SlideShare a Scribd company logo
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
DOI:10.5121/ijcax.2024.11402 25
ON DECREASING OF MISMATCH-INDUCED STRESS
DURING GROWTH OF FILMS DURING
MAGNETRON SPUTTERING
E.L. Pankratov
Department of applied mechanics, physics and higher mathematics, Nizhny Novgorod
State Agrotechnical University, 97 Gagarin avenue, Nizhny Novgorod
ABSTRACT
In this paper we analyzed mass transfer during the growth of epitaxial layers during magnetron sputtering.
During the analysis we obtained modifications of properties of films with variation of several parameters.
We analyzed possibility to decrease mismatch -induced stress on the considered films during their growth.
An analytical approach for analyzing mass transfer was introduced, which makes it possible to take into
account the nonlinearity of processes, as well as changes in parameters in space and time.
KEYWORDS
Mass transfer; magnetrons sputtering; analytical approach for modelling; mismatch-induced stress.
1. INTRODUCTION
Development of solid-state electronics and widespread using of heterostructures for
manufacturing of electronic devices leads to the necessity to improve properties of layers of these
heterostructures. Different methods are used to manufacture of heterostructures: molecular beam
epitaxy, epitaxy from the gas phase, magnetron sputtering. A large number of experimental
works have been devoted to the manufacturing and using of heterostructures due to their
widespread using [1-12]. At the same time, a relatively small number of works are devoted to
predicting the growth of heterostructures [11,12].
In this paper in development of references [13-16] we analyzed processes framework growing
films by magnetron sputtering. Structure of the considered magnetron is shown in Fig. 1. In the
framework of the structure electrons are emitting from the cathode (line 1). After that under the
action of a field between the cathode (line 1) and the anode (line 3) an electron flow is formed
between lines 1 and 2. The main purpose of this paper is analysis of mass transfer in magnetrons
during growth of films in order to improve their properties. An additional aim of this paper is
analysis of possibility to decrease mismatch-induced stress during growth of films. To solve this
aim we consider an analytical approach for analysis of mass transfer, which makes a possibility
to take into account the nonlinearity of mass transfer, as well as the changing of its parameters in
space and time.
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
26
Fig. 1. Structure of magnetron.
In the framework of the structure ions have been emitted from cathode (line 1). After that under
influence of field between cathode (line 1) and anode (line 3) one can obtained flow of ions
between lines 1 and 2
2. METHOD OF SOLUTION
To solve our aims we determine spatio-temporal distribution of electromagnetic field. We
determine the distribution by solving the following boundary problem [17, 18]
   
t
t
z
r
D
j
t
z
r
H
rot




,
,
,
,
,
,





,    
t
t
z
r
B
t
z
r
E
rot




,
,
,
,
,
,




,
  
 
t
z
r
D
div ,
,
,

,   0
,
,
, 
t
z
r
B
div 

, E
D



0
 , H
B



0
 . (1)
Here  and  are the dielectric and magnetic constants; 0=0.88610-11
F/m; 0= 1.25610-6
H/m;
E

and H

are the electric and magnetic strengths; D

and B

are the inductions of electric and
magnetic fields; r,  and z are the spatial coordinates; t is the current time. Boundary and initial
conditions for the system of equations could be written as
  0
,
,
, 
t
z
R
Bz
 ,   0
,
,
, 
t
z
R
Dr
 ,   0
,
,
, 
t
z
R
Ez
 ,   0
,
,
, 
t
z
R
Hr
 ,
  0
0
,
,
, E
z
r
E



 ,   0
0
,
,
, H
z
r
H



 .
Current density j

is proportional to speed of ions v

: v
C
j



 , where C is the density of ions.
The speed of ions correlated with strengths of electric and magnetic field by the second Newton
law
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
27
 
B
v
E
e
t
d
v
d
m






 . (3)
Scalar form of the Eqs.(1) could be written as
     
z
t
z
r
H
t
z
r
H
r
t
t
z
r
D
v
C z
r
r









,
,
,
,
,
,
1
,
,
, 


 
,
     
z
t
z
r
H
t
z
r
H
r
t
t
z
r
D
v
C r
z









,
,
,
,
,
,
1
,
,
, 





,
   
   



 









t
z
r
H
r
t
z
r
H
r
t
t
z
r
D
r
v
C r
z
z
,
,
,
,
,
,
,
,
,
,
     
t
t
z
r
B
t
z
r
E
r
z
t
z
r
E r
z







 ,
,
,
,
,
,
1
,
,
, 




,
     
t
t
z
r
B
t
z
r
E
r
z
t
z
r
E z
r







 ,
,
,
,
,
,
1
,
,
, 


 
,
 
     
t
t
z
r
B
r
t
z
r
E
r
t
z
r
E
r z
r







 ,
,
,
,
,
,
,
,
, 




,
 
      



 









z
t
z
r
D
t
z
r
D
r
r
t
z
r
D
r
r
z
r
,
,
,
,
,
,
1
,
,
,
1
,
 
      0
,
,
,
,
,
,
1
,
,
,
1









z
t
z
r
B
t
z
r
B
r
r
t
z
r
B
r
r
z
r 


 
,
 
z
r
r
B
v
E
e
t
d
v
d
m 

 ,  
z
r
B
v
E
e
t
d
v
d
m 
 

,  

B
v
E
e
t
d
v
d
m r
z
z

 .
To solve these equations we use the method of averaging functional corrections [19]. To
determine the first-order approximations of the required functions we replace them in the right-
hand sides of equations (4) by their not yet known average values 1s in the right-hand side of
these equations. As a result of this substitution we obtain the following equations to determine
the first-order approximations of components of strength and induction of the considered fields
 
0
,
,
,
1




t
t
z
r
D
v
C r
r

,
 
0
,
,
,
1




t
t
z
r
D
v
C


 ,
 



H
z
z
t
t
z
r
D
v
C 1
1 ,
,
,



 ,
  0
,
,
,
1



t
t
z
r
B r 
,
 
0
,
,
,
1



t
t
z
r
B 

,
 



E
z
t
t
z
r
B
1
1 ,
,
,



,
 
  C
r
t
z
r
D
r
r
r


 ,
,
,
1 1 
,
 
  0
,
,
,
1 1



r
t
z
r
B
r
r
r 
,
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
28
 
z
r B
v
E
r
e
t
d
v
d
m 1
1
1
1


 

 ,  
z
r B
v
E
e
t
d
v
d
m 1
1
1
1


 


 ,
 



 B
v
E
z
r
z
e
t
d
v
d
m 1
1
1
1

 .
Further after integration of left and right sides of these equations on considered variables we
obtain the first-order approximations of the considered fields and velocity of ions in the following
form
  


t
r
r d
v
C
t
z
r
D
0
1
1 ,
,
, 
 ,   


t
d
v
C
t
z
r
D
0
1
1 ,
,
, 
 
 ,
  0
0
0
1
1
1 ,
,
, E
d
v
C
t
t
z
r
D
t
z
H
z 



 



 ,  t
e
v
m z
r B
v
E
r 1
1
1
1 

 

 ,
  0
,
,
,
1

t
z
r
B r
 ,   0
0
1 ,
,
, H
t
z
r
B 


  ,   t
t
z
r
B E
z 

 1
1 ,
,
,  ,
  0
1
1
1
1 
 

 
v
m
t
e
v
m z
r B
v
E 

 ,   0
1
1
1
1 z
B
v
E
z v
m
t
e
v
m r
z


 


 .
Calculation of average values 1s by using the following standard relation [19]
 
   



0 0 0
2
0
1
2
1 ,
,
,
2
1 L R
q
s t
d
z
d
r
d
d
t
z
r
S
r
LR
q





( is the continuance of growth, L is the length of magnetron) gives a possibility to obtain, that
  m
E
C
H
e
v z
z v
z
v 4
4 0
0
2
1
2
0
2
0
1 


 





 , 0
1 

 E , 0
1 H
H 

 ,
  2
2 1
0
2
0
0
1 C
H
E z
z v
E 


 


 , 0
1 
r
v
 , 0
1 
r
E
 , 0
1 

 v
v  . Further we
obtain the second-order approximations of components of strength and induction of electrical and
magnetic fields. To obtain these approximations we replace considered fields in right sides of
Eqs. (4) on the following sums S (r,,z,t)2s+S1(r,,z,t). The replacement leads to
transformation of Eqs. (4) to the following form
     
z
t
z
r
H
t
z
r
H
r
t
t
z
r
D
v
C z
r
r









,
,
,
,
,
,
1
,
,
, 1
1
2
2



 
,
     
z
t
z
r
H
t
z
r
H
r
t
t
z
r
D
v
C r
z









,
,
,
,
,
,
1
,
,
, 1
1
2
2





 ,
   
 









r
t
z
r
H
r
t
z
r
H
t
t
z
r
D
r
v
C H
z
z
,
,
,
,
,
,
,
,
, 1
1
2
2
2



 


