AI through Literature Review," RAISE 2025: Workshop on Requirements engineering for AI-powered SoftwarE, 2025.
Explaining GitHub Actions Failures with Large Language Models Challenges, In...ssuserb14185
GitHub Actions (GA) has become the de facto tool that developers use to automate software workflows, seamlessly building, testing, and deploying code. Yet when GA fails, it disrupts development, causing delays and driving up costs. Diagnosing failures becomes especially challenging because error logs are often long, complex and unstructured. Given these difficulties, this study explores the potential of large language models (LLMs) to generate correct, clear, concise, and actionable contextual descriptions (or summaries) for GA failures, focusing on developers’ perceptions of their feasibility and usefulness. Our results show that over 80% of developers rated LLM explanations positively in terms of correctness for simpler/small logs. Overall, our findings suggest that LLMs can feasibly assist developers in understanding common GA errors, thus, potentially reducing manual analysis. However, we also found that improved reasoning abilities are needed to support more complex CI/CD scenarios. For instance, less experienced developers tend to be more positive on the described context, while seasoned developers prefer concise summaries. Overall, our work offers key insights for researchers enhancing LLM reasoning, particularly in adapting explanations to user expertise.
https://arxiv.org/abs/2501.16495
This presentation explores code comprehension challenges in scientific programming based on a survey of 57 research scientists. It reveals that 57.9% of scientists have no formal training in writing readable code. Key findings highlight a "documentation paradox" where documentation is both the most common readability practice and the biggest challenge scientists face. The study identifies critical issues with naming conventions and code organization, noting that 100% of scientists agree readable code is essential for reproducible research. The research concludes with four key recommendations: expanding programming education for scientists, conducting targeted research on scientific code quality, developing specialized tools, and establishing clearer documentation guidelines for scientific software.
Presented at: The 33rd International Conference on Program Comprehension (ICPC '25)
Date of Conference: April 2025
Conference Location: Ottawa, Ontario, Canada
Preprint: https://arxiv.org/abs/2501.10037
Solidworks Crack 2025 latest new + license codeaneelaramzan63
Copy & Paste On Google >>> https://dr-up-community.info/
The two main methods for installing standalone licenses of SOLIDWORKS are clean installation and parallel installation (the process is different ...
Disable your internet connection to prevent the software from performing online checks during installation
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfTechSoup
In this webinar we will dive into the essentials of generative AI, address key AI concerns, and demonstrate how nonprofits can benefit from using Microsoft’s AI assistant, Copilot, to achieve their goals.
This event series to help nonprofits obtain Copilot skills is made possible by generous support from Microsoft.
What You’ll Learn in Part 2:
Explore real-world nonprofit use cases and success stories.
Participate in live demonstrations and a hands-on activity to see how you can use Microsoft 365 Copilot in your own work!
Adobe After Effects Crack FREE FRESH version 2025kashifyounis067
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe After Effects is a software application used for creating motion graphics, special effects, and video compositing. It's widely used in TV and film post-production, as well as for creating visuals for online content, presentations, and more. While it can be used to create basic animations and designs, its primary strength lies in adding visual effects and motion to videos and graphics after they have been edited.
Here's a more detailed breakdown:
Motion Graphics:
.
After Effects is powerful for creating animated titles, transitions, and other visual elements to enhance the look of videos and presentations.
Visual Effects:
.
It's used extensively in film and television for creating special effects like green screen compositing, object manipulation, and other visual enhancements.
Video Compositing:
.
After Effects allows users to combine multiple video clips, images, and graphics to create a final, cohesive visual.
Animation:
.
It uses keyframes to create smooth, animated sequences, allowing for precise control over the movement and appearance of objects.
Integration with Adobe Creative Cloud:
.
After Effects is part of the Adobe Creative Cloud, a suite of software that includes other popular applications like Photoshop and Premiere Pro.
Post-Production Tool:
.
After Effects is primarily used in the post-production phase, meaning it's used to enhance the visuals after the initial editing of footage has been completed.
