SlideShare a Scribd company logo
OBJECT DETECTION with PYTHON
by Volkan OBAN
Example:
car 79.00787591934204
--------------------------------
car 73.1831431388855
--------------------------------
car 57.52983093261719
--------------------------------
car 67.29255318641663
--------------------------------
truck 36.15168035030365
--------------------------------
truck 33.53544771671295
--------------------------------
car 80.83181381225586
--------------------------------
car 82.77863264083862
--------------------------------
car 88.76808881759644
--------------------------------
car 93.36127042770386
--------------------------------
car 88.27706575393677
--------------------------------
car 34.86555814743042
--------------------------------
truck 37.48719394207001
--------------------------------
car 71.32329940795898
--------------------------------
car 69.4364607334137
--------------------------------
car 86.5426778793335
--------------------------------
car 88.52344751358032
--------------------------------
truck 39.561888575553894
--------------------------------
car 93.05579662322998
--------------------------------
car 88.86352181434631
--------------------------------
car 89.91738557815552
--------------------------------
car 88.38690519332886
Example:
car 49.28020238876343
--------------------------------
car 62.592875957489014
--------------------------------
car 75.57535171508789
--------------------------------
car 79.81342077255249
--------------------------------
car 85.21997928619385
--------------------------------
car 91.146719455719
--------------------------------
person 99.26514029502869
Example:
truck 96.24765515327454
--------------------------------
car 40.00747799873352
--------------------------------
car 99.91380572319031
--------------------------------
person 42.803701758384705
--------------------------------
person 59.26494002342224
--------------------------------
person 60.746097564697266
--------------------------------
person 71.09828591346741
--------------------------------
person 75.94433426856995
--------------------------------
person 79.3380618095398
--------------------------------
person 91.58018231391907
Example:
person 33.710235357284546
--------------------------------
person 40.8907026052475
--------------------------------
person 46.824270486831665
--------------------------------
person 60.826313495635986
--------------------------------
person 67.1332597732544
--------------------------------
person 68.77404451370239
--------------------------------
person 72.1147894859314
--------------------------------
person 78.59335541725159
--------------------------------
person 99.79391694068909
--------------------------------
person 99.81198310852051
--------------------------------
person 99.8548686504364
--------------------------------
person 99.85849261283875
--------------------------------
person 99.88847374916077
--------------------------------
person 99.9029278755188
--------------------------------
person 99.90887641906738
--------------------------------
person 99.94677305221558
Example:
horse 99.4085967540741
--------------------------------
person 37.1588408946991
--------------------------------
person 80.68453669548035
--------------------------------
person 96.65492177009583
--------------------------------
person 97.93082475662231
Object Detectıon (deep learning) with Python
TensorFlow
by VOLKAN OBAN, Ph.D.
Senior Data Scientist

More Related Content

More from Dr. Volkan OBAN (20)

DOCX
Naive Bayes Example using R
Dr. Volkan OBAN
 
DOCX
R forecasting Example
Dr. Volkan OBAN
 
DOCX
k-means Clustering and Custergram with R
Dr. Volkan OBAN
 
PDF
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Dr. Volkan OBAN
 
DOCX
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
 
PDF
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
 
PDF
Python Pandas for Data Science cheatsheet
Dr. Volkan OBAN
 
PDF
Pandas,scipy,numpy cheatsheet
Dr. Volkan OBAN
 
PPTX
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
PPTX
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
DOCX
R-ggplot2 package Examples
Dr. Volkan OBAN
 
DOCX
R Machine Learning packages( generally used)
Dr. Volkan OBAN
 
DOCX
treemap package in R and examples.
Dr. Volkan OBAN
 
DOCX
Mosaic plot in R.
Dr. Volkan OBAN
 
DOCX
imager package in R and examples..
Dr. Volkan OBAN
 
PDF
R-Data table Cheat Sheet
Dr. Volkan OBAN
 
DOCX
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
 
DOCX
Advanced Data Visualization in R- Somes Examples.
Dr. Volkan OBAN
 
DOCX
Basic Calculus in R.
Dr. Volkan OBAN
 
PDF
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
 
Naive Bayes Example using R
Dr. Volkan OBAN
 
R forecasting Example
Dr. Volkan OBAN
 
k-means Clustering and Custergram with R
Dr. Volkan OBAN
 
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Dr. Volkan OBAN
 
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
 
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
 
Python Pandas for Data Science cheatsheet
Dr. Volkan OBAN
 
Pandas,scipy,numpy cheatsheet
Dr. Volkan OBAN
 
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
R-ggplot2 package Examples
Dr. Volkan OBAN
 
