SlideShare a Scribd company logo
5
Most read
7
Most read
18
Most read
Numerical Methods - Numerical
Integration
N. B. Vyas
Department of Mathematics,
Atmiya Institute of Tech. and Science, Rajkot (Guj.)
niravbvyas@gmail.com
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Let I =
b
a
y dx where y = f(x) takes the values y0, y1, . . . , yn for
x0, x1, . . . , xn
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Let I =
b
a
y dx where y = f(x) takes the values y0, y1, . . . , yn for
x0, x1, . . . , xn
Let us divide the interval (a, b) into n sub-intervals of width h so
that x0 = a, x1 = a + h = x0 + h, x2 = x0 + 2h, . . .,
xn = x0 + nh = b then
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Let I =
b
a
y dx where y = f(x) takes the values y0, y1, . . . , yn for
x0, x1, . . . , xn
Let us divide the interval (a, b) into n sub-intervals of width h so
that x0 = a, x1 = a + h = x0 + h, x2 = x0 + 2h, . . .,
xn = x0 + nh = b then
I =
b
a
y dx =
x0+nh
x0
f(x) dx
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Let I =
b
a
y dx where y = f(x) takes the values y0, y1, . . . , yn for
x0, x1, . . . , xn
Let us divide the interval (a, b) into n sub-intervals of width h so
that x0 = a, x1 = a + h = x0 + h, x2 = x0 + 2h, . . .,
xn = x0 + nh = b then
I =
b
a
y dx =
x0+nh
x0
f(x) dx
Trapezoidal rule:
b=x0+nh
a=x0
f(x)dx =
h
2
[(y0 + yn) + 2 (y1 + y2 + .... + yn)]; h =
b − a
n
If the number of strips is increased; that is, h is decreased, then
the accuracy of the approximation is increased.
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Simpson’s
1
3
rd rule:
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Simpson’s
1
3
rd rule:
x0+nh
x0
f(x)dx = h
3 [(y0 + yn) + 4(y1 + y3 + ....)
+2(y3 + y4 + ....)]; h = b−a
n
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Simpson’s
1
3
rd rule:
x0+nh
x0
f(x)dx = h
3 [(y0 + yn) + 4(y1 + y3 + ....)
+2(y3 + y4 + ....)]; h = b−a
n
while applying this rule, the given interval must be divided into
even number of equal sub-intervals. i.e. n must be even.
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Simpson’s
1
3
rd rule:
x0+nh
x0
f(x)dx = h
3 [(y0 + yn) + 4(y1 + y3 + ....)
+2(y3 + y4 + ....)]; h = b−a
n
while applying this rule, the given interval must be divided into
even number of equal sub-intervals. i.e. n must be even.
Simpson’s
3
8
th rule:
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Simpson’s
1
3
rd rule:
x0+nh
x0
f(x)dx = h
3 [(y0 + yn) + 4(y1 + y3 + ....)
+2(y3 + y4 + ....)]; h = b−a
n
while applying this rule, the given interval must be divided into
even number of equal sub-intervals. i.e. n must be even.
Simpson’s
3
8
th rule:
x0+nh
x0
f(x)dx = 3h
8 [(y0 + yn) + 3(y1 + y2 + y4 + y5 + ....)
+2(y3 + y6 + ....)]; h = b−a
n
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Simpson’s
1
3
rd rule:
x0+nh
x0
f(x)dx = h
3 [(y0 + yn) + 4(y1 + y3 + ....)
+2(y3 + y4 + ....)]; h = b−a
n
while applying this rule, the given interval must be divided into
even number of equal sub-intervals. i.e. n must be even.
Simpson’s
3
8
th rule:
x0+nh
x0
f(x)dx = 3h
8 [(y0 + yn) + 3(y1 + y2 + y4 + y5 + ....)
+2(y3 + y6 + ....)]; h = b−a
n
while applying this rule, the number of sub-intervals should be
taken as a multiple of 3 i.e. n must be multiple of 3
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Gaussian Integration Formula:
1
−1
f(t)dt =
n
i=1
wif(ti)
It should be noted here that, t = ±1 is obtained by setting
x =
1
2
[(b + a) + t (b − a)]
N. B. Vyas Numerical Methods - Numerical Integration
Numerical Integration
Gaussian Integration Formula: The following table gives the
values for n = 2, 3, 4, 5
N. B. Vyas Numerical Methods - Numerical Integration
Example
Ex. Evaluate
1
0
e−x2
dx by using Gaussion integration formula for
n = 3.
Sol. Here, we have to first convert the given integral from 0 to 1 into
an integral from −1 to 1. x = 1
2 [(b + a) + t (b − a)], a = 0 and
b = 1
∴ x =
t + 1
2
⇒ dx =
dt
2
∴
1
0
exp(−x2)dx =
1
2
1
−1
exp −
1
4
(t + 1)2 dt
N. B. Vyas Numerical Methods - Numerical Integration
Error
Error in Quadrature Formula:
If yp is a polynomial representing the function y = f(x) in the
interval [x0, xn] the error in the quadrature formula is given by
E =
xn
x0
f(x) =
xn
x0
ypdx
N. B. Vyas Numerical Methods - Numerical Integration
Error
Error in Trapezoidal rule:
|error| ≤ (b − a)
h2
12
|f (M)|
where f (M) = max |f 0(x)|, |f 1(x)|, ..., |f n−1(x)|
∴ error is of order h2
total error =
dh3
12
y 0 + y 1 + ... + y n−1
N. B. Vyas Numerical Methods - Numerical Integration
Error
Error in Simpson’s
1
3
rd rule:
|error| ≤ (b − a)
h4
180
|f4
(M)|
where f4(M) = max |y4
0|, |y4
2|, ..., |y4
n−2|
∴ error is of order h4
total error =
h5
90
y4
0 + y4
2 + ... + y4
n−2
N. B. Vyas Numerical Methods - Numerical Integration
Error
Error in Simpson’s
3
8
th rule:
|error| ≤ (b − a)
h4
80
|f4
(M)|
where f4(M) = max |y4
0|, |y4
3|, ..., |y4
n−3|
∴ error is of order h4
total error =
3h5
80
y4
0 + y4
3 + ... + y4
n−3
N. B. Vyas Numerical Methods - Numerical Integration

