SlideShare a Scribd company logo
Operationalize Apache Spark Analytics
Operationalize Apache Spark
Analytics
Ivan Nardini
Sr. Associate Customer Advisor, SAS Institute | CI & Analytics | ModelOps | Decisioning
Artem Glazkov
Sr. Consultant, SAS Instintute | Decisioning | ModelOps | Customer Advisory
Operationalize Apache
Spark Analytics
Ivan Nardini
SAS Governance options with Apache® Spark
Analytics
▪ Govern Spark Models – PMML
▪ Orchestrate Spark Models - Livy
Artem Glazkov
Managing Spark ML model lifecycle demo
scenario:
▪ Code-agnostics model repository
▪ BPM tool for model governance
▪ Capturing model performance over time
Model Ops Challenges
Model Ops Challenges
▪ Change in customer
behavior
▪ Internal and external
environment changes
▪ Track performance for
models with long and short
target actualization
▪ Role-based approach
▪ Elaborate clear action plan
for the model
▪ Combine business rules,
scripts, and user expertise
in governance process
DecisioningModel Performance decay Retrain automation
▪ Orchestrate repetitive
procedures
▪ Reduce time gap between
model development and
deployment stages
▪ Figure out right model in the
right moment for retrain
How we meet ModelOps challenges
using SAS Model Manager and SAS Workflow Manager
Including two build-in
scoring engines
(CAS and MAS) and
external engines
Integration with engines Orchestration
GUI + code
govern SAS and Open
Source models
Openness
One place to
store all
models
Repository
Built-in and
customized model
quality assessment
Reporting
Automate all
repetitive model
management
tasks
Why we should track model performance decay
Predictivepowerofthemodel
time
t1 t2 t3 t4
Deployed
model
Alerting trigger
Additional value
Retrained and
redeployed model
should track model performance
decay
How do you operationalize
Spark Models?
SAS Governance options with Apache Spark Analytics
Govern Spark Models using SAS
- PMML
PMML is one of the leading standard for
statistical and data mining models.
PMML enables model development on one
system using one application and deploy the
model on another system using another
application, simply by transmitting an XML
configuration file.
Govern Spark models – Spark PMML
Govern Spark models – Spark PMML
The JPMML-SparkML library converts Apache Spark ML pipelines to PMML data
format. It is written in Java. But the JPMML family includes Python (and R) wrapper
libraries for the JPMML-SparkML library.
For Python, we have the pyspark2pmml package that works with the official PySpark
interface:
• The pyspark2pmml.PMMLBuilder Python class is an API clone of the org.jpmml.sparkml.PMMLBuilder Java class.
• The Apache Spark connection is typically available in PySpark session as the sc variable. The SparkContext class
has an _jvm attribute, which gives Python users direct access to JPMML-SparkML functionality via the Py4J
gateway.
Then in your Spark session, you fit your pipeline and then use PMMLBuilder to create
its PMML file.
Govern Spark models: SAS Model Manager and PMML
SAS Model Manager
GUI/
REST API
PySpark Mlib
Register into
Spark Development
Environment
SAS Workflow Manager
SAS Data
Connector
Spark Production
Environment
SAS Viya
Governance Environment
Score new data
In-DB Process for
Spark by SAS
REST API
In this scenario we are translate OS
model score code to SAS and utilize
Embeded Process for Hadoop.
We use build-in SAS Viya capabilities
for creating SAS Model Manager
reports, based on the scored data
provided by running of the Embedded
process.
Govern Spark models: The «PMML» workflow
PMML approach
Pro and Cons
PROs:
• SAS In-database technology
(Accelator Scoring)
CONs:
• Technology Bottlenecks
(PMML supports a limited set of
algorithms)
Govern Spark models
(PMML)
Orchestrate Spark Models
– Apache Livy
Orchestrate Spark models – What’s Apache Livy?
Apache Livy is a service enables easy submission of Spark jobs or snippets of
Spark code, synchronous or asynchronous result retrieval, as well as Spark
Context management, all via a simple REST interface or an RPC client library.
SAS Viya
client
Govern Spark models – Apache Livy
Like Python Sklearn models, we register the parquet version of Spark Mlib model and (optionally) the
scoring code:
• Parquet model contains the model metainfo to score new data in the Hadoop/Spark ecosystems.
• Scoring code is a REST API recipe will submit from Livy Server to Spark cluster for loading the model
and get score back
Then we use SAS Workflow Manager capabilities (Job execution and REST API service) to:
1. Submit Scoring REST API call
2. Get back the scoring data
3. Generate Performance monitoring
SAS Model Manager
GUI/
REST API
PySpark Mlib
Register into
Spark Development
Environment
SAS Workflow Manager
Spark Production
Environment
SAS Viya
Governance Environment
REST API
Apache Livy
Score new data
Govern Spark models: SAS Model Manager and Apache Livy
In this scenario SAS Model Manager and
SAS Workflow Manager acting more like
orchestrator of service task and user
reviews.
We utilize build-in SAS Viya capabilities
for creating Model Manager reports,
based on the scored data provided by
native spark.
Govern Spark models: «Apache Livy» workflow
PMML and Livy approaches
Pro and Cons
PROs:
• SAS In-database technology
(Accelator Scoring)
CONs:
• Technology Bottlenecks
(PMML supports a
limited set of algorithms)
Govern Spark models
(PMML)
Orchestrate Spark Models
(Livy)
PROs:
• Native integrations (no score code
manipulation or conversion)
CONs:
• Configuration needed (Livy server)
Demo
Feedback
Your feedback is important to us.
Don’t forget to rate and
review the sessions.
Ad