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Eric D. Schabell
It's time you stopped letting your telemetry data pressure your budgets and get in the way of solving issues with agility! No more I say! Take back control of your telemetry data as we guide you through the open source project Fluent Bit. Learn how to manage your telemetry data from source to destination using the pipeline phases covering collection, parsing, aggregation, transformation, and forwarding from any source to any destination. Buckle up for a fun ride as you learn by exploring how telemetry pipelines work, how to set up your first pipeline, and exploring several common use cases that Fluent Bit helps solve. All this backed by a self-paced, hands-on workshop that attendees can pursue at home after this session (https://o11y-workshops.gitlab.io/workshop-fluentbit).
Adobe Lightroom Classic Crack FREE Latest link 2025kashifyounis067
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe Lightroom Classic is a desktop-based software application for editing and managing digital photos. It focuses on providing users with a powerful and comprehensive set of tools for organizing, editing, and processing their images on their computer. Unlike the newer Lightroom, which is cloud-based, Lightroom Classic stores photos locally on your computer and offers a more traditional workflow for professional photographers.
Here's a more detailed breakdown:
Key Features and Functions:
Organization:
Lightroom Classic provides robust tools for organizing your photos, including creating collections, using keywords, flags, and color labels.
Editing:
It offers a wide range of editing tools for making adjustments to color, tone, and more.
Processing:
Lightroom Classic can process RAW files, allowing for significant adjustments and fine-tuning of images.
Desktop-Focused:
The application is designed to be used on a computer, with the original photos stored locally on the hard drive.
Non-Destructive Editing:
Edits are applied to the original photos in a non-destructive way, meaning the original files remain untouched.
Key Differences from Lightroom (Cloud-Based):
Storage Location:
Lightroom Classic stores photos locally on your computer, while Lightroom stores them in the cloud.
Workflow:
Lightroom Classic is designed for a desktop workflow, while Lightroom is designed for a cloud-based workflow.
Connectivity:
Lightroom Classic can be used offline, while Lightroom requires an internet connection to sync and access photos.
Organization:
Lightroom Classic offers more advanced organization features like Collections and Keywords.
Who is it for?
Professional Photographers:
PCMag notes that Lightroom Classic is a popular choice among professional photographers who need the flexibility and control of a desktop-based application.
Users with Large Collections:
Those with extensive photo collections may prefer Lightroom Classic's local storage and robust organization features.
Users who prefer a traditional workflow:
Users who prefer a more traditional desktop workflow, with their original photos stored on their computer, will find Lightroom Classic a good fit.
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...Andre Hora
Unittest and pytest are the most popular testing frameworks in Python. Overall, pytest provides some advantages, including simpler assertion, reuse of fixtures, and interoperability. Due to such benefits, multiple projects in the Python ecosystem have migrated from unittest to pytest. To facilitate the migration, pytest can also run unittest tests, thus, the migration can happen gradually over time. However, the migration can be timeconsuming and take a long time to conclude. In this context, projects would benefit from automated solutions to support the migration process. In this paper, we propose TestMigrationsInPy, a dataset of test migrations from unittest to pytest. TestMigrationsInPy contains 923 real-world migrations performed by developers. Future research proposing novel solutions to migrate frameworks in Python can rely on TestMigrationsInPy as a ground truth. Moreover, as TestMigrationsInPy includes information about the migration type (e.g., changes in assertions or fixtures), our dataset enables novel solutions to be verified effectively, for instance, from simpler assertion migrations to more complex fixture migrations. TestMigrationsInPy is publicly available at: https://github.com/altinoalvesjunior/TestMigrationsInPy.
WinRAR Crack for Windows (100% Working 2025)sh607827
copy and past on google ➤ ➤➤ https://hdlicense.org/ddl/
WinRAR Crack Free Download is a powerful archive manager that provides full support for RAR and ZIP archives and decompresses CAB, ARJ, LZH, TAR, GZ, ACE, UUE, .
Join Ajay Sarpal and Miray Vu to learn about key Marketo Engage enhancements. Discover improved in-app Salesforce CRM connector statistics for easy monitoring of sync health and throughput. Explore new Salesforce CRM Synch Dashboards providing up-to-date insights into weekly activity usage, thresholds, and limits with drill-down capabilities. Learn about proactive notifications for both Salesforce CRM sync and product usage overages. Get an update on improved Salesforce CRM synch scale and reliability coming in Q2 2025.