More Related Content

What's hot (20)

PPTX
Newton’s Divided Difference Interpolation 18.pptx
RishabhGupta238479
 
PPTX
Es272 ch6
Batuhan Yıldırım
 
PPTX
Functions
Ankit Bhandari
 
PPTX
Series solutions at ordinary point and regular singular point
vaibhav tailor
 
PPT
Fourier series
Naveen Sihag
 
PPT
Gauss sediel
jorgeduardooo
 
PDF
linear transformation and rank nullity theorem
Manthan Chavda
 
PPT
18 directional derivatives and gradient
math267
 
PPT
matrices and algbra
gandhinagar
 
PPTX
complex number
Md. Rasadul Islam
 
PPTX
Gauss Quadrature Formula
Maitree Patel
 
PPTX
Euler's Method
dmidgette
 
PPTX
Power series
Pranav Veerani
 
PPTX
Relations and functions
Heather Scott
 
PDF
Numerical Methods - Oridnary Differential Equations - 1
Dr. Nirav Vyas
 
PPTX
Vector space
Jaimin Patel
 
PPTX
6.1 system of linear equations and matrices
math260
 
PPTX
Es272 ch7
Batuhan Yıldırım
 
PPT
11.3 geometric sequences
lothomas
 
PDF
Fixed point iteration
Isaac Yowetu
 
Newton’s Divided Difference Interpolation 18.pptx
RishabhGupta238479
 
Functions
Ankit Bhandari
 
Series solutions at ordinary point and regular singular point
vaibhav tailor
 
Fourier series
Naveen Sihag
 
Gauss sediel
jorgeduardooo
 
linear transformation and rank nullity theorem
Manthan Chavda
 
18 directional derivatives and gradient
math267
 
matrices and algbra
gandhinagar
 
complex number
Md. Rasadul Islam
 
Gauss Quadrature Formula
Maitree Patel
 
Euler's Method
dmidgette
 
Power series
Pranav Veerani
 
Relations and functions
Heather Scott
 
Numerical Methods - Oridnary Differential Equations - 1
Dr. Nirav Vyas
 
Vector space
Jaimin Patel
 
6.1 system of linear equations and matrices
math260
 
11.3 geometric sequences
lothomas
 
Fixed point iteration
Isaac Yowetu
 

Viewers also liked (20)

