SlideShare a Scribd company logo
OLTP Performance Benchmark Review

Jignesh Shah
Product Manager, vFabric Postgres
VMware, Inc




                                    © 2010 VMware Inc. All rights reserved
About Me

§  Currently Product Manager of vFabric Postgres
§  Performance Engineer , vFabric Data Director
§  Previously with Sun Microsystems (2000-2010)
§  Team Member that delivered the first published mainstream
    benchmark with PostgreSQL
§  Blog at : http://jkshah.blogspot.com




2                             2012 Copyright VMware Inc
Agenda

§  Introduction
§  pgbench
§  Sysbench
§  Dbt2
§  BenchmarkSQL
§  DVDStore
§  A New benchmark




3                     2012 Copyright VMware Inc
Introduction
§  Why do we need benchmarks?
    •  Reference data points
    •  Stress Test for “Too Big to Fail” scenarios


§  Uses of Benchmark
    •  Improve Product Quality
      •  Understand code path usage
      •  Performance Characteristics
    •  Baseline metrics (Reference points)
      •  Release to release
      •  Against other technologies to do same business operation


§  Abuses of Benchmark
    •  Benchmarketing
    •  Fixated only on ones that are favorable
4                                      2012 Copyright VMware Inc
pgbench
     PostgreSQL




5   2012 Copyright VMware Inc
Pgbench

§  Based on TPC-B workload (circa 1990)
§  Not an OLTP but stress benchmark for database
§  Ratio is Branches: 10 Tellers: 100,000 Accounts                  Branches

§  Default TPC-B sort-of                                      Tellers     Accounts
    •  Account transactions also impact teller and branch balances
                                                                      History
    •  Branch table becomes the biggest bottleneck




6                                  2012 Copyright VMware Inc
Pgbench
§  Hints
    •  PGSSLMODE disable (Unless you want to factor SSL communication
     overhead. Depending on your distribution )
    •  -M prepared (unless you want to measure overhead of parsing)
§  Various modes of benchmark
§  Default TPC-B sort-of
    •  Account transactions also impact teller and branch balances
    •  Branch table becomes the biggest bottleneck
§  -N Simple Update (with select, insert)
    •  Account Update, Select balance. History insert
    •  Account table update becomes the biggest bottleneck
§  -S read only test
    •  AccessShareLock on Accounts table and primary index becomes the
     bottleneck
    •  Fixed in 9.2 (Thanks Robert Haas)
7                                  2012 Copyright VMware Inc
PGBench Select Test

                                                 PGBench - Select Test


                                80000

                                70000

                                60000
      Transactions Per Second




                                50000

                                40000
                                                                                          PG9.1 PGBench Select
                                30000

                                                                                          9.2 PGBench Select
                                20000

                                10000

                                   0
                                        0   20         40               60           80           100            120
                                                                 Number of Clients




8                                                   2012 Copyright VMware Inc
PGBench TPC-B Like Test

                                              PGBench (TPC-B Like)


                              8000


                              7000


                              6000
    Transactions Per Second




                              5000


                              4000

                                                                                     PG9.1 TPC-B Like
                              3000


                              2000                                                   9.2 TPC-B Like


                              1000


                                 0
                                     0   20       40                60          80     100              120
                                                            Number of Clients




9                                                2012 Copyright VMware Inc
Sysbench
          MySQL




10   2012 Copyright VMware Inc
sysbench

§  Originally developed to test systems
§  Has an OLTP component which was based on MySQL
§  Creates a table sbtest with a pimary key.
§  Various Modes of OLTP operation
§  Simple Read Only (web site primary key lookup)
§  Complex Read Only
§  Complex Read Write test




11                       2012 Copyright VMware Inc
Sysbench – OLTP Simple Read

                                                 Sysbench Simple Read


                               100000

                               90000

                               80000
     Transactions Per Second




                               70000

                               60000

                               50000

                               40000
                                                                                         OLTP Simple Read
                               30000

                               20000                                                     9.2 OLTP Simple Read

                               10000

                                   0
                                        0   20         40               60          80          100             120
                                                                Number of Clients




12                                                  2012 Copyright VMware Inc
Sysbench – OLTP Complex Read

                                      Sysbench Complex Read

                          6000
Transactions Per Second




                          5000

                          4000

                          3000
                                                                        OLTP Complex Read
                          2000
                                                                        9.2 OLTP Complex Read
                          1000

                             0
                                 0   20    40      60         80                    100         120
                                             Number of Clients



13                                          2012 Copyright VMware Inc
Sysbench – OLTP Complex Read/Write

                                               Sysbench OLTP Complex R/W


                               3000



                               2500
     Transactions Per Second




                               2000



                               1500


                                                                                     OLTP Complex Write
                               1000



                               500
                                                                                     9.2 OLTP Complex Write

                                  0
                                      0   20          40                60          80              100       120
                                                                Number of Clients




14                                                   2012 Copyright VMware Inc
Sysbench – Complex R/W Note

§  In 9.0 it was impossible to run sysbench complex r/w without
     hitting error - ERROR:  duplicate key value violates unique constraint "sbtest_pkey"
§  In 9.1 SSI was introduced and occurrence went down drastically
§  In 9.2 havent encountered the occurence




15                                    2012 Copyright VMware Inc
dbt2




16   2012 Copyright VMware Inc
Dbt2 -

§  Fair Use implementation of TPC-C
                                                                Warehouses      Stock
§  Implemented using C stored procedures using
           driver->client->database server architecture District                Item

§  Nine Tables                                                  Customer      Orders
§  Five Transactions –                                     History   Order Lines
     •  New-Order (NOTPM) 45%
                                                                            New Orders
     •  Payment 43%
     •  Delivery 4%
     •  Order Status 4%
     •  Stock Level 4%




17                              2012 Copyright VMware Inc
Dbt2 -

§  Why is it not TPC-C compliant?
     •  Not audited by TPC
     •  No Terminal emulator
     •  Official kit requires commercial Transaction Manager
     •  Doesn’t’ cover ACID tests


§  Two versions Available
     •  Libpq
     •  ODBC
§  One potential problem is 3 network roundtrips per transaction
     which causes “Idle in Transaction” at high load
     •  BEGIN, SELECT StoredProcedure() , END pattern of transactions




18                                   2012 Copyright VMware Inc
Dbt2 – Postgres 9.1




                                   Cached Runs (data in bufferpool)
                                   Short runs (limited checkpoint
                                   and vacuum impacts)
                                   NOTPM = 45% of all DB Trans
                                   DB Trans rate about 3000 TPS