 





t
z
r
H r ,
,
,
1
,
     



 







 t
z
r
E
r
z
t
z
r
E
t
t
z
r
B z
r
,
,
,
1
,
,
,
,
,
, 1
1
2
,
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
29
     












 t
z
r
E
r
z
t
z
r
E
t
t
z
r
B z
r
,
,
,
1
,
,
,
,
,
, 1
1
2
,
   
   





 











 t
z
r
E
r
t
z
r
E
r
t
z
r
E
t
t
z
r
B
r r
E
z
,
,
,
,
,
,
,
,
,
,
,
, 1
1
1
2
2
,
 
     
z
t
z
r
D
t
z
r
D
r
r
t
z
r
D
r
r
z
r








 ,
,
,
,
,
,
1
,
,
,
1 1
1
2




 
,
 
     
z
t
z
r
B
t
z
r
B
r
r
t
z
r
B
r
r
z
r








 ,
,
,
,
,
,
1
,
,
,
1 1
1
2



 
,
   
   
 
 
t
z
r
B
t
z
r
v
t
z
r
E
e
t
d
v
d
m z
B
v
r
E
r
z
r
,
,
,
,
,
,
,
,
, 1
2
1
2
1
2
2





 





 ,
   
   
 
 
t
z
r
B
t
z
r
v
t
z
r
E
e
t
d
v
d
m z
B
r
v
E z
r
,
,
,
,
,
,
,
,
, 1
2
1
2
1
2
2





 






 ,
   
   
 
 
t
z
r
B
t
z
r
v
t
z
r
E
e
t
d
v
d
m B
r
v
z
E
z
r
z
,
,
,
,
,
,
,
,
, 1
2
1
2
1
2
2





 





 .
Integration of left and right sides of the above equations on considered variations gives a
possibility to obtain the second-order approximations of the considered fields in the following
forms
      









t
r
t
t
z
r d
v
C
d
z
r
H
z
d
z
r
H
r
t
z
r
D
0
2
0
1
0
1
2 ,
,
,
,
,
,
1
,
,
, 







  ,
      









t
t
r
t
z d
v
C
d
z
r
H
z
d
z
r
H
r
t
z
r
D
0
2
0
1
0
1
2 ,
,
,
,
,
,
1
,
,
, 







 
 ,
      







 0
0
0
1
0
1
2
2 ,
,
,
,
,
,
,
,
, E
r
d
z
r
H
r
r
d
z
r
H
t
t
z
r
D
r
t
t
H
z 








 


  0
0
0
2
0
1 ,
,
, E
r
d
v
C
d
z
r
H
t
z
t
r 












 ,
      







t
t
E
z d
z
r
E
r
r
d
z
r
E
t
t
z
r
B
r
0
1
0
1
2
2 ,
,
,
,
,
,
,
,
, 






 


 




t
r d
z
r
E
0
1 ,
,
, 



,
     








t
z
t
r d
z
r
E
r
d
z
r
E
z
t
z
r
B
0
1
0
1
2 ,
,
,
1
,
,
,
,
,
, 






  ,
      0
0
0
1
0
1
2 ,
,
,
1
,
,
,
,
,
, H
d
z
r
E
r
d
z
r
E
z
t
z
r
B
t
z
t
r 









 







 ,
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
30
     









r
z
r
r
u
d
t
z
u
D
u
z
u
d
t
z
u
D
r
C
t
z
r
D
r
0
1
0
1
2
2
,
,
,
,
,
,
2
,
,
, 


  ,
     









r
z
r
r u
d
t
z
u
B
u
z
u
d
t
z
u
B
t
z
r
B
r
0
1
0
1
2 ,
,
,
,
,
,
,
,
, 


  ,
   


 






t
z
v
B
v
t
r
E
r d
z
r
B
t
d
z
r
E
t
e
v
m z
r
0
1
2
2
2
0
1
2
2 ,
,
,
,
,
, 








 

      






t
z
t
B d
z
r
B
z
r
v
d
z
r
v
z
0
1
1
0
1
2 ,
,
,
,
,
,
,
,
, 







 
 ,
   


 






t
z
v
B
v
t
E d
z
r
B
t
d
z
r
E
t
e
v
m r
z
r
0
1
2
2
2
0
1
2
2 ,
,
,
,
,
, 








 
 
      






t
z
r
t
r
B d
z
r
B
z
r
v
d
z
r
v
z
0
1
1
0
1
2 ,
,
,
,
,
,
,
,
, 







 ,
   


 






t
v
B
v
t
z
E
z d
z
r
B
t
d
z
r
E
t
e
v
m r
r
z
0
1
2
2
2
0
1
2
2 ,
,
,
,
,
, 








 

      






t
r
t
r
B d
z
r
B
z
r
v
d
z
r
v
0
1
1
0
1
2 ,
,
,
,
,
,
,
,
, 







 

.
Average values of the second-order approximations 2s were calculated by using the following
standard relation [19]
   
 
    



0 0 0
2
0
1
2
2
2 ,
,
,
,
,
,
2
1 L R
q
q
s t
d
z
d
r
d
d
t
z
r
S
t
z
r
S
r
LR
q





 . (5)
Substitution of obtained approximations of strength and induction of considered fields and
velocities of movement of ions into relations (5) gives a possibility to obtain relations for the
required average values in the following form
    
   








0 0 0
2
0
1
2
2
1
2
2
,
,
,
2
6
L R
H
H
D
t
d
z
d
r
d
d
t
z
r
H
LR
t
z

 




 

   
    





0 0 0
2
0
1
2
2
2
L R
z
z t
d
z
d
r
d
d
v
v
LR
t 



, 0
2 
r
D
 , 0
2 

 D , 0
2 
z
B
 ,
0
2 
r
B
 ,
0
0
2 H
B 

 
 , 0
2 
r
v
 , 0
2 

 v
v 
 ,
  0
1
0 0 0
2
0
1
2
2
2
,
,
,
2
z
E
L R
z
v v
m
e
t
d
z
d
r
d
d
t
z
r
E
r
LR
t
m
e z
z



   




 





.
In this paper we calculated the second-order approximations of the required strengths and
inductions of the considerate fields, as well as the ion velocities by the method of averaging
functional corrections. The approximation is usually sufficient to obtain qualitative conclusions
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
31
and to obtain some quantitative results. The obtained analytical results were checked by
comparing them with the results of numerical simulation.
Further let us consider changing of components of displacement vector in the grown multilayer
structure with changing of spatial coordinates and time. Equations, which are describe
components ur(r,,z,t), u(r,,z,t) and uz(r,,z,t) of displacement vector  
t
z
r
u ,
,
,

, could be
written as [20,21]
   
     
   
     
   
     















































z
t
z
r
t
z
r
r
r
t
z
r
r
r
t
t
z
r
u
С
z
t
z
r
y
t
z
r
r
r
t
z
r
r
r
t
t
z
r
u
С
z
t
z
r
t
z
r
r
r
t
z
r
r
r
t
t
z
r
u
C
zz
zy
zx
z
z
r
rz
r
rr
r
,
,
,
,
,
,
1
,
,
,
1
,
,
,
,
,
,
,
,
,
1
,
,
,
1
,
,
,
,
,
,
,
,
,
1
,
,
,
1
,
,
,
2
2
2
2
2
2




























where
 
 
 
      
















k
k
ij
i
j
j
i
ij
x
t
z
r
u
x
t
z
r
u
x
t
z
r
u
z
z
E ,
,
,
3
,
,
,
,
,
,
1
2






         
 
r
k
k
ij T
t
z
r
T
z
K
z
x
t
z
r
u
z
K 



 ,
,
,
,
,
,



 ; ij is the Kronecker symbol.
Accounting of the last relation leads to transformation of the above system of equations to the
following form
     
 
 
  





















r
t
z
r
u
r
r
z
z
E
z
K
r
t
t
z
r
u
C r
r
,
,
,
1
6
5
1
,
,
,
2
2



   
 
 
 
     

























 2
2
2
2
2
2
2
,
,
,
,
,
,
1
,
,
,
1
3
1
z
t
z
r
u
t
z
r
u
r
r
t
z
r
u
r
z
z
E
z
K
r
z 







 
 
 
     
 
 
     
 
r
t
z
r
T
r
r
z
z
K
z
z
E
z
K
z
r
t
z
r
u
z
z
E z


















,
,
,
1
1
3
,
,
,
1
2
2





   
 
 
    































r
t
z
r
u
r
r
r
t
z
r
u
r
r
r
z
z
E
t
t
z
r
u
C r
y ,
,
,
,
,
,
1
1
2
,
,
,
2
2



 
 