PPTX
Simpson’s one third and weddle's rule
zahid6
 
PPTX
weddle's rule
Effa Kiran
 
PPT
Applications of numerical methods
Tarun Gehlot
 
PPTX
photosystem Iand II,ETC
Effa Kiran
 
PDF
numerical differentiation&integration
8laddu8
 
PPT
Numerical integration
Sunny Chauhan
 
PDF
Assignment on Numerical Method C Code
Syed Ahmed Zaki
 
PPTX
Numerical integration
Mohammed_AQ
 
PPTX
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
m.kumarasamy college of engineering
 
PPTX
Newton’s Forward & backward interpolation
Meet Patel
 
PDF
Interpolation Methods
Mohammad Tawfik
 
PPT
Numerical Analysis (Solution of Non-Linear Equations)
Asad Ali
 
PPTX
Newton cotes integration method
shashikant pabari
 
PDF
Introduction to Numerical Analysis
Mohammad Tawfik
 
PPTX
Application of Numerical method in Real Life
Taqwa It Center
 
PDF
Calculus 08 techniques_of_integration
tutulk
 
PPTX
Newton Raphson Method Using C Programming
Md Abu Bakar Siddique
 
PDF
Syllabus 4-year-bs-math
International advisers
 
PDF
2 Capitulo Metodos Numericos
DUBAN CASTRO
 
PPTX
Numerical approximation
Lizeth Paola Barrero
 
Simpson’s one third and weddle's rule
zahid6
 
weddle's rule
Effa Kiran
 
Applications of numerical methods
Tarun Gehlot
 
photosystem Iand II,ETC
Effa Kiran
 
numerical differentiation&integration
8laddu8
 
Numerical integration
Sunny Chauhan
 
Assignment on Numerical Method C Code
Syed Ahmed Zaki
 
Numerical integration
Mohammed_AQ
 
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
m.kumarasamy college of engineering
 
Newton’s Forward & backward interpolation
Meet Patel
 
Interpolation Methods
Mohammad Tawfik
 
Numerical Analysis (Solution of Non-Linear Equations)
Asad Ali
 
Newton cotes integration method
shashikant pabari
 
Introduction to Numerical Analysis
Mohammad Tawfik
 
Application of Numerical method in Real Life
Taqwa It Center
 
Calculus 08 techniques_of_integration
tutulk
 
Newton Raphson Method Using C Programming
Md Abu Bakar Siddique
 
Syllabus 4-year-bs-math
International advisers
 
2 Capitulo Metodos Numericos
DUBAN CASTRO
 
Numerical approximation
Lizeth Paola Barrero
 
Ad

Similar to Numerical Methods 3 (20)