19                    2012 Copyright VMware Inc
BenchmarkSQL




20     2012 Copyright VMware Inc
BenchmarkSQL-

§  Another implementation using TPC-C schema
                                                                Warehouses          Stock
§  Implemented using JDBC
                                                                      District       Item
§  Nine Tables
§  Five Transactions –                                          Customer          Orders
     •  New-Order (NOTPM) 45%                               History      Order Lines
     •  Payment 43%                                                              New Orders
     •  Delivery 4%
     •  Order Status 4%
     •  Stock Level 4%
§  Surprisingly can do better than dbt2 implementation but still has
     “idle in transactions” which means bottlenecked at network/client
     level




21                              2012 Copyright VMware Inc
DVDStore




22   2012 Copyright VMware Inc
DVDStore

§  Implementation of Online DVD Store
                                                                 Customers      Cust_hist
§  Postgres support contributed by VMware
                                                                  Product      Inventory
§  Implemented using various stacks
     •  JSP/Java/JDBC (supports Postgres)                        Categories      Orders
     •  Linux/Apache/PHP/MySQL (supports Postgres)
                                                                 Reorder      Order Lines
     •  ASP.NET (not yet implemented for Postgres)
     •  Stored Procedures (supports Postgres via Npgsql)
§  Eight Tables
§  Main Transactions –
     •  New-Customers 0-10% (configurable)
     •  Customer Login
     •  DVD Browse (By category, by actor, by title)
     •  Purchase Order (Metric – Orders Per Minute)
     •  Stock ReOrder (via Triggers)
23                                   2012 Copyright VMware Inc
DVDStore

§  JSP/Java JDBC Implementation
     •  Tomcat may need tuning
§  PHP-Postgres Implementation
     •  Suffers from one connection per SQL command
     •  Needs pg_bouncer (on same server as web server) and configure local
       connections to pg_bouncer which does connection caching to actual Postgres
       server
§  Stored Procedure Implementation
     •  Fastest Implementation (> 100,000 orders per minute)
     •  Idle in transactions can still occur.


§  Metric is Orders Per Minute
     •  DB Transactions = (6-7 * OPM/60) ~ 10K – 11K TPS



24                                  2012 Copyright VMware Inc
TPC-E/V




25   2012 Copyright VMware Inc
Genesis of TPC-V

§  Users are demanding benchmarks to measure performance of
     databases in a virtual environment
     •  Existing virtualization benchmarks model consolidation:
       •  Many VMs
       •  Small VMs
       •  Non-database workloads
§  TPC is developing a benchmark to satisfy that demand: TPC-V
     •  An OLTP workload typical of TPC benchmarks
     •  Fewer, larger VMs
     •  Cloud characteristics:
       •  Variability: mix of small and large VMs
       •  Elasticity: load driven to each VM varies by 10X




26                                       2012 Copyright VMware Inc
Benchmark requirements
§  Satisfies the industry need for a benchmark that:
     •  Has a database-centric workload
     •  Stresses virtualization layer
     •  Moderate # of VMs, exercising enterprise applications
     •  Healthy storage and networking I/O content; emphasizes I/O in a virtualized
        environment
     •  NOT many app environments in an app consolidation scenario
§  Timely development cycle (1-2 years)
     •  Based on the TPC-E benchmark and borrows a lot from it




27                                   2012 Copyright VMware Inc
What is TPC-E

§  TPC-E is theTPC’s latest OLTP benchmark
     •  More complex than TPC-C
     •  Less I/O than TPC-C
     •  A lot of the code is TPC-supplied
§  Models a brokerage firm
                         Customers                 Brokers                       Market




                                       Invoke the following transactions …

                              READ-WRITE         READ-ONLY
                              •Market-Feed       •Broker-Volume       •Security-Detail
                              •Trade-Order       •Customer-Position   •Trade-Lookup
                              •Trade-Result      •Market-Watch        •Trade-Status
                              •Trade-Update

                                          … against the following data




                       Customer Data             Brokerage Data                Market Data



28                                             2012 Copyright VMware Inc
Abstraction of the Functional Components in an OLTP
Environment



                                                 Modeled Business


                                Presentation
                   Network                                Application
        User                      Services                                Network
     Interfaces                                               And                   Database
                                                         Business Logic             Services
                                                           Services


         Market
        Exchange                                                          Legend
                                                                                Customer
                                                                            Sponsor Provided
                                                                              Stock Market




29                           2012 Copyright VMware Inc
Functional Components of TPC-E Test Configuration

                                  Driving and Reporting
            Sponsor
            Provided
                           CE…              MEE…             DM…

           EGenDriver   EGenDriverCE    EGenDriverMEE    EGenDriverDM      TPC Defined
                                                                            Interfaces
                           …CE              …MEE            …DM

                                  EGenDriver Connector
           Sponsor
           Provided
                                            Network



                               EGenTxnHarness Connector

       EGenTxnHarness          TPC-E Logic and Frame Calls                 TPC Defined
                                                                            Interface
            Sponsor
            Provided              Frame Implementation
                                                                        Legend

                                   Database Interface                     Sponsor Provided
          Commercial                                                        TPC Provided
           Product
                                            DBMS                         Commercial Product

            Sponsor                                                              TPC Defined
            Provided                    Database Logic                            Interface




30                                     2012 Copyright VMware Inc
How does this all matter to the PostgreSQL community?
§  TPC is developing a benchmarking kit for TPC-V
     •  First time TPC has gone beyond publishing a functional specification
     •  Full, end-to-end functionality
     •  Publicly available kit
     •  Produces the variability and load elasticity properties of the benchmark
        •  Users need not worry about complexities of simulating cloud characteristics
     •  Runs against an open source database
     •  A “reference” kit; companies are allowed to develop their own kit
§  Anyone can install the kit and pound on the server with a cloud
    database workload
    •  Removes the high cost of entry typical to TPC benchmarks
§  The reference kit will run on PostgreSQL
    •  ODBC interface allows running the workload against other databases
§  Tentative plans to also release a TPC-E kit
    •  We started out with a kit to run TPC-E; now adding the TPC-V properties



31                                       2012 Copyright VMware Inc
Our dependence on PostgreSQL
§  This reference kit will be a very successful new benchmark
     •  But only if its performance on the open source database is at least decent
      compared to commercial databases
§  PostgreSQL can benefit a lot from being the reference database for a
    major new benchmark
    •  But only its performance is decent!
§  Running the TPC-E prototype on PGSQL 8.4 on RHEL 6.1, we are at
    ~20% of published TPC-E results
    •  Very early results
    •  Current testbed is memory challenged
    •  Good news: Query plans for the 10 queries implemented look good
    •  Long, mostly-read queries => issue is the basic execution path, not redo log,
      latch contention, etc.




