Machine learning for text classification is the
underpinning
of document
cataloging
, news filtering,
document
steering
and
exemplif
ication
. In text mining realm, effective feature selection is significant to
make the learning task more accurate and competent. One of the
traditional
lazy
text classifier
k
-
Nearest
Neighborhood (
k
NN) has
a
major pitfall in calculating the similarity between
all
the
objects in training and
testing se
t
s,
there by leads to exaggeration of
both
computational complexity
of the algorithm
and
massive
consumption
of
main memory
. To diminish these shortcomings
in
viewpoint
of a
data
-
mining
practitioner
a
n
amalgamati
ve technique is proposed in this paper using
a novel restructured version of
k
NN called
Augmented
k
NN
(AkNN)
and
k
-
Medoids
(kMdd)
clustering.
The proposed work
comprises
preprocesses
on
the
initial training
set
by
imposing
attribute feature selection
for reduc
tion of high dimensionality, also it
detects and excludes the high
-
fliers
samples
in t
he
initial
training set
and
re
structure
s
a
constricted
training
set
.
The kMdd clustering algorithm generates the cluster centers (as interior objects) for each category
and
restructures
the constricted training set
with centroids
. This technique
is
amalgamated with
AkNN
classifier
that
was prearranged with
text mining similarity measure
s.
Eventually, s
ignifican
tweights
and ranks were
assigned to each object in the new
training set based upon the
ir
accessory towards the
object in testing set
.
Experiments
conducted
on Reuters
-
21578 a
UCI benchmark
text mining
data
set
, and
comparisons with
traditional
k
NN
classifier designates
the
referred
method
yield
spreeminentrecital
in b
oth clustering and
classification