PDF
Numerical integration
DrDeepaChauhan
 
PPTX
NUMERICAL METHOD'S
srijanani16
 
PDF
Efficient Accuracy: A Study on Numerical Integration.
ShaifulIslam56
 
PPTX
NUMERICAL INTEGRATION : ERROR FORMULA, GAUSSIAN QUADRATURE FORMULA
KHORASIYA DEVANSU
 
PPT
1519 differentiation-integration-02
Dr Fereidoun Dejahang
 
PDF
Error analysis in numerical integration
AmenahGondal1
 
PDF
Overviewing the techniques of Numerical Integration.pdf
ArijitDhali
 
PPT
Numerical hhhhhhhhhhhhhhhhhIntegration.ppt
BARUNSINGH43
 
PDF
Ankit_Practical_File-1.pdf A detailed overview of Rizir as a brand
m52870494
 
PDF
engineeringmathematics-iv_unit-v
Kundan Kumar
 
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Rai University
 
PPT
23MA401 NM Numerical integration anddifferenciation
shyamalaseec
 
PPT
Numerical integration
Tarun Gehlot
 
PPT
MATLAB : Numerical Differention and Integration
Ainul Islam
 
PPTX
Nsm ppt.ppt
shivanisaini25
 
PDF
Numerical Integration
Mohammad Tawfik
 
PPTX
The Trapezoidal rule is the first of the Newton-Cotes closed integration form...
NileshBirajdar8
 
PDF
Applied numerical methods lec10
Yasser Ahmed
 
PDF
NUMERICAL ANALYSIS.pdf
VAIBHAVSAHU55
 
PDF
A NEW STUDY OF TRAPEZOIDAL, SIMPSON’S1/3 AND SIMPSON’S 3/8 RULES OF NUMERICAL...
mathsjournal
 
Numerical integration
DrDeepaChauhan
 
NUMERICAL METHOD'S
srijanani16
 
Efficient Accuracy: A Study on Numerical Integration.
ShaifulIslam56
 
NUMERICAL INTEGRATION : ERROR FORMULA, GAUSSIAN QUADRATURE FORMULA
KHORASIYA DEVANSU
 
1519 differentiation-integration-02
Dr Fereidoun Dejahang
 
Error analysis in numerical integration
AmenahGondal1
 
Overviewing the techniques of Numerical Integration.pdf
ArijitDhali
 
Numerical hhhhhhhhhhhhhhhhhIntegration.ppt
BARUNSINGH43
 
Ankit_Practical_File-1.pdf A detailed overview of Rizir as a brand
m52870494
 
engineeringmathematics-iv_unit-v
Kundan Kumar
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Rai University
 
23MA401 NM Numerical integration anddifferenciation
shyamalaseec
 
Numerical integration
Tarun Gehlot
 
MATLAB : Numerical Differention and Integration
Ainul Islam
 
Nsm ppt.ppt
shivanisaini25
 
Numerical Integration
Mohammad Tawfik
 
The Trapezoidal rule is the first of the Newton-Cotes closed integration form...
NileshBirajdar8
 
Applied numerical methods lec10
Yasser Ahmed
 
NUMERICAL ANALYSIS.pdf
VAIBHAVSAHU55
 
A NEW STUDY OF TRAPEZOIDAL, SIMPSON’S1/3 AND SIMPSON’S 3/8 RULES OF NUMERICAL...
mathsjournal
 
Ad

More from Dr. Nirav Vyas (20)

PDF
Advance Topics in Latex - different packages
Dr. Nirav Vyas
 
PPTX
Numerical Methods Algorithm and C Program
Dr. Nirav Vyas
 
PDF
Reduction forumla
Dr. Nirav Vyas
 
PPTX
Arithmetic Mean, Geometric Mean, Harmonic Mean
Dr. Nirav Vyas
 
PPTX
Geometric progressions
Dr. Nirav Vyas
 
PPTX
Arithmetic progressions
Dr. Nirav Vyas
 
PPTX
Combinations
Dr. Nirav Vyas
 
PPTX
Permutation
Dr. Nirav Vyas
 
PPTX
Matrices and Determinants
Dr. Nirav Vyas
 
PDF
Curve fitting - Lecture Notes
Dr. Nirav Vyas
 
PDF
Trend analysis - Lecture Notes
Dr. Nirav Vyas
 
PDF
Basic Concepts of Statistics - Lecture Notes
Dr. Nirav Vyas
 
PDF
Numerical Methods - Power Method for Eigen values
Dr. Nirav Vyas
 
PDF
Numerical Methods - Oridnary Differential Equations - 3
Dr. Nirav Vyas
 
PDF
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
PDF
Special functions
Dr. Nirav Vyas
 