32                                   2012 Copyright VMware Inc
Benchmark Development Status

§  TPC-V Development Subcommittee
     •  9 member companies
     •  3-4 engineers working actively on the reference kit
     •  On version 0.12 of the draft spec
       •  Worked through a lot of thorny issues
     •  Betting the farm on the reference kit
       •  But if we produce a good kit, TPC-V will be an immediate success
§  We expect to make a kit available to member companies in Q3 or
     Q4


Bottom line: Cooperating to make the TPC-E/TPC-V reference kits
run well on PostgreSQL will greatly benefit all of us




33                                      2012 Copyright VMware Inc
Acknowledgements!

§  VMware Performance Team
     •  Dong, Reza
§  VMware vFabric Postgres Team
     •  David Fetter, Dan, Alex, Nikhil, Scott, Yolanda




34                                    2012 Copyright VMware Inc
Thank You




35   2012 Copyright VMware Inc
Ad

More Related Content

What's hot (20)

YugabyteDBの拡張機能(YugabyteDB Meetup #2 発表資料)
YugabyteDBの拡張機能(YugabyteDB Meetup #2 発表資料)YugabyteDBの拡張機能(YugabyteDB Meetup #2 発表資料)
YugabyteDBの拡張機能(YugabyteDB Meetup #2 発表資料)
NTT DATA Technology & Innovation
 
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
VMware Cloud on AWSネットワーク詳細解説
VMware Cloud on AWSネットワーク詳細解説VMware Cloud on AWSネットワーク詳細解説
VMware Cloud on AWSネットワーク詳細解説
Noritaka Kuroiwa
 
TripleOの光と闇
TripleOの光と闇TripleOの光と闇
TripleOの光と闇
Manabu Ori
 
Kubernetes環境に対する性能試験(Kubernetes Novice Tokyo #2 発表資料)
Kubernetes環境に対する性能試験(Kubernetes Novice Tokyo #2 発表資料)Kubernetes環境に対する性能試験(Kubernetes Novice Tokyo #2 発表資料)
Kubernetes環境に対する性能試験(Kubernetes Novice Tokyo #2 発表資料)
NTT DATA Technology & Innovation
 
Meshing OpenStack and Bare Metal Networks with EVPN - David Iles, Mellanox Te...
Meshing OpenStack and Bare Metal Networks with EVPN - David Iles, Mellanox Te...Meshing OpenStack and Bare Metal Networks with EVPN - David Iles, Mellanox Te...
Meshing OpenStack and Bare Metal Networks with EVPN - David Iles, Mellanox Te...
OpenStack
 
Presentation linux on power
Presentation   linux on powerPresentation   linux on power
Presentation linux on power
solarisyougood
 
PostgreSQLレプリケーション徹底紹介
PostgreSQLレプリケーション徹底紹介PostgreSQLレプリケーション徹底紹介
PostgreSQLレプリケーション徹底紹介
NTT DATA OSS Professional Services
 
Introduction to PgBench
Introduction to PgBenchIntroduction to PgBench
Introduction to PgBench
Joshua Drake
 
PostgreSQLのロール管理とその注意点(Open Source Conference 2022 Online/Osaka 発表資料)
PostgreSQLのロール管理とその注意点(Open Source Conference 2022 Online/Osaka 発表資料)PostgreSQLのロール管理とその注意点(Open Source Conference 2022 Online/Osaka 発表資料)
PostgreSQLのロール管理とその注意点(Open Source Conference 2022 Online/Osaka 発表資料)
NTT DATA Technology & Innovation
 
Kubernetesでの性能解析 ~なんとなく遅いからの脱却~(Kubernetes Meetup Tokyo #33 発表資料)
Kubernetesでの性能解析 ~なんとなく遅いからの脱却~(Kubernetes Meetup Tokyo #33 発表資料)Kubernetesでの性能解析 ~なんとなく遅いからの脱却~(Kubernetes Meetup Tokyo #33 発表資料)
Kubernetesでの性能解析 ~なんとなく遅いからの脱却~(Kubernetes Meetup Tokyo #33 発表資料)
NTT DATA Technology & Innovation
 
PostgreSQLバックアップの基本
PostgreSQLバックアップの基本PostgreSQLバックアップの基本
PostgreSQLバックアップの基本
Uptime Technologies LLC (JP)
 
【Zabbix2.0】snmpttによるトラップメッセージの編集 #Zabbix #自宅ラック勉強会
【Zabbix2.0】snmpttによるトラップメッセージの編集 #Zabbix #自宅ラック勉強会【Zabbix2.0】snmpttによるトラップメッセージの編集 #Zabbix #自宅ラック勉強会
【Zabbix2.0】snmpttによるトラップメッセージの編集 #Zabbix #自宅ラック勉強会
真乙 九龍
 
「ネットワーク超入門 IPsec VPN編」
「ネットワーク超入門 IPsec VPN編」「ネットワーク超入門 IPsec VPN編」
「ネットワーク超入門 IPsec VPN編」
富士通クラウドテクノロジーズ株式会社
 
AKS と ACI を組み合わせて使ってみた
AKS と ACI を組み合わせて使ってみたAKS と ACI を組み合わせて使ってみた
AKS と ACI を組み合わせて使ってみた
Hideaki Aoyagi
 
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動するStargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Kohei Tokunaga
 
JAVA_HOME/binにあるコマンド、いくつ使っていますか?[JVM関連ツール編](JJUGナイトセミナー「Java解析ツール特集」 発表資料)
JAVA_HOME/binにあるコマンド、いくつ使っていますか?[JVM関連ツール編](JJUGナイトセミナー「Java解析ツール特集」 発表資料)JAVA_HOME/binにあるコマンド、いくつ使っていますか?[JVM関連ツール編](JJUGナイトセミナー「Java解析ツール特集」 発表資料)
JAVA_HOME/binにあるコマンド、いくつ使っていますか?[JVM関連ツール編](JJUGナイトセミナー「Java解析ツール特集」 発表資料)
NTT DATA Technology & Innovation
 
[社内勉強会]ELBとALBと数万スパイク負荷テスト
[社内勉強会]ELBとALBと数万スパイク負荷テスト[社内勉強会]ELBとALBと数万スパイク負荷テスト
[社内勉強会]ELBとALBと数万スパイク負荷テスト
Takahiro Moteki
 