R Machine Learning packages( generally used)
Dr. Volkan OBAN
 
treemap package in R and examples.
Dr. Volkan OBAN
 
Mosaic plot in R.
Dr. Volkan OBAN
 
imager package in R and examples..
Dr. Volkan OBAN
 
R-Data table Cheat Sheet
Dr. Volkan OBAN
 
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
 
Advanced Data Visualization in R- Somes Examples.
Dr. Volkan OBAN
 
Basic Calculus in R.
Dr. Volkan OBAN
 
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
 

Recently uploaded (20)

PPTX
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
PDF
Research Methodology Overview Introduction
ayeshagul29594
 
PPTX
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
PDF
apidays Singapore 2025 - Streaming Lakehouse with Kafka, Flink and Iceberg by...
apidays
 
PDF
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PDF
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
PPTX
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
PDF
Data Retrieval and Preparation Business Analytics.pdf
kayserrakib80
 
PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PDF
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna36
 
PDF
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
PPT
tuberculosiship-2106031cyyfuftufufufivifviviv
AkshaiRam
 
PPTX
apidays Singapore 2025 - The Quest for the Greenest LLM , Jean Philippe Ehre...
apidays
 
PDF
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
PDF
Simplifying Document Processing with Docling for AI Applications.pdf
Tamanna36
 
PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
Research Methodology Overview Introduction
ayeshagul29594
 
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
apidays Singapore 2025 - Streaming Lakehouse with Kafka, Flink and Iceberg by...
apidays
 
Development and validation of the Japanese version of the Organizational Matt...
Yoga Tokuyoshi
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
Module-5-Measures-of-Central-Tendency-Grouped-Data-1.pptx
lacsonjhoma0407
 
Data Retrieval and Preparation Business Analytics.pdf
kayserrakib80
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
Context Engineering for AI Agents, approaches, memories.pdf
Tamanna36
 
apidays Helsinki & North 2025 - How (not) to run a Graphql Stewardship Group,...
apidays
 
tuberculosiship-2106031cyyfuftufufufivifviviv
AkshaiRam
 
apidays Singapore 2025 - The Quest for the Greenest LLM , Jean Philippe Ehre...
apidays
 
Product Management in HealthTech (Case Studies from SnappDoctor)
Hamed Shams
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
Simplifying Document Processing with Docling for AI Applications.pdf
Tamanna36
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
Ad

Object detection with Python

  • 1. OBJECT DETECTION with PYTHON by Volkan OBAN Example: car 79.00787591934204 -------------------------------- car 73.1831431388855 -------------------------------- car 57.52983093261719 -------------------------------- car 67.29255318641663 -------------------------------- truck 36.15168035030365 -------------------------------- truck 33.53544771671295 -------------------------------- car 80.83181381225586 -------------------------------- car 82.77863264083862 -------------------------------- car 88.76808881759644 -------------------------------- car 93.36127042770386 -------------------------------- car 88.27706575393677 -------------------------------- car 34.86555814743042 -------------------------------- truck 37.48719394207001 -------------------------------- car 71.32329940795898 -------------------------------- car 69.4364607334137 -------------------------------- car 86.5426778793335 -------------------------------- car 88.52344751358032 -------------------------------- truck 39.561888575553894 -------------------------------- car 93.05579662322998 -------------------------------- car 88.86352181434631 -------------------------------- car 89.91738557815552 -------------------------------- car 88.38690519332886
  • 2. Example: car 49.28020238876343 -------------------------------- car 62.592875957489014 -------------------------------- car 75.57535171508789 -------------------------------- car 79.81342077255249 -------------------------------- car 85.21997928619385 -------------------------------- car 91.146719455719 -------------------------------- person 99.26514029502869 Example: truck 96.24765515327454 -------------------------------- car 40.00747799873352 -------------------------------- car 99.91380572319031 -------------------------------- person 42.803701758384705 -------------------------------- person 59.26494002342224 -------------------------------- person 60.746097564697266 -------------------------------- person 71.09828591346741 -------------------------------- person 75.94433426856995
  • 3. -------------------------------- person 79.3380618095398 -------------------------------- person 91.58018231391907 Example: person 33.710235357284546 -------------------------------- person 40.8907026052475 -------------------------------- person 46.824270486831665 -------------------------------- person 60.826313495635986 -------------------------------- person 67.1332597732544 -------------------------------- person 68.77404451370239 -------------------------------- person 72.1147894859314 -------------------------------- person 78.59335541725159 -------------------------------- person 99.79391694068909 -------------------------------- person 99.81198310852051 -------------------------------- person 99.8548686504364 -------------------------------- person 99.85849261283875 -------------------------------- person 99.88847374916077 -------------------------------- person 99.9029278755188 -------------------------------- person 99.90887641906738 -------------------------------- person 99.94677305221558
  • 4. Example: horse 99.4085967540741 -------------------------------- person 37.1588408946991 -------------------------------- person 80.68453669548035 -------------------------------- person 96.65492177009583 -------------------------------- person 97.93082475662231 Object Detectıon (deep learning) with Python TensorFlow by VOLKAN OBAN, Ph.D. Senior Data Scientist