 
 
         
 
































 t
z
r
T
r
r
z
z
K
t
z
r
u
r
z
t
z
r
u
z
z
E
z
z ,
,
,
,
,
,
1
,
,
,
1
2
 
 
 
 
     
 























r
t
z
r
u
r
r
z
K
t
z
r
u
z
K
z
z
E
r
,
,
,
,
,
,
1
12
5
1
2
2
2
2
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
32
   
 
 
 
z
t
z
r
u
z
z
E
z
K
r
y















,
,
,
1
6
1
2
(6)
   
 
 
   





















2
2
2
2
2
,
,
,
1
,
,
,
1
1
2
,
,
,




 t
z
r
u
r
r
t
z
r
u
r
r
r
z
z
E
t
t
z
r
u
C z
z
z
 
   
   
























r
t
z
r
u
r
z
K
z
z
t
z
r
u
r
z
r
t
z
r
u
r r
r ,
,
,
1
,
,
,
1
,
,
,
2
2



 
     
 
 

























z
t
z
r
u
z
z
E
z
z
t
z
r
u
t
z
r
u
r
z
r ,
,
,
6
1
6
1
,
,
,
,
,
,
1 





 
      
















z
t
z
r
u
y
t
z
r
u
r
x
t
z
r
u
r
r
z
x ,
,
,
,
,
,
1
,
,
,
1 

 
     
z
t
z
r
T
z
z
K



,
,
,
 .
where E is the Young modulus;  is the coefficient of thermal expansion; K is the modulus of
uniform compression;  is the Poisson coefficient; 0=(as-aEL)/aEL is the mismatch parameter; as,
aEL are the lattice distances of the substrate and the epitaxial layer; T (r,,z,t) is the temperature of
growth with equilibrium value Tr. Conditions for the system of the above equations can be
written in the form
  0
,
,
,
0




r
r
t
z
r
u 

;
  0
,
,
,



R
r
r
t
z
r
u 

;
  0
,
,
,
0




z
z
t
z
r
u 

;
  0
,
,
,



L
z
z
t
z
r
u 

;    
t
z
r
u
t
z
r
u ,
,
2
,
,
,
0
, 


 ;   0
0
,
,
, u
z
r
u



 ;
  0
,
,
, u
z
r
u




 .
Now let us determine solutions of system of equations (6), which describe components of
displacement vector. To calculate the first-order approximations of the required components in
the framework the method of averaging of function corrections one shall substitute their not yet
known average values i in the right sides of the equations (6). The substitution leads to the
following result
       
 
r
t
z
r
T
r
r
z
z
K
t
t
z
r
u
C r






 ,
,
,
,
,
,
2
1
2



,
 
     










 t
z
r
T
r
z
z
K
t
t
z
r
u
C
,
,
,
,
,
,
2
1
2
,
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
33
       
z
t
z
r
T
z
z
K
t
t
z
r
u
C z





 ,
,
,
,
,
,
2
1
2



.
Integration of the right and the left sides of the above relations on time t leads to the following
result
        






 





t
r d
d
z
r
T
r
r
C
r
z
z
K
t
z
r
u
0 0
1 ,
,
,
,
,
,







      r
t
u
d
d
z
r
T
r
r
C
r
z
z
K 0
0 0
,
,
, 






 











,
        
 




t
d
d
z
r
T
C
r
z
z
K
t
z
r
u
0 0
1 ,
,
,
,
,
,

 






      







0
0 0
,
,
, u
d
d
z
r
T
C
r
z
z
K 
 





,
        
 



t
z d
d
z
r
T
z
C
z
z
K
t
z
r
u
0 0
1 ,
,
,
,
,
,







      z
u
d
d
z
r
T
z
C
z
z
K 0
0 0
,
,
, 
 









.
Approximations with the second and higher orders of components of displacement vector could
be obtained in the framework of the standard replacement of the required functions in the right
sides of equations (6) on the following sum i+ui(r,,z,t) [16, 19]. The replacement leads to the
following result
     
 
 
   
 
 
























z
z
E
r
t
z
r
u
r
r
z
z
E
z
K
r
t
t
z
r
u
C r
r




1
2
,
,
,
1
6
5
1
,
,
, 1
2
2
2
   
   
 
 
 
 






























 
r
t
z
r
u
r
r
z
z
E
z
K
z
t
z
r
u
t
z
r
u
r
z
y ,
,
,
1
1
3
,
,
,
,
,
,
1 1
2
2
2
1
2
2
1
2
2
 
   
 
 
    

















 2
1
2
2
1
2
2
1
2
2
,
,
,
,
,
,
1
1
2
,
,
,
1
z
t
z
r
u
t
z
r
u
r
z
z
E
r
t
z
r
u
r
r
z
y 






     
     
 
 
 
 
z
r
t
z
r
u
r
z
z
E
z
K
r
r
t
z
r
T
r
z
z
K z
z

















,
,
,
1
3
1
,
,
, 1
2
1 



   
 
 
    



































 

r
t
z
r
u
r
r
t
z
r
u
r
r
r
z
z
E
t
t
z
r
u
C r ,
,
,
,
,
,
1
1
2
,
,
, 1
2
1
2
2
2
       
 
 
    





























  t
z
r
u
r
z
t
z
r
u
z
z
E
z
y
t
z
r
T
z
z
K z ,
,
,
1
,
,
,
1
2
,
,
, 1
1
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
34
 
 
 
 
 
   
 
 





















z
z
E
z
K
r
t
z
r
u
z
K
z
z
E
r 




1
6
1
,
,
,
1
12
5
1
2
1
2
2
     



 









r
t
z
r
u
r
z
K
z
t
z
r
u ,
,
,
,
,
, 1
2
1
2
   
 
 
   





















2
1
2
2
1
2
2
2
,
,
,
1
,
,
,
1
1
2
,
,
,




 t
z
r
u
r
r
t
z
r
u
r
r
r
z
z
E
t
t
z
r
u
C z
z
z
 
     
 


























r
t
z
r
u
r
r
z
z
t
z
r
u
r
z
r
t
z
r
u
r r
r ,
,
,
1
,
,
,
1
,
,
, 1
1
2
1
2



 
       

































 t
z
r
u
r
z
t
z
r
u
z
z
t
z
r
u
z
t
z
r
u y
z
r
r
,
,
,
1
,
,
,
6
6
1
,
,
,
,
,
, 1
1
1
1
 
     
 
     
z
t
z
r
T
z
z
K
z
z
E
z
t
z
r
u
r
t
z
r
u
r
r
z
r


















,
,
,
1
,
,
,
,
,
,
1 1
1 




.
Integration of the right and the left sides of the above relations on time t leads to the following
result
     
 
 
   
 
 












 













z
z
E
d
d
z
r
u
r
r
r
z
z
E
z
K
C
t
z
r
u
t
r
r








1
3
,
,
,
1
6
5
1
,
,
,
0 0
1
2
     




 









 







t
t
d
d
z
r
u
d
d
z
r
u
r
r
C
z
K
0 0
1
2
2
0 0
1
2
,
,
,
,
,
,
1 


 









   
 
 
  






 








 



t
z
t
z
d
d
z
r
u
r
z
r
C
z
C
r
z
E
d
d
z
r
u
z 0 0
1
2
2
0 0
1
2
2
,
,
,
1
1
2
,
,
,











   
 
 
   
 
 
  






 























0 0
1
2
2
,
,
,
1
6
5
1
1
3







d
d
z
r
u
r
r
r
z
z
E
z
K
C
z
z
E
z
K r
         










 















z
K
d
d
z
r
u
r
r
C
d
d
z
r
T
r
r
C
z
z
K y
t
0 0
1
2
0 0
,
,
,
1
,
,
,












 
 
 
    






 



 










0 0
1
2
2
0 0
1
2
2
2
,
,
,
,
,
,
1
1
3


 









d
d
z
r
u
z
d
d
z
r
u
r
z
z
E
z
 
 
 
   
 
 
  






 















0 0
1
2
,
,
,
1
3
1
1
2







d
d
z
r
u
r
z
r
z
z
E
z
K
C
z
C
z
E
z
      











0 0
0 ,
,
,






d
d
z
r
T
r
r
C
z
z
K
u r
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
35
      












 










 





t
r
t
r d
d
z
r
u
r
r
d
d
z
r
u
r
r
r
t
z
r
u
0 0
1
2
0 0
1
2 ,
,
,
,
,
,
,
,
,


 









 
 
 
 
 
 
     

 













C
r
z
K
d
d
z
r
u
z
K
z
z
E
C
r
z
C
r
z
E t
r
0 0
1
2
2
2
,
,
,
1
12
5
1
1
2








   
 
 







 