VirtualBox と Rocky Linux 8 で始める Pacemaker ~ VirtualBox でも STONITH 機能が試せる! Vi...
VirtualBox と Rocky Linux 8 で始める Pacemaker  ~ VirtualBox でも STONITH 機能が試せる! Vi...VirtualBox と Rocky Linux 8 で始める Pacemaker  ~ VirtualBox でも STONITH 機能が試せる! Vi...
VirtualBox と Rocky Linux 8 で始める Pacemaker ~ VirtualBox でも STONITH 機能が試せる! Vi...
ksk_ha
 
データセンターネットワークでのPrometheus活用事例
データセンターネットワークでのPrometheus活用事例データセンターネットワークでのPrometheus活用事例
データセンターネットワークでのPrometheus活用事例
Yahoo!デベロッパーネットワーク
 
YugabyteDBの拡張機能(YugabyteDB Meetup #2 発表資料)
YugabyteDBの拡張機能(YugabyteDB Meetup #2 発表資料)YugabyteDBの拡張機能(YugabyteDB Meetup #2 発表資料)
YugabyteDBの拡張機能(YugabyteDB Meetup #2 発表資料)
NTT DATA Technology & Innovation
 
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
Postgres Playground で pgbench を走らせよう!(第35回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
VMware Cloud on AWSネットワーク詳細解説
VMware Cloud on AWSネットワーク詳細解説VMware Cloud on AWSネットワーク詳細解説
VMware Cloud on AWSネットワーク詳細解説
Noritaka Kuroiwa
 
TripleOの光と闇
TripleOの光と闇TripleOの光と闇
TripleOの光と闇
Manabu Ori
 
Kubernetes環境に対する性能試験(Kubernetes Novice Tokyo #2 発表資料)
Kubernetes環境に対する性能試験(Kubernetes Novice Tokyo #2 発表資料)Kubernetes環境に対する性能試験(Kubernetes Novice Tokyo #2 発表資料)
Kubernetes環境に対する性能試験(Kubernetes Novice Tokyo #2 発表資料)
NTT DATA Technology & Innovation
 
Meshing OpenStack and Bare Metal Networks with EVPN - David Iles, Mellanox Te...
Meshing OpenStack and Bare Metal Networks with EVPN - David Iles, Mellanox Te...Meshing OpenStack and Bare Metal Networks with EVPN - David Iles, Mellanox Te...
Meshing OpenStack and Bare Metal Networks with EVPN - David Iles, Mellanox Te...
OpenStack
 
Presentation linux on power
Presentation   linux on powerPresentation   linux on power
Presentation linux on power
solarisyougood
 
Introduction to PgBench
Introduction to PgBenchIntroduction to PgBench
Introduction to PgBench
Joshua Drake
 
PostgreSQLのロール管理とその注意点(Open Source Conference 2022 Online/Osaka 発表資料)
PostgreSQLのロール管理とその注意点(Open Source Conference 2022 Online/Osaka 発表資料)PostgreSQLのロール管理とその注意点(Open Source Conference 2022 Online/Osaka 発表資料)
PostgreSQLのロール管理とその注意点(Open Source Conference 2022 Online/Osaka 発表資料)
NTT DATA Technology & Innovation
 
Kubernetesでの性能解析 ~なんとなく遅いからの脱却~(Kubernetes Meetup Tokyo #33 発表資料)
Kubernetesでの性能解析 ~なんとなく遅いからの脱却~(Kubernetes Meetup Tokyo #33 発表資料)Kubernetesでの性能解析 ~なんとなく遅いからの脱却~(Kubernetes Meetup Tokyo #33 発表資料)
Kubernetesでの性能解析 ~なんとなく遅いからの脱却~(Kubernetes Meetup Tokyo #33 発表資料)
NTT DATA Technology & Innovation
 
【Zabbix2.0】snmpttによるトラップメッセージの編集 #Zabbix #自宅ラック勉強会
【Zabbix2.0】snmpttによるトラップメッセージの編集 #Zabbix #自宅ラック勉強会【Zabbix2.0】snmpttによるトラップメッセージの編集 #Zabbix #自宅ラック勉強会
【Zabbix2.0】snmpttによるトラップメッセージの編集 #Zabbix #自宅ラック勉強会
真乙 九龍
 
AKS と ACI を組み合わせて使ってみた
AKS と ACI を組み合わせて使ってみたAKS と ACI を組み合わせて使ってみた
AKS と ACI を組み合わせて使ってみた
Hideaki Aoyagi
 
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動するStargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Kohei Tokunaga
 
JAVA_HOME/binにあるコマンド、いくつ使っていますか?[JVM関連ツール編](JJUGナイトセミナー「Java解析ツール特集」 発表資料)
JAVA_HOME/binにあるコマンド、いくつ使っていますか?[JVM関連ツール編](JJUGナイトセミナー「Java解析ツール特集」 発表資料)JAVA_HOME/binにあるコマンド、いくつ使っていますか?[JVM関連ツール編](JJUGナイトセミナー「Java解析ツール特集」 発表資料)
JAVA_HOME/binにあるコマンド、いくつ使っていますか?[JVM関連ツール編](JJUGナイトセミナー「Java解析ツール特集」 発表資料)
NTT DATA Technology & Innovation
 
[社内勉強会]ELBとALBと数万スパイク負荷テスト
[社内勉強会]ELBとALBと数万スパイク負荷テスト[社内勉強会]ELBとALBと数万スパイク負荷テスト
[社内勉強会]ELBとALBと数万スパイク負荷テスト
Takahiro Moteki
 
VirtualBox と Rocky Linux 8 で始める Pacemaker ~ VirtualBox でも STONITH 機能が試せる! Vi...
VirtualBox と Rocky Linux 8 で始める Pacemaker  ~ VirtualBox でも STONITH 機能が試せる! Vi...VirtualBox と Rocky Linux 8 で始める Pacemaker  ~ VirtualBox でも STONITH 機能が試せる! Vi...
VirtualBox と Rocky Linux 8 で始める Pacemaker ~ VirtualBox でも STONITH 機能が試せる! Vi...
ksk_ha
 

Viewers also liked (14)

SFPUG - DVDStore Performance Benchmark and PostgreSQL
SFPUG - DVDStore Performance Benchmark and PostgreSQLSFPUG - DVDStore Performance Benchmark and PostgreSQL
SFPUG - DVDStore Performance Benchmark and PostgreSQL
Jignesh Shah
 