Key Takeaways:
Improved Salesforce CRM User Experience: Learn how self-service visibility enhances satisfaction.
Utilize Salesforce CRM Synch Dashboards: Explore real-time weekly activity data.
Monitor Performance Against Limits: See threshold limits for each product level.
Get Usage Over-Limit Alerts: Receive notifications for exceeding thresholds.
Learn About Improved Salesforce CRM Scale: Understand upcoming cloud-based incremental sync.
⭕️➡️ FOR DOWNLOAD LINK : http://drfiles.net/ ⬅️⭕️
Maxon Cinema 4D 2025 is the latest version of the Maxon's 3D software, released in September 2024, and it builds upon previous versions with new tools for procedural modeling and animation, as well as enhancements to particle, Pyro, and rigid body simulations. CG Channel also mentions that Cinema 4D 2025.2, released in April 2025, focuses on spline tools and unified simulation enhancements.
Key improvements and features of Cinema 4D 2025 include:
Procedural Modeling: New tools and workflows for creating models procedurally, including fabric weave and constellation generators.
Procedural Animation: Field Driver tag for procedural animation.
Simulation Enhancements: Improved particle, Pyro, and rigid body simulations.
Spline Tools: Enhanced spline tools for motion graphics and animation, including spline modifiers from Rocket Lasso now included for all subscribers.
Unified Simulation & Particles: Refined physics-based effects and improved particle systems.
Boolean System: Modernized boolean system for precise 3D modeling.
Particle Node Modifier: New particle node modifier for creating particle scenes.
Learning Panel: Intuitive learning panel for new users.
Redshift Integration: Maxon now includes access to the full power of Redshift rendering for all new subscriptions.
In essence, Cinema 4D 2025 is a major update that provides artists with more powerful tools and workflows for creating 3D content, particularly in the fields of motion graphics, VFX, and visualization.
Scaling GraphRAG: Efficient Knowledge Retrieval for Enterprise AIdanshalev
If we were building a GenAI stack today, we'd start with one question: Can your retrieval system handle multi-hop logic?
Trick question, b/c most can’t. They treat retrieval as nearest-neighbor search.
Today, we discussed scaling #GraphRAG at AWS DevOps Day, and the takeaway is clear: VectorRAG is naive, lacks domain awareness, and can’t handle full dataset retrieval.
GraphRAG builds a knowledge graph from source documents, allowing for a deeper understanding of the data + higher accuracy.
Avast Premium Security Crack FREE Latest Version 2025mu394968
🌍📱👉COPY LINK & PASTE ON GOOGLE https://dr-kain-geera.info/👈🌍
Avast Premium Security is a paid subscription service that provides comprehensive online security and privacy protection for multiple devices. It includes features like antivirus, firewall, ransomware protection, and website scanning, all designed to safeguard against a wide range of online threats, according to Avast.
Key features of Avast Premium Security:
Antivirus: Protects against viruses, malware, and other malicious software, according to Avast.
Firewall: Controls network traffic and blocks unauthorized access to your devices, as noted by All About Cookies.
Ransomware protection: Helps prevent ransomware attacks, which can encrypt your files and hold them hostage.
Website scanning: Checks websites for malicious content before you visit them, according to Avast.
Email Guardian: Scans your emails for suspicious attachments and phishing attempts.
Multi-device protection: Covers up to 10 devices, including Windows, Mac, Android, and iOS, as stated by 2GO Software.
Privacy features: Helps protect your personal data and online privacy.
In essence, Avast Premium Security provides a robust suite of tools to keep your devices and online activity safe and secure, according to Avast.
3. Marco Parenzan
Solution Sales Specialist in Insight for Digital Innovation
Azure MVP
Community Lead 1nn0va // Pordenone
Linkedin: https://www.linkedin.com/in/marcoparenzan/
4. .NET per la Data Science
(e anche di più)
Marco Parenzan
5. C# language evolution
• C# 1.0 was a new managed language
• C# 2.0 introduced generics
• C# 3.0 enabled LINQ
• C# 4.0 was all about interoperability with dynamic non-strongly typed languages.