 




t
t
y d
d
z
r
u
z
z
z
E
z
C
d
d
z
r
u
r
r 0 0
1
0 0
1
2
,
,
,
1
2
1
,
,
,













     
 
 
  



















 



t
t
z d
d
z
r
u
z
z
z
E
z
K
C
r
d
d
z
r
u
r 0 0
1
2
0 0
1 ,
,
,
1
6
1
,
,
,
1 













       
 
 
  
 


 

t
t
d
d
z
r
T
z
C
r
z
E
d
d
z
r
T
C
z
z
K
0 0
0 0
,
,
,
1
2
,
,
,












   
 
 
   
 
 



 












z
C
r
z
E
d
d
z
r
u
z
z
z
E
z
K
C
r
t









1
2
,
,
,
1
6
1
0 0
1
2
       













 










 







C
z
z
K
d
d
z
r
u
r
r
d
d
z
r
u
r
r
r
r
r












0 0
1
2
0 0
1 ,
,
,
,
,
,
       
 
 









 



 



z
z
E
z
K
d
d
z
r
u
C
r
d
d
z
r
T r












1
12
5
,
,
,
1
,
,
,
0 0
1
2
2
2
0 0
 
 
    













 



 











 








 0
0 0
1
0 0
1 ,
,
,
1
,
,
,
1
2
1
u
d
d
z
r
u
r
d
d
z
r
u
z
z
z
E
z
C
z
      
 










 






0 0
1
2
0 0
1
2
,
,
,
,
,
,



 









d
d
z
r
u
z
d
d
z
r
u
r
r
C
r
z
K
 
 
 
 
С
r
z
K
z
z
E 1
1
6 









     




 









 







0 0
1
2
2
0 0
1
2 ,
,
,
1
,
,
,
,
,
,











 d
d
z
r
u
r
d
d
z
r
u
r
r
r
t
z
r
u z
z
z
     
 
 





 










 






z
C
r
z
E
d
d
z
r
u
z
d
d
z
r
u
r
z
r
y
r












1
2
,
,
,
,
,
,
0 0
1
2
0 0
1
2
 
   








 









 







0 0
1
0 0
1 ,
,
,
1
,
,
,
1
1 









 d
d
z
r
u
r
d
d
z
r
u
r
r
z
K
z
C
r
r
r
   
 
 








 













 





0 0
1
0 0
1 ,
,
,
6
1
6
1
,
,
,










 d
d
z
r
u
z
z
z
E
z
C
d
d
z
r
u
z
z
r
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
36
    
 









 





0 0
1
0 0
1 ,
,
,
1
,
,
,
1 










 d
d
z
r
u
r
d
d
z
r
u
r
r
r
r
        z
z u
d
d
z
r
T
z
C
z
z
K
d
d
z
r
u
z
0
0 0
0 0
1 ,
,
,
,
,
, 
 










 




 









 .
In this paper we calculated the second-order approximations of components of displacement
vector by using the method of averaging functional corrections. The approximation is usually
sufficient to obtain qualitative conclusions and to obtain some quantitative results. The obtained
analytical results were checked by comparing them with the results of numerical simulation.
3. DISCUSSION
In this section we analyzed dynamics of mass transport during growth of films by magnetron
sputtering to determine conditions to change properties of epitaxial layers. The Fig. 2 shows
dependence of concentration of sputtered material on cyclotron frequency c. Increasing of
induction of magnetic field B0 leads to increasing of the cyclotron frequency c and to increase
homogeneity of epitaxial layer. The Fig. 3 shows dependence of concentration of sputtered
material on electric strengths E0. Increasing of the strengths leads to increasing of speed of
transport of ions to target and their concentration. In this case the opposite effect was obtained
with increasing of the ion mass (see Fig. 3), radius (see Fig. 4) and length (see Fig. 5) of the
magnetron. During analysis of components of displacement vector we obtained, that increasing of
velocity of ions of growing material leads to decreasing of value of the considered vector (see
Fig. 6).
0 5 10 15
c
0.0
0.2
0.4
0.6
0.8
1.0
C/C
0
3
2
1
Fig. 2. Typical dependence of concentration of sputtered material on cyclotron frequency c. Increasing of
density of curves correspond to increasing of strength of electrical field
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
37
0 5 10 15
E0
0.0
0.2
0.4
0.6
0.8
1.0
C/C
0
1
2
3
Fig. 3. Typical dependence of concentration of sputtered material on electric strengths E0. Increasing of
density of curves correspond to increasing of mass of ions
0 5 10 15
E0
0.0
0.2
0.4
0.6
0.8
C/C
0
1
2
3
Fig. 4. Typical dependence of concentration of sputtered material on electric strengths E0. Increasing of
density of curves correspond to increasing of radius of magnetron
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
38
0 5 10 15
E0
0.0
0.2
0.4
0.6
0.8
C/C
0
1
2
3
Fig. 5. Typical dependence of concentration of sputtered material on electric strengths E0. Increasing of
density of curves correspond to increasing of length of magnetron
z
0.0
0.2
0.4
0.6
0.8
1.0
Uz
1
2
a L
Fig. 6. Normalized dependences of component of displacement vector uz on coordinate z at small velocity
of ions (curve 1) and large velocity of ions (curve 2) of growing material
4. CONCLUSIONS
In the present paper we analyzed mass transport during magnetron sputtering of materials. Based
on results of analysis we formulate recommendations to control of properties of epitaxial layers.
We analyzed possibility to decrease mismatch-induced stress in multilayer structure during
growth. We also introduce an analytical approach for prognosis of mass transport during growth
of layers in magnetron.
International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024
39
REFERENCES
[1] Stepanenko, I.P., (1980) Basis of microelectronics, Moscow: Soviet radio.
[2] Gusev, V.G. & Gusev, Yu.M., (1991) Electronics, Moscow, Higher School.
[3] Lachin, V.I., Savelov & N.S., (2001) Electronics, Rostov on Don, Phenics, 2001.
[4] A.A. Vorob’ev, V.V. Korabl’ev, S.Yu. Karpov. Semiconductors. Vol. 37 (7). P. 98 (2003).
[5] Sorokin, L.M., Veselov, N.V., Shcheglov, M.P., Kalmykov, A.E., Sitnikova, A.A., Feoktistov,
N.A., Osipov, A.V. & Kukushkin, S.A., (2008) "The use of magnesium to dope gallium nitride
obtained by molecular-beam epitaxy from activated nitrogen", Technical Physics Letters. Vol. 34
(22), pp. 838-842.
[6] Lundin, V.V., Sakharov, A.V., Zavarin, E.E., Sinitsin, M.A., Nikolaev, A.E., Mikhailovsky, G.A.,
Brunkov, P.N., Goncharov, V.V., Ber, B.Ya., Kazantsev, D.Yu. & Tsatsul’nikov, A.F., (2009)
"Electron-microscopic investigation of a SiC/Si(111) structure obtained by solid phase epitaxy",
Semiconductors. Vol. 43 (7), pp. 812-817.
[7] Li, Y., Antonuk, L.E., El-Mohri, Y., Zhao, Q., Du, H., Sawant, A. & Wang, Yi (2006), "Effects of
x-ray irradiation on polycrystalline silicon, thin-film transistors", Journal of applied physics, Vol. 99
(6), pp. 064501.
[8] Chakraborty, A., Xing, H., Craven, M.D., Keller, S., Mates, T., Speck, J.S., Den Baars, S.P. &
Mishra, U.K., (2004) "Nonpolar -plane p-type and junction diodes", Journal of applied physics,
Vol. 96 (8), pp. 4494-4499.
[9] Mitsuhara, M., Ogasawara, M. & Sugiura, H. (1998) "Beryllium doping of InP during metalorganic
molecular beam epitaxy using bismethylcyclopentadienyl-beryllium", Journal of crystal growth,.
Vol. 183, pp. 711-716.
[10] Zhukov, V.V., Krivobokov, V.P. & Yanin, S.N., (2006) "Sputtering of the magnetron diode target in
the presence of an external ion beam" Technical Physics, Vol. 51 (4). P. 453-458.
[11] Talalaev, R.A., Yakovleva, E.V., Karpova, S.Yu. & Makarov, Yu.N., (2001) "On low temperature
kinetic effects in metal–organic vapor phase epitaxy of III-V compounds", Journal of crystal
growth, Vol. 230. P. 232-238.
[12] Druzhkov, S.S., (2013) "Mathematical modeling of the magnetron sputtering process", Bulletin of
Ufa State Aviation Technical University, Vol. 17 (8). P. 137-142 (2013).
[13] Pankratov, E.L. & Bulaeva, E.A., (2015) "On optimization of regimes of epitaxy from gas phase.
some analytical approaches to model physical processes in reactors for epitaxy from gas phase
during growth films", Reviews in theoretical science. Vol. 3 (4). P. 365-398.
[14] Pankratov, E.L. & Bulaeva, E.A., (2014) "Analysis of nonlinear model of gas dynamics in a vertical
reactor for gas phase epitaxy", International Journal of Computational Materials. Vol. 3 (3). P.
1450013-1450026.
[15] Pankratov, E.L. & Bulaeva, E.A., (2015) "Optimization of pressure in epitaxial growth from gas
phase system to decrease energy costs", Quantum Matter. Vol. 4 (5). P. 456-457.
[16] Pankratov, E.L. & Bulaeva, E.A., (2015) "On prognosis of epitaxy from gas phase process to
improve properties of epitaxial layers" 3D research. Vol. 6 (4). P. 46-56.
[17] Vorob’ev, G.S., Sokolov, S.V., Pisarenko, L.D. & Zhurba, V.O. (2010) Theory of electromagnetic
field and basis of microwave techniques. Sumy: State University of Sumy.
[18] Pimenov, Yu.M., Vol’man, V.I. & Muravtsov, A.D. (2010) Technical electrodynamics, Moscow:
Radio and Communication.
[19] Sokolov, Yu.D. (1955) "About the definition of dynamic forces in the mine lifting" Applied
Mechanics. Vol.1 (1). P. 23-35.
[20] Zhang, Y.W. & Bower, A.F. (1999) "Numerical simulations of island formation in a coherent
strained epitaxial thin film system", Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P.
2273-2297.
[21] Landau, L.D. & Lifshits, E.M. (2001) Theoretical physics. Vol. 7 (Theory of elasticity), Moscow:
PHYSMATLIT.