PDF
Legendre Function
Dr. Nirav Vyas
 
PDF
Laplace Transforms
Dr. Nirav Vyas
 
PDF
Fourier series 3
Dr. Nirav Vyas
 
PDF
Fourier series 2
Dr. Nirav Vyas
 
Advance Topics in Latex - different packages
Dr. Nirav Vyas
 
Numerical Methods Algorithm and C Program
Dr. Nirav Vyas
 
Reduction forumla
Dr. Nirav Vyas
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Dr. Nirav Vyas
 
Geometric progressions
Dr. Nirav Vyas
 
Arithmetic progressions
Dr. Nirav Vyas
 
Combinations
Dr. Nirav Vyas
 
Permutation
Dr. Nirav Vyas
 
Matrices and Determinants
Dr. Nirav Vyas
 
Curve fitting - Lecture Notes
Dr. Nirav Vyas
 
Trend analysis - Lecture Notes
Dr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Dr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 3
Dr. Nirav Vyas
 
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
Special functions
Dr. Nirav Vyas
 
Legendre Function
Dr. Nirav Vyas
 
Laplace Transforms
Dr. Nirav Vyas
 
Fourier series 3
Dr. Nirav Vyas
 
Fourier series 2
Dr. Nirav Vyas
 

Recently uploaded (20)

PPTX
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
PDF
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
PPTX
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
PDF
The Different Types of Non-Experimental Research
Thelma Villaflores
 
PPTX
MENINGITIS: NURSING MANAGEMENT, BACTERIAL MENINGITIS, VIRAL MENINGITIS.pptx
PRADEEP ABOTHU
 
PDF
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
PPTX
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
PPTX
How to Convert an Opportunity into a Quotation in Odoo 18 CRM
Celine George
 
PDF
SSHS-2025-PKLP_Quarter-1-Dr.-Kerby-Alvarez.pdf
AishahSangcopan1
 
PDF
0725.WHITEPAPER-UNIQUEWAYSOFPROTOTYPINGANDUXNOW.pdf
Thomas GIRARD, MA, CDP
 
PPTX
PATIENT ASSIGNMENTS AND NURSING CARE RESPONSIBILITIES.pptx
PRADEEP ABOTHU
 
PDF
community health nursing question paper 2.pdf
Prince kumar
 
PDF
LAW OF CONTRACT (5 YEAR LLB & UNITARY LLB )- MODULE - 1.& 2 - LEARN THROUGH P...
APARNA T SHAIL KUMAR
 
PDF
Dimensions of Societal Planning in Commonism
StefanMz
 
PPTX
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
PPTX
How to Create a PDF Report in Odoo 18 - Odoo Slides
Celine George
 
PDF
The-Ever-Evolving-World-of-Science (1).pdf/7TH CLASS CURIOSITY /1ST CHAPTER/B...
Sandeep Swamy
 
PDF
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
PPTX
I AM MALALA The Girl Who Stood Up for Education and was Shot by the Taliban...
Beena E S
 
PPTX
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 
Unit 2 COMMERCIAL BANKING, Corporate banking.pptx
AnubalaSuresh1
 
Chapter-V-DED-Entrepreneurship: Institutions Facilitating Entrepreneurship
Dayanand Huded
 
Cultivation practice of Litchi in Nepal.pptx
UmeshTimilsina1
 
The Different Types of Non-Experimental Research
Thelma Villaflores
 
MENINGITIS: NURSING MANAGEMENT, BACTERIAL MENINGITIS, VIRAL MENINGITIS.pptx
PRADEEP ABOTHU
 
CONCURSO DE POESIA “POETUFAS – PASSOS SUAVES PELO VERSO.pdf
Colégio Santa Teresinha
 