PostgreSQL and Benchmarks
PostgreSQL and BenchmarksPostgreSQL and Benchmarks
PostgreSQL and Benchmarks
Jignesh Shah
 
PostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized WorldPostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized World
Jignesh Shah
 
Виталий Харисов "История создания БЭМ. Кратко, сбивчиво и неполно"
Виталий Харисов "История создания БЭМ. Кратко, сбивчиво и неполно"Виталий Харисов "История создания БЭМ. Кратко, сбивчиво и неполно"
Виталий Харисов "История создания БЭМ. Кратко, сбивчиво и неполно"
Yandex
 
Tuning DB2 in a Solaris Environment
Tuning DB2 in a Solaris EnvironmentTuning DB2 in a Solaris Environment
Tuning DB2 in a Solaris Environment
Jignesh Shah
 
Best Practices with PostgreSQL on Solaris
Best Practices with PostgreSQL on SolarisBest Practices with PostgreSQL on Solaris
Best Practices with PostgreSQL on Solaris
Jignesh Shah
 
Understanding PostgreSQL LW Locks
Understanding PostgreSQL LW LocksUnderstanding PostgreSQL LW Locks
Understanding PostgreSQL LW Locks
Jignesh Shah
 
Introduction to PostgreSQL for System Administrators
Introduction to PostgreSQL for System AdministratorsIntroduction to PostgreSQL for System Administrators
Introduction to PostgreSQL for System Administrators
Jignesh Shah
 
PostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized WorldPostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized World
Jignesh Shah
 
My experience with embedding PostgreSQL
 My experience with embedding PostgreSQL My experience with embedding PostgreSQL
My experience with embedding PostgreSQL
Jignesh Shah
 
Best Practices of running PostgreSQL in Virtual Environments
Best Practices of running PostgreSQL in Virtual EnvironmentsBest Practices of running PostgreSQL in Virtual Environments
Best Practices of running PostgreSQL in Virtual Environments
Jignesh Shah
 
PostgreSQL and Linux Containers
PostgreSQL and Linux ContainersPostgreSQL and Linux Containers
PostgreSQL and Linux Containers
Jignesh Shah
 
Best Practices of HA and Replication of PostgreSQL in Virtualized Environments
Best Practices of HA and Replication of PostgreSQL in Virtualized EnvironmentsBest Practices of HA and Replication of PostgreSQL in Virtualized Environments
Best Practices of HA and Replication of PostgreSQL in Virtualized Environments
Jignesh Shah
 
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
Norishige Fukushima
 
SFPUG - DVDStore Performance Benchmark and PostgreSQL
SFPUG - DVDStore Performance Benchmark and PostgreSQLSFPUG - DVDStore Performance Benchmark and PostgreSQL
SFPUG - DVDStore Performance Benchmark and PostgreSQL
Jignesh Shah
 
PostgreSQL and Benchmarks
PostgreSQL and BenchmarksPostgreSQL and Benchmarks
PostgreSQL and Benchmarks
Jignesh Shah
 
PostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized WorldPostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized World
Jignesh Shah
 
Виталий Харисов "История создания БЭМ. Кратко, сбивчиво и неполно"
Виталий Харисов "История создания БЭМ. Кратко, сбивчиво и неполно"Виталий Харисов "История создания БЭМ. Кратко, сбивчиво и неполно"
Виталий Харисов "История создания БЭМ. Кратко, сбивчиво и неполно"
Yandex
 
Tuning DB2 in a Solaris Environment
Tuning DB2 in a Solaris EnvironmentTuning DB2 in a Solaris Environment
Tuning DB2 in a Solaris Environment
Jignesh Shah
 
Best Practices with PostgreSQL on Solaris
Best Practices with PostgreSQL on SolarisBest Practices with PostgreSQL on Solaris
Best Practices with PostgreSQL on Solaris
Jignesh Shah
 
Understanding PostgreSQL LW Locks
Understanding PostgreSQL LW LocksUnderstanding PostgreSQL LW Locks
Understanding PostgreSQL LW Locks
Jignesh Shah
 
Introduction to PostgreSQL for System Administrators
Introduction to PostgreSQL for System AdministratorsIntroduction to PostgreSQL for System Administrators
Introduction to PostgreSQL for System Administrators
Jignesh Shah
 
PostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized WorldPostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized World
Jignesh Shah
 
My experience with embedding PostgreSQL
 My experience with embedding PostgreSQL My experience with embedding PostgreSQL
My experience with embedding PostgreSQL
Jignesh Shah
 
Best Practices of running PostgreSQL in Virtual Environments
Best Practices of running PostgreSQL in Virtual EnvironmentsBest Practices of running PostgreSQL in Virtual Environments
Best Practices of running PostgreSQL in Virtual Environments
Jignesh Shah
 
PostgreSQL and Linux Containers
PostgreSQL and Linux ContainersPostgreSQL and Linux Containers
PostgreSQL and Linux Containers
Jignesh Shah
 
Best Practices of HA and Replication of PostgreSQL in Virtualized Environments
Best Practices of HA and Replication of PostgreSQL in Virtualized EnvironmentsBest Practices of HA and Replication of PostgreSQL in Virtualized Environments
Best Practices of HA and Replication of PostgreSQL in Virtualized Environments
Jignesh Shah
 
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
Norishige Fukushima
 
Ad

Similar to OLTP Performance Benchmark Review (20)

Extending Io Scalability
Extending Io ScalabilityExtending Io Scalability
Extending Io Scalability
The Linux Foundation
 
(ATS3-PLAT01) Recent developments in Pipeline Pilot
(ATS3-PLAT01) Recent developments in Pipeline Pilot(ATS3-PLAT01) Recent developments in Pipeline Pilot
(ATS3-PLAT01) Recent developments in Pipeline Pilot
BIOVIA
 
Virtual Network Performance Challenge
Virtual Network Performance ChallengeVirtual Network Performance Challenge
Virtual Network Performance Challenge
Stephen Hemminger
 
Virtual net performance
Virtual net performanceVirtual net performance
Virtual net performance
Stephen Hemminger
 
SPICE MODEL of RN1966FS in SPICE PARK
SPICE MODEL of RN1966FS in SPICE PARKSPICE MODEL of RN1966FS in SPICE PARK
SPICE MODEL of RN1966FS in SPICE PARK
Tsuyoshi Horigome
 