• C# 5.0 simplified asynchronous programming with the async and await keywords.
• C# 6.0 the language has been increasingly shaped by conversation with the
community, now to the point of taking language features as contributions from
outside Microsoft
• C# 7.x will be no exception, with tuples and pattern matching as the biggest
features, transforming and streamlining the flow of data and control in code.
Point releases
• C# 7.1, 7.2, 7.3 Safe Efficient Code, More Freedom, Less Code
• C# 8 running in the function path
• C# 9 records, top level statements
6. C# language evolution
• C# 1.0 was a new managed language
• C# 2.0 introduced generics
• C# 3.0 enabled LINQ
• C# 4.0 was all about interoperability with dynamic non-strongly typed languages.
• C# 5.0 simplified asynchronous programming with the async and await keywords.
• C# 6.0 the language has been increasingly shaped by conversation with the
community, now to the point of taking language features as contributions from
outside Microsoft
• C# 7.x will be no exception, with tuples and pattern matching as the biggest
features, transforming and streamlining the flow of data and control in code.
Point releases
• C# 7.1, 7.2, 7.3 Safe Efficient Code, More Freedom, Less Code
• C# 8 running in the function path
• C# 9 records, top level statements
7. Add a footer 7
Top level statement
• Only one file in a project the code you could write in a Main
method directly without method and class
• Else is a syntax error
• You have no reference to that class (that is compiler generated)
• …and it is async by default!
10. What about Data Science and Spark?
• In a recent survey, more than 70% of .NET devs expressed
interest in Apache Spark
• Millions of lines of big data-usable business logic are written in
.NET
• But .NET devs are locked out from big data processing – lack of
.NET support in OSS big data solutions
• We want a first-class .net data processing experience
11. Batch vs. Notebooks
• Batch
• Work on slow data stored into a
Datalake
• Submit a complete app in one
single deploy
• Receive the entire output
• Notebook
• «sketching» the code
• Write/delete/rewrite
continuously
• Run cell by cell (but also all at
once) interactive
• In a world of Mathematica
13. Evolution of REPL
• At the beginning there was mono
• Then Dynamic/DLR (C# 4)
• C#/F# interactive (C#6 + Roslyn)
• .NET Try.NET Interactive
14. .NET Interactive Architectural Overview
• The kernel concept in
.NET Interactive is a
component that
accepts commands and
produces outputs.
• The commands are
typically blocks of
arbitrary code, and the
outputs are events that
describe the results and
effects of that code.
The Kernel class
represents this core
abstraction.
• “Coding like a chat with
a Bot”
15. Jupyter
• Evolution and generalization of the seminal role of Mathematica
(notebook)
• +Python adoption (ipynb)
• +Web (HTTP+Html+Markdown)
• +Kernel
17. Data Processing in a Azure World...
• Thousands of IoT sensors in a factory,
producing petabytes of data
• Started with Stream Analytics...
• Like Azure Data Explorer...
• Data Warehouse...
• ...but there is a standard? Yes!
19. Spark Unifies:
Batch Processing
Interactive SQL
Real-time processing
Machine Learning
Deep Learning
Graph Processing
An unified, open source, parallel, data processing framework for Big Data Analytics
Spark Core Engine
Spark SQL
Batch processing
Spark Structured
Streaming
Stream processing
Spark MLlib
Machine
Learning
Yarn
Spark MLlib
Machine
Learning
Spark
Streaming
Stream processing
GraphX
Graph
Computation
http://spark.apache.org
Apache Spark
20. Data Sources (HDFS, SQL, NoSQL, …)
Cluster Manager
Node Node Node
Cache Cache Cache
Driver Program
SparkContext
General Spark Cluster Architecture
• ‘Driver’ runs the user’s ‘main’ function
and executes the various parallel
operations on the worker nodes.
• The results of the operations are
collected by the driver
• The worker nodes read and write data
from/to Data Sources including HDFS.