More Related Content

PDF
4. AJMS_466_23.pdf
PDF
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
PDF
Simulation of Magnetically Confined Plasma for Etch Applications
PDF
ON APPROACH TO INCREASE DENSITY OF FIELDEFFECT HETEROTRANSISTORS IN THE FRAME...
PDF
ON APPROACH TO INCREASE DENSITY OF FIELDEFFECT HETEROTRANSISTORS IN THE FRAME...
PDF
EMFTAll2
PPTX
Maxwell's Equations: Derivatian and implementation
PDF
Mitres 6 002_s08_part1
4. AJMS_466_23.pdf
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
Simulation of Magnetically Confined Plasma for Etch Applications
ON APPROACH TO INCREASE DENSITY OF FIELDEFFECT HETEROTRANSISTORS IN THE FRAME...
ON APPROACH TO INCREASE DENSITY OF FIELDEFFECT HETEROTRANSISTORS IN THE FRAME...
EMFTAll2
Maxwell's Equations: Derivatian and implementation
Mitres 6 002_s08_part1

Similar to On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnetron Sputtering (20)

PDF
Karpen generator
PDF
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
PDF
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
PDF
Ol2423602367
PDF
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
PDF
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
PDF
Modeling of manufacturing of a field effect transistor to determine condition...
PDF
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
PDF
Emft book
PDF
05_AJMS_199_19_RA.pdf
PDF
05_AJMS_199_19_RA.pdf
PDF
Integral Equation Formalism for Electromagnetic Scattering from Small Particles
PDF
Fields Lec 5&6
PDF
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
PDF
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
PDF
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
PDF
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
PDF
3_AJMS_222_19.pdf
PDF
International Journal of Computational Engineering Research(IJCER)
Karpen generator
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
Ol2423602367
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Modeling of manufacturing of a field effect transistor to determine condition...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Emft book
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
Integral Equation Formalism for Electromagnetic Scattering from Small Particles
Fields Lec 5&6
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
3_AJMS_222_19.pdf
International Journal of Computational Engineering Research(IJCER)
Ad

More from ijcax (20)

PDF
CFP : 3rd International Conference on Computer Science, Information Technolog...
PDF
On Fuzzy Soft Multi Set And Its Application In Information Systems
PDF
Developing Product Configurator Tool Using Cads’ API With the Help of Paramet...
PDF
The Study Of Cuckoo Optimization Algorithm For Production Planning Problem
PDF
Blind Aid : Travel Aid for Blind - IJCAx
PDF
Data Mining Application in Advertisement Management of Higher Educational Ins...
PDF
Survey on Content Based Image Retrieval - ijcax
PDF
Cell Charge Approximation for Accelerating Molecular Simulation on CUDA-Enabl...
PDF
CFP : 5th International Conference on Advances in Computing & Information Tec...
PDF
Call for Papers - 6th International Conference on Natural Language Processing...
PDF
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
PDF
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
PDF
Call for Papers - 2nd International Conference on AI & Civil Engineering (AIC...
PDF
NEW ONTOLOGY RETRIEVAL IMAGE METHOD IN 5K COREL IMAGES
PDF
THE STUDY OF CUCKOO OPTIMIZATION ALGORITHM FOR PRODUCTION PLANNING PROBLEM
PDF
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PDF
PREDICTING ACADEMIC MAJOR OF STUDENTS USING BAYESIAN NETWORKS TO THE CASE OF ...
PDF
A Multi Criteria Decision Making Based Approach for Semantic Image Annotation
PDF
On Fuzzy Soft Multi Set and Its Application in Information Systems
PDF
RESEARCH ISSUES IN WEB MINING
CFP : 3rd International Conference on Computer Science, Information Technolog...
On Fuzzy Soft Multi Set And Its Application In Information Systems
Developing Product Configurator Tool Using Cads’ API With the Help of Paramet...
The Study Of Cuckoo Optimization Algorithm For Production Planning Problem
Blind Aid : Travel Aid for Blind - IJCAx
Data Mining Application in Advertisement Management of Higher Educational Ins...
Survey on Content Based Image Retrieval - ijcax
Cell Charge Approximation for Accelerating Molecular Simulation on CUDA-Enabl...
CFP : 5th International Conference on Advances in Computing & Information Tec...
Call for Papers - 6th International Conference on Natural Language Processing...
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnet...
Call for Papers - 2nd International Conference on AI & Civil Engineering (AIC...
NEW ONTOLOGY RETRIEVAL IMAGE METHOD IN 5K COREL IMAGES
THE STUDY OF CUCKOO OPTIMIZATION ALGORITHM FOR PRODUCTION PLANNING PROBLEM
COMPARATIVE ANALYSIS OF ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS
PREDICTING ACADEMIC MAJOR OF STUDENTS USING BAYESIAN NETWORKS TO THE CASE OF ...
A Multi Criteria Decision Making Based Approach for Semantic Image Annotation
On Fuzzy Soft Multi Set and Its Application in Information Systems
RESEARCH ISSUES IN WEB MINING
Ad

Recently uploaded (20)

PDF
Design Guidelines and solutions for Plastics parts
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
CyberSecurity Mobile and Wireless Devices
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PPTX
communication and presentation skills 01
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
Feature types and data preprocessing steps
PPTX
Information Storage and Retrieval Techniques Unit III
PPTX
Current and future trends in Computer Vision.pptx
Design Guidelines and solutions for Plastics parts
"Array and Linked List in Data Structures with Types, Operations, Implementat...
Management Information system : MIS-e-Business Systems.pptx
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
CyberSecurity Mobile and Wireless Devices
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Abrasive, erosive and cavitation wear.pdf
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
communication and presentation skills 01
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
August -2025_Top10 Read_Articles_ijait.pdf
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Feature types and data preprocessing steps
Information Storage and Retrieval Techniques Unit III
Current and future trends in Computer Vision.pptx

On Decreasing of Mismatch-Induced Stress During Growth of Films During Magnetron Sputtering