Sun sparc enterprise t5440 server customer presentation
Sun sparc enterprise t5440 server customer presentationSun sparc enterprise t5440 server customer presentation
Sun sparc enterprise t5440 server customer presentation
xKinAnx
 
SPICE MODEL of CM200HA-24H (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of CM200HA-24H (Professional+FWDP Model) in SPICE PARKSPICE MODEL of CM200HA-24H (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of CM200HA-24H (Professional+FWDP Model) in SPICE PARK
Tsuyoshi Horigome
 
Day1 02.Introduction
Day1 02.IntroductionDay1 02.Introduction
Day1 02.Introduction
Ron Liu
 
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARKSPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of BP365TS , LTspice Model in SPICE PARK
SPICE MODEL of BP365TS , LTspice Model in SPICE PARKSPICE MODEL of BP365TS , LTspice Model in SPICE PARK
SPICE MODEL of BP365TS , LTspice Model in SPICE PARK
Tsuyoshi Horigome
 
Acceleration for big data, hadoop and memcached it168文库
Acceleration for big data, hadoop and memcached it168文库Acceleration for big data, hadoop and memcached it168文库
Acceleration for big data, hadoop and memcached it168文库
Accenture
 
Acceleration for big data, hadoop and memcached it168文库
Acceleration for big data, hadoop and memcached it168文库Acceleration for big data, hadoop and memcached it168文库
Acceleration for big data, hadoop and memcached it168文库
Accenture
 
SPICE MODEL of SSM3K15FU (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K15FU (Professional+BDP Model) in SPICE PARKSPICE MODEL of SSM3K15FU (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K15FU (Professional+BDP Model) in SPICE PARK
Tsuyoshi Horigome
 
Perf Storwize V7000 Eng
Perf Storwize V7000 EngPerf Storwize V7000 Eng
Perf Storwize V7000 Eng
Oleg Korol
 
SPICE MODEL of TPC6108 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC6108 (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPC6108 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC6108 (Professional+BDP Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SSM3K15FU (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K15FU (Standard+BDS Model) in SPICE PARKSPICE MODEL of SSM3K15FU (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K15FU (Standard+BDS Model) in SPICE PARK
Tsuyoshi Horigome
 
NLCMG - Performance is good, Understanding performance is better
NLCMG - Performance is good, Understanding performance is better NLCMG - Performance is good, Understanding performance is better
NLCMG - Performance is good, Understanding performance is better
nlwebperf
 
SPICE MODEL of RN1965FS in SPICE PARK
SPICE MODEL of RN1965FS in SPICE PARKSPICE MODEL of RN1965FS in SPICE PARK
SPICE MODEL of RN1965FS in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of RN1906AFS in SPICE PARK
SPICE MODEL of RN1906AFS in SPICE PARKSPICE MODEL of RN1906AFS in SPICE PARK
SPICE MODEL of RN1906AFS in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SX310 , LTspice Model in SPICE PARK
SPICE MODEL of SX310 , LTspice Model in SPICE PARKSPICE MODEL of SX310 , LTspice Model in SPICE PARK
SPICE MODEL of SX310 , LTspice Model in SPICE PARK
Tsuyoshi Horigome
 
(ATS3-PLAT01) Recent developments in Pipeline Pilot
(ATS3-PLAT01) Recent developments in Pipeline Pilot(ATS3-PLAT01) Recent developments in Pipeline Pilot
(ATS3-PLAT01) Recent developments in Pipeline Pilot
BIOVIA
 
Virtual Network Performance Challenge
Virtual Network Performance ChallengeVirtual Network Performance Challenge
Virtual Network Performance Challenge
Stephen Hemminger
 
SPICE MODEL of RN1966FS in SPICE PARK
SPICE MODEL of RN1966FS in SPICE PARKSPICE MODEL of RN1966FS in SPICE PARK
SPICE MODEL of RN1966FS in SPICE PARK
Tsuyoshi Horigome
 
Sun sparc enterprise t5440 server customer presentation
Sun sparc enterprise t5440 server customer presentationSun sparc enterprise t5440 server customer presentation
Sun sparc enterprise t5440 server customer presentation
xKinAnx
 
SPICE MODEL of CM200HA-24H (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of CM200HA-24H (Professional+FWDP Model) in SPICE PARKSPICE MODEL of CM200HA-24H (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of CM200HA-24H (Professional+FWDP Model) in SPICE PARK
Tsuyoshi Horigome
 
Day1 02.Introduction
Day1 02.IntroductionDay1 02.Introduction
Day1 02.Introduction
Ron Liu
 
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARKSPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of BP365TS , LTspice Model in SPICE PARK
SPICE MODEL of BP365TS , LTspice Model in SPICE PARKSPICE MODEL of BP365TS , LTspice Model in SPICE PARK
SPICE MODEL of BP365TS , LTspice Model in SPICE PARK
Tsuyoshi Horigome
 
Acceleration for big data, hadoop and memcached it168文库
Acceleration for big data, hadoop and memcached it168文库Acceleration for big data, hadoop and memcached it168文库
Acceleration for big data, hadoop and memcached it168文库
Accenture
 
Acceleration for big data, hadoop and memcached it168文库
Acceleration for big data, hadoop and memcached it168文库Acceleration for big data, hadoop and memcached it168文库
Acceleration for big data, hadoop and memcached it168文库
Accenture
 
SPICE MODEL of SSM3K15FU (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K15FU (Professional+BDP Model) in SPICE PARKSPICE MODEL of SSM3K15FU (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K15FU (Professional+BDP Model) in SPICE PARK
Tsuyoshi Horigome
 
Perf Storwize V7000 Eng
Perf Storwize V7000 EngPerf Storwize V7000 Eng
Perf Storwize V7000 Eng
Oleg Korol
 
SPICE MODEL of TPC6108 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC6108 (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPC6108 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC6108 (Professional+BDP Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SSM3K15FU (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K15FU (Standard+BDS Model) in SPICE PARKSPICE MODEL of SSM3K15FU (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K15FU (Standard+BDS Model) in SPICE PARK
Tsuyoshi Horigome
 
NLCMG - Performance is good, Understanding performance is better
NLCMG - Performance is good, Understanding performance is better NLCMG - Performance is good, Understanding performance is better
NLCMG - Performance is good, Understanding performance is better
nlwebperf
 