• Worker node also cache transformed
data in memory as RDDs (Resilient
Data Sets).
• Worker nodes and the Driver Node
execute as VMs in public clouds
(AWS, Google and Azure).
22. DataFrame as the core of Spark
• Recipe:
• Create Session
• Create Dataframe
• Define a user defined function
• Manipulate and view Data
CSV Data
JSON Data
RDBMS Data
Parquet Data
Binary Data
DataFrame
User programs
against the
DataFrame
abstraction
24. .NET for Apache Spark
• .NET bindings (C# e F#) to Spark
• Written on the Spark interop layer,
designed to provide high
performance bindings to multiple
languages
• Re-use knowledge, skills, code
you have as a .NET developer
• Compliant with .NET Standard
• You can use .NET for Apache
Spark anywhere you write .NET
code
• Original project Moebius
• https://github.com/microsoft/Mob
ius
25. .NET Spark support
Spark DataFramews
with SparkSQL
• Spark 2.3.x, 2.4.x,
3.0
• ~300 SparkSQL
function
• DeltaLake
.NET Standard 2.0
• C#/F#
• .NET Framework
4.6.1+
• .NET Core 2.1+
Batch&Streaming
• Structured
Streaming
Data Science
• ML.NET
• Notebooks
26. Using .NET for Spark
• Get started with .NET for
Apache Spark | Microsoft
Docs
• https://docs.microsoft.com/en-
us/dotnet/spark/tutorials/get-
started?tabs=windows
• Install .NET
• Install Java
• Install Apache Spark
• Install .NET for Apache Spark
• Create your app
• Install NuGet package
27. Run Spark with .NET in a container
• Not an official Microsoft image
• https://hub.docker.com/r/3rdman/dotnet-spark
• Install nothing on your machine other than docker
• Launch and Debug your code from Visual Studio and Visual Studio
Code
• Very good for development
30. Engine for business-changing insights with seamless ecosystem
integration
Azure
Synapse Analytics
Data
integration
Data
warehousing
Big data
processing
Azure Data Lake Storage + Common Data Model
31. Azure Synapse Analytics
Limitless analytics service with unmatched time to insight
Synapse Analytics
Platform
Azure
Data Lake Storage
Common Data Model
Enterprise Security
Optimized for Analytics
Data lake integrated and
Common Data Model aware
METASTORE
SECURITY
MANAGEMENT
MONITORING
Integrated platform services
for, management, security,
monitoring, and meta-store
DATA INTEGRATION
SQL
Analytics Runtimes
Integrated analytics runtimes
available provisioned and
serverless on-demand
Synapse SQL offering T-SQL for
batch, streaming and interactive
processing
Apache Spark for big data
processing with Python, Scala and
.NET
PROVISIONED ON-DEMAND
Form Factors
SQL
Languages
Python .NET Java Scala R
Multiple languages suited to
different analytics workloads
Experience Synapse Analytics Studio
SaaS developer experiences for
code free and code first
Artificial Intelligence / Machine Learning / Internet of Things
Intelligent Apps / Business Intelligence
Designed for analytics workloads
at any scale
METASTORE
SECURITY
MANAGEMENT
MONITORING
32. Manage – Apache Spark pools
• Overview
• Provides ability to Pause, Scale, Assign Tags and upload packages from Studio.
35. Synapse Service
Job Service Frontend
Spark API
Controller …
Job Service Backend
Spark Plugin
Gateway
Resource
Provider
DB
Synapse Studio
AAD
Auth Service
Instance
Creation Service
DBDB
Azure
Spark Instance
VM VM VM VM VM
…
VM
Synapse Job Service
36. Develop Hub - Notebooks
• Notebooks
• Allows to write multiple
languages in one notebook
• %%<Name of language>
• Offers use of temporary tables
across languages
• Language support for Syntax
highlight, syntax error, syntax
code completion, smart indent,
code folding
• Export results
39. Conclusion
• Spark is here to stay
• Now it is a place for .NET skills too
• Azure Synapse Analytics the best fusion between the old and
the new world
Add a footer 39