AWS Loft Tokyo で毎月実施しているIoT@Loft#13です。第13回目のテーマは、「IoTスタートアップ vol.2」です。スタートアップ企業がどのようにIoTの製品やソリューションを構築しているか、技術的な課題や開発の取り組み方などについて、実際に開発を担当されている方や、それを支援する方にご紹介いただきます。AWSからは、IoTのビジネスを小さく始めて素早く大きく育てていくためのAWSの活用方法やプロトタイピングの実施方法についてご紹介いたします。
The document contains information about various topics including numbers, letters, symbols, measurements, and geographic locations. It discusses numeric values, words, chemical formulas, and temperature readings. Various places, people, and objects are also listed without additional context.
1. The document compares three models for predicting urban land prices: geographically weighted regression (GWR), hedonic regression, and boosted trees (XGBoost).
2. The results show that XGBoost had the highest percentage of predictions within 5%, 10%, and 20% error compared to the actual prices.
3. However, all three models still have limitations, such as only using Euclidean distance and not fully capturing local spatial effects. Improving the data quality and expanding the models could help increase prediction accuracy further.
AWS Loft Tokyo で毎月実施しているIoT@Loft#13です。第13回目のテーマは、「IoTスタートアップ vol.2」です。スタートアップ企業がどのようにIoTの製品やソリューションを構築しているか、技術的な課題や開発の取り組み方などについて、実際に開発を担当されている方や、それを支援する方にご紹介いただきます。AWSからは、IoTのビジネスを小さく始めて素早く大きく育てていくためのAWSの活用方法やプロトタイピングの実施方法についてご紹介いたします。
The document contains information about various topics including numbers, letters, symbols, measurements, and geographic locations. It discusses numeric values, words, chemical formulas, and temperature readings. Various places, people, and objects are also listed without additional context.
1. The document compares three models for predicting urban land prices: geographically weighted regression (GWR), hedonic regression, and boosted trees (XGBoost).
2. The results show that XGBoost had the highest percentage of predictions within 5%, 10%, and 20% error compared to the actual prices.
3. However, all three models still have limitations, such as only using Euclidean distance and not fully capturing local spatial effects. Improving the data quality and expanding the models could help increase prediction accuracy further.
The document discusses Numacraw, a popular Japanese Pokémon character. It notes that Numacraw can be added to plots and charts using the Numacraw() function in R to make them more enjoyable. The function randomly places Numacraw in plots and charts to make boring visualizations more fun. Adding Numacraw is suggested as a cheap solution to improve plots and charts.
The document discusses Numacraw, a popular Japanese influencer Pokémon. It notes that Numacraw can be added to plots and charts using the Numacraw() function in R to make them more enjoyable. The function randomly places Numacraw in plots and charts to make boring visualizations more fun. Adding Numacraw is suggested as a cheap solution to improve plots, though cheap solutions are also said to make things worse.
This document provides an introduction and overview of Stan, a programming language for Bayesian statistical modeling and inference. It discusses Stan's motivation as a faster alternative to BUGS that compiles models to C++. Key points covered include:
- How Stan models are specified using blocks like data, transformed data, parameters, model, and generated quantities.
- Stan's support for scalar, vector, matrix, and array variable types.
- An example Stan model that replicates a hierarchical Bayesian regression of rat weight data from a BUGS example.
- How to install Stan and its R interface RStan on Windows, compile Stan models, and run models from the command line or within R for analysis.