Growth and development and milestones, factors
BHUVANESHWARI BADIGER
 
How to Convert an Opportunity into a Quotation in Odoo 18 CRM
Celine George
 
SSHS-2025-PKLP_Quarter-1-Dr.-Kerby-Alvarez.pdf
AishahSangcopan1
 
0725.WHITEPAPER-UNIQUEWAYSOFPROTOTYPINGANDUXNOW.pdf
Thomas GIRARD, MA, CDP
 
PATIENT ASSIGNMENTS AND NURSING CARE RESPONSIBILITIES.pptx
PRADEEP ABOTHU
 
community health nursing question paper 2.pdf
Prince kumar
 
LAW OF CONTRACT (5 YEAR LLB & UNITARY LLB )- MODULE - 1.& 2 - LEARN THROUGH P...
APARNA T SHAIL KUMAR
 
Dimensions of Societal Planning in Commonism
StefanMz
 
Stereochemistry-Optical Isomerism in organic compoundsptx
Tarannum Nadaf-Mansuri
 
How to Create a PDF Report in Odoo 18 - Odoo Slides
Celine George
 
The-Ever-Evolving-World-of-Science (1).pdf/7TH CLASS CURIOSITY /1ST CHAPTER/B...
Sandeep Swamy
 
The Constitution Review Committee (CRC) has released an updated schedule for ...
nservice241
 
I AM MALALA The Girl Who Stood Up for Education and was Shot by the Taliban...
Beena E S
 