  • 1. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 DOI:10.5121/ijcax.2024.11402 25 ON DECREASING OF MISMATCH-INDUCED STRESS DURING GROWTH OF FILMS DURING MAGNETRON SPUTTERING E.L. Pankratov Department of applied mechanics, physics and higher mathematics, Nizhny Novgorod State Agrotechnical University, 97 Gagarin avenue, Nizhny Novgorod ABSTRACT In this paper we analyzed mass transfer during the growth of epitaxial layers during magnetron sputtering. During the analysis we obtained modifications of properties of films with variation of several parameters. We analyzed possibility to decrease mismatch -induced stress on the considered films during their growth. An analytical approach for analyzing mass transfer was introduced, which makes it possible to take into account the nonlinearity of processes, as well as changes in parameters in space and time. KEYWORDS Mass transfer; magnetrons sputtering; analytical approach for modelling; mismatch-induced stress. 1. INTRODUCTION Development of solid-state electronics and widespread using of heterostructures for manufacturing of electronic devices leads to the necessity to improve properties of layers of these heterostructures. Different methods are used to manufacture of heterostructures: molecular beam epitaxy, epitaxy from the gas phase, magnetron sputtering. A large number of experimental works have been devoted to the manufacturing and using of heterostructures due to their widespread using [1-12]. At the same time, a relatively small number of works are devoted to predicting the growth of heterostructures [11,12]. In this paper in development of references [13-16] we analyzed processes framework growing films by magnetron sputtering. Structure of the considered magnetron is shown in Fig. 1. In the framework of the structure electrons are emitting from the cathode (line 1). After that under the action of a field between the cathode (line 1) and the anode (line 3) an electron flow is formed between lines 1 and 2. The main purpose of this paper is analysis of mass transfer in magnetrons during growth of films in order to improve their properties. An additional aim of this paper is analysis of possibility to decrease mismatch-induced stress during growth of films. To solve this aim we consider an analytical approach for analysis of mass transfer, which makes a possibility to take into account the nonlinearity of mass transfer, as well as the changing of its parameters in space and time.
  • 2. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 26 Fig. 1. Structure of magnetron. In the framework of the structure ions have been emitted from cathode (line 1). After that under influence of field between cathode (line 1) and anode (line 3) one can obtained flow of ions between lines 1 and 2 2. METHOD OF SOLUTION To solve our aims we determine spatio-temporal distribution of electromagnetic field. We determine the distribution by solving the following boundary problem [17, 18]     t t z r D j t z r H rot     , , , , , ,      ,     t t z r B t z r E rot     , , , , , ,     ,      t z r D div , , ,  ,   0 , , ,  t z r B div   , E D    0  , H B    0  . (1) Here  and  are the dielectric and magnetic constants; 0=0.88610-11 F/m; 0= 1.25610-6 H/m; E  and H  are the electric and magnetic strengths; D  and B  are the inductions of electric and magnetic fields; r,  and z are the spatial coordinates; t is the current time. Boundary and initial conditions for the system of equations could be written as   0 , , ,  t z R Bz  ,   0 , , ,  t z R Dr  ,   0 , , ,  t z R Ez  ,   0 , , ,  t z R Hr  ,   0 0 , , , E z r E     ,   0 0 , , , H z r H     . Current density j  is proportional to speed of ions v  : v C j     , where C is the density of ions. The speed of ions correlated with strengths of electric and magnetic field by the second Newton law
  • 3. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 27   B v E e t d v d m        . (3) Scalar form of the Eqs.(1) could be written as       z t z r H t z r H r t t z r D v C z r r          , , , , , , 1 , , ,      ,       z t z r H t z r H r t t z r D v C r z          , , , , , , 1 , , ,       ,                       t z r H r t z r H r t t z r D r v C r z z , , , , , , , , , ,       t t z r B t z r E r z t z r E r z         , , , , , , 1 , , ,      ,       t t z r B t z r E r z t z r E z r         , , , , , , 1 , , ,      ,         t t z r B r t z r E r t z r E r z r         , , , , , , , , ,      ,                        z t z r D t z r D r r t z r D r r z r , , , , , , 1 , , , 1 ,         0 , , , , , , 1 , , , 1          z t z r B t z r B r r t z r B r r z r      ,   z r r B v E e t d v d m    ,   z r B v E e t d v d m     ,    B v E e t d v d m r z z   . To solve these equations we use the method of averaging functional corrections [19]. To determine the first-order approximations of the required functions we replace them in the right- hand sides of equations (4) by their not yet known average values 1s in the right-hand side of these equations. As a result of this substitution we obtain the following equations to determine the first-order approximations of components of strength and induction of the considered fields   0 , , , 1     t t z r D v C r r  ,   0 , , , 1     t t z r D v C    ,      H z z t t z r D v C 1 1 , , ,     ,   0 , , , 1    t t z r B r  ,   0 , , , 1    t t z r B   ,      E z t t z r B 1 1 , , ,    ,     C r t z r D r r r    , , , 1 1  ,     0 , , , 1 1    r t z r B r r r  ,
  • 4. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 28   z r B v E r e t d v d m 1 1 1 1       ,   z r B v E e t d v d m 1 1 1 1        ,       B v E z r z e t d v d m 1 1 1 1   . Further after integration of left and right sides of these equations on considered variables we obtain the first-order approximations of the considered fields and velocity of ions in the following form      t r r d v C t z r D 0 1 1 , , ,   ,      t d v C t z r D 0 1 1 , , ,     ,   0 0 0 1 1 1 , , , E d v C t t z r D t z H z           ,  t e v m z r B v E r 1 1 1 1       ,   0 , , , 1  t z r B r  ,   0 0 1 , , , H t z r B      ,   t t z r B E z    1 1 , , ,  ,   0 1 1 1 1       v m t e v m z r B v E    ,   0 1 1 1 1 z B v E z v m t e v m r z        . Calculation of average values 1s by using the following standard relation [19]          0 0 0 2 0 1 2 1 , , , 2 1 L R q s t d z d r d d t z r S r LR q      ( is the continuance of growth, L is the length of magnetron) gives a possibility to obtain, that   m E C H e v z z v z v 4 4 0 0 2 1 2 0 2 0 1            , 0 1    E , 0 1 H H    ,   2 2 1 0 2 0 0 1 C H E z z v E         , 0 1  r v  , 0 1  r E  , 0 1    v v  . Further we obtain the second-order approximations of components of strength and induction of electrical and magnetic fields. To obtain these approximations we replace considered fields in right sides of Eqs. (4) on the following sums S (r,,z,t)2s+S1(r,,z,t). The replacement leads to transformation of Eqs. (4) to the following form       z t z r H t z r H r t t z r D v C z r r          , , , , , , 1 , , , 1 1 2 2      ,       z t z r H t z r H r t t z r D v C r z          , , , , , , 1 , , , 1 1 2 2       ,                r t z r H r t z r H t t z r D r v C H z z , , , , , , , , , 1 1 2 2 2               t z r H r , , , 1 ,                    t z r E r z t z r E t t z r B z r , , , 1 , , , , , , 1 1 2 ,
  • 5. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 29                    t z r E r z t z r E t t z r B z r , , , 1 , , , , , , 1 1 2 ,                            t z r E r t z r E r t z r E t t z r B r r E z , , , , , , , , , , , , 1 1 1 2 2 ,         z t z r D t z r D r r t z r D r r z r          , , , , , , 1 , , , 1 1 1 2       ,         z t z r B t z r B r r t z r B r r z r          , , , , , , 1 , , , 1 1 1 2      ,             t z r B t z r v t z r E e t d v d m z B v r E r z r , , , , , , , , , 1 2 1 2 1 2 2              ,             t z r B t z r v t z r E e t d v d m z B r v E z r , , , , , , , , , 1 2 1 2 1 2 2               ,             t z r B t z r v t z r E e t d v d m B r v z E z r z , , , , , , , , , 1 2 1 2 1 2 2              . Integration of left and right sides of the above equations on considered variations gives a possibility to obtain the second-order approximations of the considered fields in the following forms                 t r t t z r d v C d z r H z d z r H r t z r D 0 2 0 1 0 1 2 , , , , , , 1 , , ,           ,                 t t r t z d v C d z r H z d z r H r t z r D 0 2 0 1 0 1 2 , , , , , , 1 , , ,            ,                0 0 0 1 0 1 2 2 , , , , , , , , , E r d z r H r r d z r H t t z r D r t t H z                0 0 0 2 0 1 , , , E r d v C d z r H t z t r               ,               t t E z d z r E r r d z r E t t z r B r 0 1 0 1 2 2 , , , , , , , , ,                  t r d z r E 0 1 , , ,     ,               t z t r d z r E r d z r E z t z r B 0 1 0 1 2 , , , 1 , , , , , ,          ,       0 0 0 1 0 1 2 , , , 1 , , , , , , H d z r E r d z r E z t z r B t z t r                     ,