SPICE MODEL of RN1965FS in SPICE PARK
SPICE MODEL of RN1965FS in SPICE PARKSPICE MODEL of RN1965FS in SPICE PARK
SPICE MODEL of RN1965FS in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of RN1906AFS in SPICE PARK
SPICE MODEL of RN1906AFS in SPICE PARKSPICE MODEL of RN1906AFS in SPICE PARK
SPICE MODEL of RN1906AFS in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SX310 , LTspice Model in SPICE PARK
SPICE MODEL of SX310 , LTspice Model in SPICE PARKSPICE MODEL of SX310 , LTspice Model in SPICE PARK
SPICE MODEL of SX310 , LTspice Model in SPICE PARK
Tsuyoshi Horigome
 
Ad

Recently uploaded (20)

Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 

OLTP Performance Benchmark Review

  • 1. OLTP Performance Benchmark Review Jignesh Shah Product Manager, vFabric Postgres VMware, Inc © 2010 VMware Inc. All rights reserved
  • 2. About Me §  Currently Product Manager of vFabric Postgres §  Performance Engineer , vFabric Data Director §  Previously with Sun Microsystems (2000-2010) §  Team Member that delivered the first published mainstream benchmark with PostgreSQL §  Blog at : http://jkshah.blogspot.com 2 2012 Copyright VMware Inc
  • 3. Agenda §  Introduction §  pgbench §  Sysbench §  Dbt2 §  BenchmarkSQL §  DVDStore §  A New benchmark 3 2012 Copyright VMware Inc
  • 4. Introduction §  Why do we need benchmarks? •  Reference data points •  Stress Test for “Too Big to Fail” scenarios §  Uses of Benchmark •  Improve Product Quality •  Understand code path usage •  Performance Characteristics •  Baseline metrics (Reference points) •  Release to release •  Against other technologies to do same business operation §  Abuses of Benchmark •  Benchmarketing •  Fixated only on ones that are favorable 4 2012 Copyright VMware Inc
  • 5. pgbench PostgreSQL 5 2012 Copyright VMware Inc
  • 6. Pgbench §  Based on TPC-B workload (circa 1990) §  Not an OLTP but stress benchmark for database §  Ratio is Branches: 10 Tellers: 100,000 Accounts Branches §  Default TPC-B sort-of Tellers Accounts •  Account transactions also impact teller and branch balances History •  Branch table becomes the biggest bottleneck 6 2012 Copyright VMware Inc
  • 7. Pgbench §  Hints •  PGSSLMODE disable (Unless you want to factor SSL communication overhead. Depending on your distribution ) •  -M prepared (unless you want to measure overhead of parsing) §  Various modes of benchmark §  Default TPC-B sort-of •  Account transactions also impact teller and branch balances •  Branch table becomes the biggest bottleneck §  -N Simple Update (with select, insert) •  Account Update, Select balance. History insert •  Account table update becomes the biggest bottleneck §  -S read only test •  AccessShareLock on Accounts table and primary index becomes the bottleneck •  Fixed in 9.2 (Thanks Robert Haas) 7 2012 Copyright VMware Inc
  • 8. PGBench Select Test PGBench - Select Test 80000 70000 60000 Transactions Per Second 50000 40000 PG9.1 PGBench Select 30000 9.2 PGBench Select 20000 10000 0 0 20 40 60 80 100 120 Number of Clients 8 2012 Copyright VMware Inc
  • 9. PGBench TPC-B Like Test PGBench (TPC-B Like) 8000 7000 6000 Transactions Per Second 5000 4000 PG9.1 TPC-B Like 3000 2000 9.2 TPC-B Like 1000 0 0 20 40 60 80 100 120 Number of Clients 9 2012 Copyright VMware Inc
  • 10. Sysbench MySQL 10 2012 Copyright VMware Inc
  • 11. sysbench §  Originally developed to test systems §  Has an OLTP component which was based on MySQL §  Creates a table sbtest with a pimary key. §  Various Modes of OLTP operation §  Simple Read Only (web site primary key lookup) §  Complex Read Only §  Complex Read Write test 11 2012 Copyright VMware Inc
  • 12. Sysbench – OLTP Simple Read Sysbench Simple Read 100000 90000 80000 Transactions Per Second 70000 60000 50000 40000 OLTP Simple Read 30000 20000 9.2 OLTP Simple Read 10000 0 0 20 40 60 80 100 120 Number of Clients 12 2012 Copyright VMware Inc
  • 13. Sysbench – OLTP Complex Read Sysbench Complex Read 6000 Transactions Per Second 5000 4000 3000 OLTP Complex Read 2000 9.2 OLTP Complex Read 1000 0 0 20 40 60 80 100 120 Number of Clients 13 2012 Copyright VMware Inc
  • 14. Sysbench – OLTP Complex Read/Write Sysbench OLTP Complex R/W 3000 2500 Transactions Per Second 2000 1500 OLTP Complex Write 1000 500 9.2 OLTP Complex Write 0 0 20 40 60 80 100 120 Number of Clients 14 2012 Copyright VMware Inc
  • 15. Sysbench – Complex R/W Note §  In 9.0 it was impossible to run sysbench complex r/w without hitting error - ERROR:  duplicate key value violates unique constraint "sbtest_pkey" §  In 9.1 SSI was introduced and occurrence went down drastically §  In 9.2 havent encountered the occurence 15 2012 Copyright VMware Inc
  • 16. dbt2 16 2012 Copyright VMware Inc
  • 17. Dbt2 - §  Fair Use implementation of TPC-C Warehouses Stock §  Implemented using C stored procedures using driver->client->database server architecture District Item §  Nine Tables Customer Orders §  Five Transactions – History Order Lines •  New-Order (NOTPM) 45% New Orders •  Payment 43% •  Delivery 4% •  Order Status 4% •  Stock Level 4% 17 2012 Copyright VMware Inc
  • 18. Dbt2 - §  Why is it not TPC-C compliant? •  Not audited by TPC •  No Terminal emulator •  Official kit requires commercial Transaction Manager •  Doesn’t’ cover ACID tests §  Two versions Available •  Libpq •  ODBC §  One potential problem is 3 network roundtrips per transaction which causes “Idle in Transaction” at high load •  BEGIN, SELECT StoredProcedure() , END pattern of transactions 18 2012 Copyright VMware Inc
  • 19. Dbt2 – Postgres 9.1 Cached Runs (data in bufferpool) Short runs (limited checkpoint and vacuum impacts) NOTPM = 45% of all DB Trans DB Trans rate about 3000 TPS 19 2012 Copyright VMware Inc
  • 20. BenchmarkSQL 20 2012 Copyright VMware Inc
  • 21. BenchmarkSQL- §  Another implementation using TPC-C schema Warehouses Stock §  Implemented using JDBC District Item §  Nine Tables §  Five Transactions – Customer Orders •  New-Order (NOTPM) 45% History Order Lines •  Payment 43% New Orders •  Delivery 4% •  Order Status 4% •  Stock Level 4% §  Surprisingly can do better than dbt2 implementation but still has “idle in transactions” which means bottlenecked at network/client level 21 2012 Copyright VMware Inc