A PPT on Alfred Lord Tennyson's Ulysses.
Beena E S
 

Numerical Methods 3

  • 1. Numerical Methods - Numerical Integration N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) [email protected] N. B. Vyas Numerical Methods - Numerical Integration
  • 2. Numerical Integration Let I = b a y dx where y = f(x) takes the values y0, y1, . . . , yn for x0, x1, . . . , xn N. B. Vyas Numerical Methods - Numerical Integration
  • 3. Numerical Integration Let I = b a y dx where y = f(x) takes the values y0, y1, . . . , yn for x0, x1, . . . , xn Let us divide the interval (a, b) into n sub-intervals of width h so that x0 = a, x1 = a + h = x0 + h, x2 = x0 + 2h, . . ., xn = x0 + nh = b then N. B. Vyas Numerical Methods - Numerical Integration
  • 4. Numerical Integration Let I = b a y dx where y = f(x) takes the values y0, y1, . . . , yn for x0, x1, . . . , xn Let us divide the interval (a, b) into n sub-intervals of width h so that x0 = a, x1 = a + h = x0 + h, x2 = x0 + 2h, . . ., xn = x0 + nh = b then I = b a y dx = x0+nh x0 f(x) dx N. B. Vyas Numerical Methods - Numerical Integration
  • 5. Numerical Integration Let I = b a y dx where y = f(x) takes the values y0, y1, . . . , yn for x0, x1, . . . , xn Let us divide the interval (a, b) into n sub-intervals of width h so that x0 = a, x1 = a + h = x0 + h, x2 = x0 + 2h, . . ., xn = x0 + nh = b then I = b a y dx = x0+nh x0 f(x) dx Trapezoidal rule: b=x0+nh a=x0 f(x)dx = h 2 [(y0 + yn) + 2 (y1 + y2 + .... + yn)]; h = b − a n If the number of strips is increased; that is, h is decreased, then the accuracy of the approximation is increased. N. B. Vyas Numerical Methods - Numerical Integration
  • 6. Numerical Integration Simpson’s 1 3 rd rule: N. B. Vyas Numerical Methods - Numerical Integration
  • 7. Numerical Integration Simpson’s 1 3 rd rule: x0+nh x0 f(x)dx = h 3 [(y0 + yn) + 4(y1 + y3 + ....) +2(y3 + y4 + ....)]; h = b−a n N. B. Vyas Numerical Methods - Numerical Integration
  • 8. Numerical Integration Simpson’s 1 3 rd rule: x0+nh x0 f(x)dx = h 3 [(y0 + yn) + 4(y1 + y3 + ....) +2(y3 + y4 + ....)]; h = b−a n while applying this rule, the given interval must be divided into even number of equal sub-intervals. i.e. n must be even. N. B. Vyas Numerical Methods - Numerical Integration
  • 9. Numerical Integration Simpson’s 1 3 rd rule: x0+nh x0 f(x)dx = h 3 [(y0 + yn) + 4(y1 + y3 + ....) +2(y3 + y4 + ....)]; h = b−a n while applying this rule, the given interval must be divided into even number of equal sub-intervals. i.e. n must be even. Simpson’s 3 8 th rule: N. B. Vyas Numerical Methods - Numerical Integration
  • 10. Numerical Integration Simpson’s 1 3 rd rule: x0+nh x0 f(x)dx = h 3 [(y0 + yn) + 4(y1 + y3 + ....) +2(y3 + y4 + ....)]; h = b−a n while applying this rule, the given interval must be divided into even number of equal sub-intervals. i.e. n must be even. Simpson’s 3 8 th rule: x0+nh x0 f(x)dx = 3h 8 [(y0 + yn) + 3(y1 + y2 + y4 + y5 + ....) +2(y3 + y6 + ....)]; h = b−a n N. B. Vyas Numerical Methods - Numerical Integration
  • 11. Numerical Integration Simpson’s 1 3 rd rule: x0+nh x0 f(x)dx = h 3 [(y0 + yn) + 4(y1 + y3 + ....) +2(y3 + y4 + ....)]; h = b−a n while applying this rule, the given interval must be divided into even number of equal sub-intervals. i.e. n must be even. Simpson’s 3 8 th rule: x0+nh x0 f(x)dx = 3h 8 [(y0 + yn) + 3(y1 + y2 + y4 + y5 + ....) +2(y3 + y6 + ....)]; h = b−a n while applying this rule, the number of sub-intervals should be taken as a multiple of 3 i.e. n must be multiple of 3 N. B. Vyas Numerical Methods - Numerical Integration
  • 12. Numerical Integration Gaussian Integration Formula: 1 −1 f(t)dt = n i=1 wif(ti) It should be noted here that, t = ±1 is obtained by setting x = 1 2 [(b + a) + t (b − a)] N. B. Vyas Numerical Methods - Numerical Integration
  • 13. Numerical Integration Gaussian Integration Formula: The following table gives the values for n = 2, 3, 4, 5 N. B. Vyas Numerical Methods - Numerical Integration
  • 14. Example Ex. Evaluate 1 0 e−x2 dx by using Gaussion integration formula for n = 3. Sol. Here, we have to first convert the given integral from 0 to 1 into an integral from −1 to 1. x = 1 2 [(b + a) + t (b − a)], a = 0 and b = 1 ∴ x = t + 1 2 ⇒ dx = dt 2 ∴ 1 0 exp(−x2)dx = 1 2 1 −1 exp − 1 4 (t + 1)2 dt N. B. Vyas Numerical Methods - Numerical Integration
  • 15. Error Error in Quadrature Formula: If yp is a polynomial representing the function y = f(x) in the interval [x0, xn] the error in the quadrature formula is given by E = xn x0 f(x) = xn x0 ypdx N. B. Vyas Numerical Methods - Numerical Integration
  • 16. Error Error in Trapezoidal rule: |error| ≤ (b − a) h2 12 |f (M)| where f (M) = max |f 0(x)|, |f 1(x)|, ..., |f n−1(x)| ∴ error is of order h2 total error = dh3 12 y 0 + y 1 + ... + y n−1 N. B. Vyas Numerical Methods - Numerical Integration
  • 17. Error Error in Simpson’s 1 3 rd rule: |error| ≤ (b − a) h4 180 |f4 (M)| where f4(M) = max |y4 0|, |y4 2|, ..., |y4 n−2| ∴ error is of order h4 total error = h5 90 y4 0 + y4 2 + ... + y4 n−2 N. B. Vyas Numerical Methods - Numerical Integration
  • 18. Error Error in Simpson’s 3 8 th rule: |error| ≤ (b − a) h4 80 |f4 (M)| where f4(M) = max |y4 0|, |y4 3|, ..., |y4 n−3| ∴ error is of order h4 total error = 3h5 80 y4 0 + y4 3 + ... + y4 n−3 N. B. Vyas Numerical Methods - Numerical Integration