  • 6. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 30                r z r r u d t z u D u z u d t z u D r C t z r D r 0 1 0 1 2 2 , , , , , , 2 , , ,      ,                r z r r u d t z u B u z u d t z u B t z r B r 0 1 0 1 2 , , , , , , , , ,      ,               t z v B v t r E r d z r B t d z r E t e v m z r 0 1 2 2 2 0 1 2 2 , , , , , ,                          t z t B d z r B z r v d z r v z 0 1 1 0 1 2 , , , , , , , , ,            ,               t z v B v t E d z r B t d z r E t e v m r z r 0 1 2 2 2 0 1 2 2 , , , , , ,                           t z r t r B d z r B z r v d z r v z 0 1 1 0 1 2 , , , , , , , , ,          ,               t v B v t z E z d z r B t d z r E t e v m r r z 0 1 2 2 2 0 1 2 2 , , , , , ,                          t r t r B d z r B z r v d z r v 0 1 1 0 1 2 , , , , , , , , ,            . Average values of the second-order approximations 2s were calculated by using the following standard relation [19]               0 0 0 2 0 1 2 2 2 , , , , , , 2 1 L R q q s t d z d r d d t z r S t z r S r LR q       . (5) Substitution of obtained approximations of strength and induction of considered fields and velocities of movement of ions into relations (5) gives a possibility to obtain relations for the required average values in the following form                  0 0 0 2 0 1 2 2 1 2 2 , , , 2 6 L R H H D t d z d r d d t z r H LR t z                         0 0 0 2 0 1 2 2 2 L R z z t d z d r d d v v LR t     , 0 2  r D  , 0 2    D , 0 2  z B  , 0 2  r B  , 0 0 2 H B      , 0 2  r v  , 0 2    v v   ,   0 1 0 0 0 2 0 1 2 2 2 , , , 2 z E L R z v v m e t d z d r d d t z r E r LR t m e z z                   . In this paper we calculated the second-order approximations of the required strengths and inductions of the considerate fields, as well as the ion velocities by the method of averaging functional corrections. The approximation is usually sufficient to obtain qualitative conclusions
  • 7. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 31 and to obtain some quantitative results. The obtained analytical results were checked by comparing them with the results of numerical simulation. Further let us consider changing of components of displacement vector in the grown multilayer structure with changing of spatial coordinates and time. Equations, which are describe components ur(r,,z,t), u(r,,z,t) and uz(r,,z,t) of displacement vector   t z r u , , ,  , could be written as [20,21]                                                                              z t z r t z r r r t z r r r t t z r u С z t z r y t z r r r t z r r r t t z r u С z t z r t z r r r t z r r r t t z r u C zz zy zx z z r rz r rr r , , , , , , 1 , , , 1 , , , , , , , , , 1 , , , 1 , , , , , , , , , 1 , , , 1 , , , 2 2 2 2 2 2                             where                              k k ij i j j i ij x t z r u x t z r u x t z r u z z E , , , 3 , , , , , , 1 2                   r k k ij T t z r T z K z x t z r u z K      , , , , , ,     ; ij is the Kronecker symbol. Accounting of the last relation leads to transformation of the above system of equations to the following form                                   r t z r u r r z z E z K r t t z r u C r r , , , 1 6 5 1 , , , 2 2                                              2 2 2 2 2 2 2 , , , , , , 1 , , , 1 3 1 z t z r u t z r u r r t z r u r z z E z K r z                                 r t z r T r r z z K z z E z K z r t z r u z z E z                   , , , 1 1 3 , , , 1 2 2                                                  r t z r u r r r t z r u r r r z z E t t z r u C r y , , , , , , 1 1 2 , , , 2 2                                                         t z r T r r z z K t z r u r z t z r u z z E z z , , , , , , 1 , , , 1 2                                        r t z r u r r z K t z r u z K z z E r , , , , , , 1 12 5 1 2 2 2 2
  • 8. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 32           z t z r u z z E z K r y                , , , 1 6 1 2 (6)                                  2 2 2 2 2 , , , 1 , , , 1 1 2 , , ,      t z r u r r t z r u r r r z z E t t z r u C z z z                                   r t z r u r z K z z t z r u r z r t z r u r r r , , , 1 , , , 1 , , , 2 2                                         z t z r u z z E z z t z r u t z r u r z r , , , 6 1 6 1 , , , , , , 1                                z t z r u y t z r u r x t z r u r r z x , , , , , , 1 , , , 1           z t z r T z z K    , , ,  . where E is the Young modulus;  is the coefficient of thermal expansion; K is the modulus of uniform compression;  is the Poisson coefficient; 0=(as-aEL)/aEL is the mismatch parameter; as, aEL are the lattice distances of the substrate and the epitaxial layer; T (r,,z,t) is the temperature of growth with equilibrium value Tr. Conditions for the system of the above equations can be written in the form   0 , , , 0     r r t z r u   ;   0 , , ,    R r r t z r u   ;   0 , , , 0     z z t z r u   ;   0 , , ,    L z z t z r u   ;     t z r u t z r u , , 2 , , , 0 ,     ;   0 0 , , , u z r u     ;   0 , , , u z r u      . Now let us determine solutions of system of equations (6), which describe components of displacement vector. To calculate the first-order approximations of the required components in the framework the method of averaging of function corrections one shall substitute their not yet known average values i in the right sides of the equations (6). The substitution leads to the following result           r t z r T r r z z K t t z r u C r        , , , , , , 2 1 2    ,                    t z r T r z z K t t z r u C , , , , , , 2 1 2 ,
  • 9. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 33         z t z r T z z K t t z r u C z       , , , , , , 2 1 2    . Integration of the right and the left sides of the above relations on time t leads to the following result                       t r d d z r T r r C r z z K t z r u 0 0 1 , , , , , ,              r t u d d z r T r r C r z z K 0 0 0 , , ,                     ,                t d d z r T C r z z K t z r u 0 0 1 , , , , , ,                        0 0 0 , , , u d d z r T C r z z K         ,               t z d d z r T z C z z K t z r u 0 0 1 , , , , , ,              z u d d z r T z C z z K 0 0 0 , , ,             . Approximations with the second and higher orders of components of displacement vector could be obtained in the framework of the standard replacement of the required functions in the right sides of equations (6) on the following sum i+ui(r,,z,t) [16, 19]. The replacement leads to the following result                                           z z E r t z r u r r z z E z K r t t z r u C r r     1 2 , , , 1 6 5 1 , , , 1 2 2 2                                                 r t z r u r r z z E z K z t z r u t z r u r z y , , , 1 1 3 , , , , , , 1 1 2 2 2 1 2 2 1 2 2                                  2 1 2 2 1 2 2 1 2 2 , , , , , , 1 1 2 , , , 1 z t z r u t z r u r z z E r t z r u r r z y                            z r t z r u r z z E z K r r t z r T r z z K z z                  , , , 1 3 1 , , , 1 2 1                                                        r t z r u r r t z r u r r r z z E t t z r u C r , , , , , , 1 1 2 , , , 1 2 1 2 2 2                                                 t z r u r z t z r u z z E z y t z r T z z K z , , , 1 , , , 1 2 , , , 1 1
  • 10. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 34                                        z z E z K r t z r u z K z z E r      1 6 1 , , , 1 12 5 1 2 1 2 2                     r t z r u r z K z t z r u , , , , , , 1 2 1 2                                  2 1 2 2 1 2 2 2 , , , 1 , , , 1 1 2 , , ,      t z r u r r t z r u r r r z z E t t z r u C z z z                                     r t z r u r r z z t z r u r z r t z r u r r r , , , 1 , , , 1 , , , 1 1 2 1 2                                                t z r u r z t z r u z z t z r u z t z r u y z r r , , , 1 , , , 6 6 1 , , , , , , 1 1 1 1                 z t z r T z z K z z E z t z r u r t z r u r r z r                   , , , 1 , , , , , , 1 1 1      . Integration of the right and the left sides of the above relations on time t leads to the following result                                              z z E d d z r u r r r z z E z K C t z r u t r r         1 3 , , , 1 6 5 1 , , , 0 0 1 2                               t t d d z r u d d z r u r r C z K 0 0 1 2 2 0 0 1 2 , , , , , , 1                                               t z t z d d z r u r z r C z C r z E d d z r u z 0 0 1 2 2 0 0 1 2 2 , , , 1 1 2 , , ,                                                              0 0 1 2 2 , , , 1 6 5 1 1 3        d d z r u r r r z z E z K C z z E z K r                                      z K d d z r u r r C d d z r T r r C z z K y t 0 0 1 2 0 0 , , , 1 , , ,                                               0 0 1 2 2 0 0 1 2 2 2 , , , , , , 1 1 3              d d z r u z d d z r u r z z E z                                         0 0 1 2 , , , 1 3 1 1 2        d d z r u r z r z z E z K C z C z E z                   0 0 0 , , ,       d d z r T r r C z z K u r