  • 22. DVDStore 22 2012 Copyright VMware Inc
  • 23. DVDStore §  Implementation of Online DVD Store Customers Cust_hist §  Postgres support contributed by VMware Product Inventory §  Implemented using various stacks •  JSP/Java/JDBC (supports Postgres) Categories Orders •  Linux/Apache/PHP/MySQL (supports Postgres) Reorder Order Lines •  ASP.NET (not yet implemented for Postgres) •  Stored Procedures (supports Postgres via Npgsql) §  Eight Tables §  Main Transactions – •  New-Customers 0-10% (configurable) •  Customer Login •  DVD Browse (By category, by actor, by title) •  Purchase Order (Metric – Orders Per Minute) •  Stock ReOrder (via Triggers) 23 2012 Copyright VMware Inc
  • 24. DVDStore §  JSP/Java JDBC Implementation •  Tomcat may need tuning §  PHP-Postgres Implementation •  Suffers from one connection per SQL command •  Needs pg_bouncer (on same server as web server) and configure local connections to pg_bouncer which does connection caching to actual Postgres server §  Stored Procedure Implementation •  Fastest Implementation (> 100,000 orders per minute) •  Idle in transactions can still occur. §  Metric is Orders Per Minute •  DB Transactions = (6-7 * OPM/60) ~ 10K – 11K TPS 24 2012 Copyright VMware Inc
  • 25. TPC-E/V 25 2012 Copyright VMware Inc
  • 26. Genesis of TPC-V §  Users are demanding benchmarks to measure performance of databases in a virtual environment •  Existing virtualization benchmarks model consolidation: •  Many VMs •  Small VMs •  Non-database workloads §  TPC is developing a benchmark to satisfy that demand: TPC-V •  An OLTP workload typical of TPC benchmarks •  Fewer, larger VMs •  Cloud characteristics: •  Variability: mix of small and large VMs •  Elasticity: load driven to each VM varies by 10X 26 2012 Copyright VMware Inc
  • 27. Benchmark requirements §  Satisfies the industry need for a benchmark that: •  Has a database-centric workload •  Stresses virtualization layer •  Moderate # of VMs, exercising enterprise applications •  Healthy storage and networking I/O content; emphasizes I/O in a virtualized environment •  NOT many app environments in an app consolidation scenario §  Timely development cycle (1-2 years) •  Based on the TPC-E benchmark and borrows a lot from it 27 2012 Copyright VMware Inc
  • 28. What is TPC-E §  TPC-E is theTPC’s latest OLTP benchmark •  More complex than TPC-C •  Less I/O than TPC-C •  A lot of the code is TPC-supplied §  Models a brokerage firm Customers Brokers Market Invoke the following transactions … READ-WRITE READ-ONLY •Market-Feed •Broker-Volume •Security-Detail •Trade-Order •Customer-Position •Trade-Lookup •Trade-Result •Market-Watch •Trade-Status •Trade-Update … against the following data Customer Data Brokerage Data Market Data 28 2012 Copyright VMware Inc
  • 29. Abstraction of the Functional Components in an OLTP Environment Modeled Business Presentation Network Application User Services Network Interfaces And Database Business Logic Services Services Market Exchange Legend Customer Sponsor Provided Stock Market 29 2012 Copyright VMware Inc
  • 30. Functional Components of TPC-E Test Configuration Driving and Reporting Sponsor Provided CE… MEE… DM… EGenDriver EGenDriverCE EGenDriverMEE EGenDriverDM TPC Defined Interfaces …CE …MEE …DM EGenDriver Connector Sponsor Provided Network EGenTxnHarness Connector EGenTxnHarness TPC-E Logic and Frame Calls TPC Defined Interface Sponsor Provided Frame Implementation Legend Database Interface Sponsor Provided Commercial TPC Provided Product DBMS Commercial Product Sponsor TPC Defined Provided Database Logic Interface 30 2012 Copyright VMware Inc
  • 31. How does this all matter to the PostgreSQL community? §  TPC is developing a benchmarking kit for TPC-V •  First time TPC has gone beyond publishing a functional specification •  Full, end-to-end functionality •  Publicly available kit •  Produces the variability and load elasticity properties of the benchmark •  Users need not worry about complexities of simulating cloud characteristics •  Runs against an open source database •  A “reference” kit; companies are allowed to develop their own kit §  Anyone can install the kit and pound on the server with a cloud database workload •  Removes the high cost of entry typical to TPC benchmarks §  The reference kit will run on PostgreSQL •  ODBC interface allows running the workload against other databases §  Tentative plans to also release a TPC-E kit •  We started out with a kit to run TPC-E; now adding the TPC-V properties 31 2012 Copyright VMware Inc
  • 32. Our dependence on PostgreSQL §  This reference kit will be a very successful new benchmark •  But only if its performance on the open source database is at least decent compared to commercial databases §  PostgreSQL can benefit a lot from being the reference database for a major new benchmark •  But only its performance is decent! §  Running the TPC-E prototype on PGSQL 8.4 on RHEL 6.1, we are at ~20% of published TPC-E results •  Very early results •  Current testbed is memory challenged •  Good news: Query plans for the 10 queries implemented look good •  Long, mostly-read queries => issue is the basic execution path, not redo log, latch contention, etc. 32 2012 Copyright VMware Inc
  • 33. Benchmark Development Status §  TPC-V Development Subcommittee •  9 member companies •  3-4 engineers working actively on the reference kit •  On version 0.12 of the draft spec •  Worked through a lot of thorny issues •  Betting the farm on the reference kit •  But if we produce a good kit, TPC-V will be an immediate success §  We expect to make a kit available to member companies in Q3 or Q4 Bottom line: Cooperating to make the TPC-E/TPC-V reference kits run well on PostgreSQL will greatly benefit all of us 33 2012 Copyright VMware Inc
  • 34. Acknowledgements! §  VMware Performance Team •  Dong, Reza §  VMware vFabric Postgres Team •  David Fetter, Dan, Alex, Nikhil, Scott, Yolanda 34 2012 Copyright VMware Inc
  • 35. Thank You 35 2012 Copyright VMware Inc