  • 11. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 35                                       t r t r d d z r u r r d d z r u r r r t z r u 0 0 1 2 0 0 1 2 , , , , , , , , ,                                                C r z K d d z r u z K z z E C r z C r z E t r 0 0 1 2 2 2 , , , 1 12 5 1 1 2                                            t t y d d z r u z z z E z C d d z r u r r 0 0 1 0 0 1 2 , , , 1 2 1 , , ,                                                   t t z d d z r u z z z E z K C r d d z r u r 0 0 1 2 0 0 1 , , , 1 6 1 , , , 1                                     t t d d z r T z C r z E d d z r T C z z K 0 0 0 0 , , , 1 2 , , ,                                              z C r z E d d z r u z z z E z K C r t          1 2 , , , 1 6 1 0 0 1 2                                           C z z K d d z r u r r d d z r u r r r r r             0 0 1 2 0 0 1 , , , , , ,                                z z E z K d d z r u C r d d z r T r             1 12 5 , , , 1 , , , 0 0 1 2 2 2 0 0                                                    0 0 0 1 0 0 1 , , , 1 , , , 1 2 1 u d d z r u r d d z r u z z z E z C z                            0 0 1 2 0 0 1 2 , , , , , ,               d d z r u z d d z r u r r C r z K         С r z K z z E 1 1 6                                         0 0 1 2 2 0 0 1 2 , , , 1 , , , , , ,             d d z r u r d d z r u r r r t z r u z z z                                    z C r z E d d z r u z d d z r u r z r y r             1 2 , , , , , , 0 0 1 2 0 0 1 2                                   0 0 1 0 0 1 , , , 1 , , , 1 1            d d z r u r d d z r u r r z K z C r r r                                       0 0 1 0 0 1 , , , 6 1 6 1 , , ,            d d z r u z z z E z C d d z r u z z r
  • 12. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 36                        0 0 1 0 0 1 , , , 1 , , , 1             d d z r u r d d z r u r r r r         z z u d d z r T z C z z K d d z r u z 0 0 0 0 0 1 , , , , , ,                                . In this paper we calculated the second-order approximations of components of displacement vector by using the method of averaging functional corrections. The approximation is usually sufficient to obtain qualitative conclusions and to obtain some quantitative results. The obtained analytical results were checked by comparing them with the results of numerical simulation. 3. DISCUSSION In this section we analyzed dynamics of mass transport during growth of films by magnetron sputtering to determine conditions to change properties of epitaxial layers. The Fig. 2 shows dependence of concentration of sputtered material on cyclotron frequency c. Increasing of induction of magnetic field B0 leads to increasing of the cyclotron frequency c and to increase homogeneity of epitaxial layer. The Fig. 3 shows dependence of concentration of sputtered material on electric strengths E0. Increasing of the strengths leads to increasing of speed of transport of ions to target and their concentration. In this case the opposite effect was obtained with increasing of the ion mass (see Fig. 3), radius (see Fig. 4) and length (see Fig. 5) of the magnetron. During analysis of components of displacement vector we obtained, that increasing of velocity of ions of growing material leads to decreasing of value of the considered vector (see Fig. 6). 0 5 10 15 c 0.0 0.2 0.4 0.6 0.8 1.0 C/C 0 3 2 1 Fig. 2. Typical dependence of concentration of sputtered material on cyclotron frequency c. Increasing of density of curves correspond to increasing of strength of electrical field
  • 13. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 37 0 5 10 15 E0 0.0 0.2 0.4 0.6 0.8 1.0 C/C 0 1 2 3 Fig. 3. Typical dependence of concentration of sputtered material on electric strengths E0. Increasing of density of curves correspond to increasing of mass of ions 0 5 10 15 E0 0.0 0.2 0.4 0.6 0.8 C/C 0 1 2 3 Fig. 4. Typical dependence of concentration of sputtered material on electric strengths E0. Increasing of density of curves correspond to increasing of radius of magnetron
  • 14. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 38 0 5 10 15 E0 0.0 0.2 0.4 0.6 0.8 C/C 0 1 2 3 Fig. 5. Typical dependence of concentration of sputtered material on electric strengths E0. Increasing of density of curves correspond to increasing of length of magnetron z 0.0 0.2 0.4 0.6 0.8 1.0 Uz 1 2 a L Fig. 6. Normalized dependences of component of displacement vector uz on coordinate z at small velocity of ions (curve 1) and large velocity of ions (curve 2) of growing material 4. CONCLUSIONS In the present paper we analyzed mass transport during magnetron sputtering of materials. Based on results of analysis we formulate recommendations to control of properties of epitaxial layers. We analyzed possibility to decrease mismatch-induced stress in multilayer structure during growth. We also introduce an analytical approach for prognosis of mass transport during growth of layers in magnetron.
  • 15. International Journal of Computer- Aided Technologies (IJCAx) Vol.11, No.1/2/3/4, October 2024 39 REFERENCES [1] Stepanenko, I.P., (1980) Basis of microelectronics, Moscow: Soviet radio. [2] Gusev, V.G. & Gusev, Yu.M., (1991) Electronics, Moscow, Higher School. [3] Lachin, V.I., Savelov & N.S., (2001) Electronics, Rostov on Don, Phenics, 2001. [4] A.A. Vorob’ev, V.V. Korabl’ev, S.Yu. Karpov. Semiconductors. Vol. 37 (7). P. 98 (2003). [5] Sorokin, L.M., Veselov, N.V., Shcheglov, M.P., Kalmykov, A.E., Sitnikova, A.A., Feoktistov, N.A., Osipov, A.V. & Kukushkin, S.A., (2008) "The use of magnesium to dope gallium nitride obtained by molecular-beam epitaxy from activated nitrogen", Technical Physics Letters. Vol. 34 (22), pp. 838-842. [6] Lundin, V.V., Sakharov, A.V., Zavarin, E.E., Sinitsin, M.A., Nikolaev, A.E., Mikhailovsky, G.A., Brunkov, P.N., Goncharov, V.V., Ber, B.Ya., Kazantsev, D.Yu. & Tsatsul’nikov, A.F., (2009) "Electron-microscopic investigation of a SiC/Si(111) structure obtained by solid phase epitaxy", Semiconductors. Vol. 43 (7), pp. 812-817. [7] Li, Y., Antonuk, L.E., El-Mohri, Y., Zhao, Q., Du, H., Sawant, A. & Wang, Yi (2006), "Effects of x-ray irradiation on polycrystalline silicon, thin-film transistors", Journal of applied physics, Vol. 99 (6), pp. 064501. [8] Chakraborty, A., Xing, H., Craven, M.D., Keller, S., Mates, T., Speck, J.S., Den Baars, S.P. & Mishra, U.K., (2004) "Nonpolar -plane p-type and junction diodes", Journal of applied physics, Vol. 96 (8), pp. 4494-4499. [9] Mitsuhara, M., Ogasawara, M. & Sugiura, H. (1998) "Beryllium doping of InP during metalorganic molecular beam epitaxy using bismethylcyclopentadienyl-beryllium", Journal of crystal growth,. Vol. 183, pp. 711-716. [10] Zhukov, V.V., Krivobokov, V.P. & Yanin, S.N., (2006) "Sputtering of the magnetron diode target in the presence of an external ion beam" Technical Physics, Vol. 51 (4). P. 453-458. [11] Talalaev, R.A., Yakovleva, E.V., Karpova, S.Yu. & Makarov, Yu.N., (2001) "On low temperature kinetic effects in metal–organic vapor phase epitaxy of III-V compounds", Journal of crystal growth, Vol. 230. P. 232-238. [12] Druzhkov, S.S., (2013) "Mathematical modeling of the magnetron sputtering process", Bulletin of Ufa State Aviation Technical University, Vol. 17 (8). P. 137-142 (2013). [13] Pankratov, E.L. & Bulaeva, E.A., (2015) "On optimization of regimes of epitaxy from gas phase. some analytical approaches to model physical processes in reactors for epitaxy from gas phase during growth films", Reviews in theoretical science. Vol. 3 (4). P. 365-398. [14] Pankratov, E.L. & Bulaeva, E.A., (2014) "Analysis of nonlinear model of gas dynamics in a vertical reactor for gas phase epitaxy", International Journal of Computational Materials. Vol. 3 (3). P. 1450013-1450026. [15] Pankratov, E.L. & Bulaeva, E.A., (2015) "Optimization of pressure in epitaxial growth from gas phase system to decrease energy costs", Quantum Matter. Vol. 4 (5). P. 456-457. [16] Pankratov, E.L. & Bulaeva, E.A., (2015) "On prognosis of epitaxy from gas phase process to improve properties of epitaxial layers" 3D research. Vol. 6 (4). P. 46-56. [17] Vorob’ev, G.S., Sokolov, S.V., Pisarenko, L.D. & Zhurba, V.O. (2010) Theory of electromagnetic field and basis of microwave techniques. Sumy: State University of Sumy. [18] Pimenov, Yu.M., Vol’man, V.I. & Muravtsov, A.D. (2010) Technical electrodynamics, Moscow: Radio and Communication. [19] Sokolov, Yu.D. (1955) "About the definition of dynamic forces in the mine lifting" Applied Mechanics. Vol.1 (1). P. 23-35. [20] Zhang, Y.W. & Bower, A.F. (1999) "Numerical simulations of island formation in a coherent strained epitaxial thin film system", Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297. [21] Landau, L.D. & Lifshits, E.M. (2001) Theoretical physics. Vol. 7 (Theory of elasticity), Moscow: PHYSMATLIT.