More Related Content

What's hot (20)

Koalas: How Well Does Koalas Work?
Koalas: How Well Does Koalas Work?Koalas: How Well Does Koalas Work?
Koalas: How Well Does Koalas Work?
Databricks
 
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Spark Summit
 
Enabling Scalable Data Science Pipeline with Mlflow at Thermo Fisher Scientific
Enabling Scalable Data Science Pipeline with Mlflow at Thermo Fisher ScientificEnabling Scalable Data Science Pipeline with Mlflow at Thermo Fisher Scientific
Enabling Scalable Data Science Pipeline with Mlflow at Thermo Fisher Scientific
Databricks
 
Spark Summit EU talk by Stephan Kessler
Spark Summit EU talk by Stephan KesslerSpark Summit EU talk by Stephan Kessler
Spark Summit EU talk by Stephan Kessler
Spark Summit
 
Leveraging Apache Spark for Scalable Data Prep and Inference in Deep Learning
Leveraging Apache Spark for Scalable Data Prep and Inference in Deep LearningLeveraging Apache Spark for Scalable Data Prep and Inference in Deep Learning
Leveraging Apache Spark for Scalable Data Prep and Inference in Deep Learning
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Scalable Acceleration of XGBoost Training on Apache Spark GPU Clusters
Scalable Acceleration of XGBoost Training on Apache Spark GPU ClustersScalable Acceleration of XGBoost Training on Apache Spark GPU Clusters
Scalable Acceleration of XGBoost Training on Apache Spark GPU Clusters
Databricks
 
Creating an 86,000 Hour Speech Dataset with Apache Spark and TPUs
Creating an 86,000 Hour Speech Dataset with Apache Spark and TPUsCreating an 86,000 Hour Speech Dataset with Apache Spark and TPUs
Creating an 86,000 Hour Speech Dataset with Apache Spark and TPUs
Databricks
 
Spark Summit EU talk by Debasish Das and Pramod Narasimha
Spark Summit EU talk by Debasish Das and Pramod NarasimhaSpark Summit EU talk by Debasish Das and Pramod Narasimha
Spark Summit EU talk by Debasish Das and Pramod Narasimha
Spark Summit
 
Spark at Bloomberg: Dynamically Composable Analytics
Spark at Bloomberg:  Dynamically Composable Analytics Spark at Bloomberg:  Dynamically Composable Analytics
Spark at Bloomberg: Dynamically Composable Analytics
Jen Aman
 
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit EU talk by Kent Buenaventura and Willaim LauSpark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit
 
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflowImproving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Databricks
 
An Introduction to Sparkling Water by Michal Malohlava
An Introduction to Sparkling Water by Michal MalohlavaAn Introduction to Sparkling Water by Michal Malohlava
An Introduction to Sparkling Water by Michal Malohlava
Spark Summit
 
Spark Summit EU talk by Luca Canali
Spark Summit EU talk by Luca CanaliSpark Summit EU talk by Luca Canali
Spark Summit EU talk by Luca Canali
Spark Summit
 
Spark Summit EU talk by Yiannis Gkoufas
Spark Summit EU talk by Yiannis GkoufasSpark Summit EU talk by Yiannis Gkoufas
Spark Summit EU talk by Yiannis Gkoufas
Spark Summit
 
Efficient State Management With Spark 2.0 And Scale-Out Databases
Efficient State Management With Spark 2.0 And Scale-Out DatabasesEfficient State Management With Spark 2.0 And Scale-Out Databases
Efficient State Management With Spark 2.0 And Scale-Out Databases
Jen Aman
 
Relationship Extraction from Unstructured Text-Based on Stanford NLP with Spa...
Relationship Extraction from Unstructured Text-Based on Stanford NLP with Spa...Relationship Extraction from Unstructured Text-Based on Stanford NLP with Spa...
Relationship Extraction from Unstructured Text-Based on Stanford NLP with Spa...
Spark Summit
 
Spark Summit EU talk by Mikhail Semeniuk Hollin Wilkins
Spark Summit EU talk by Mikhail Semeniuk Hollin WilkinsSpark Summit EU talk by Mikhail Semeniuk Hollin Wilkins
Spark Summit EU talk by Mikhail Semeniuk Hollin Wilkins
Spark Summit
 
Tracing the Breadcrumbs: Apache Spark Workload Diagnostics
Tracing the Breadcrumbs: Apache Spark Workload DiagnosticsTracing the Breadcrumbs: Apache Spark Workload Diagnostics
Tracing the Breadcrumbs: Apache Spark Workload Diagnostics
Databricks
 
Building the Foundations of an Intelligent, Event-Driven Data Platform at EFSA
Building the Foundations of an Intelligent, Event-Driven Data Platform at EFSABuilding the Foundations of an Intelligent, Event-Driven Data Platform at EFSA
Building the Foundations of an Intelligent, Event-Driven Data Platform at EFSA
Databricks
 
Koalas: How Well Does Koalas Work?
Koalas: How Well Does Koalas Work?Koalas: How Well Does Koalas Work?
Koalas: How Well Does Koalas Work?
Databricks
 
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Spark Summit
 
Enabling Scalable Data Science Pipeline with Mlflow at Thermo Fisher Scientific
Enabling Scalable Data Science Pipeline with Mlflow at Thermo Fisher ScientificEnabling Scalable Data Science Pipeline with Mlflow at Thermo Fisher Scientific
Enabling Scalable Data Science Pipeline with Mlflow at Thermo Fisher Scientific
Databricks
 
Spark Summit EU talk by Stephan Kessler
Spark Summit EU talk by Stephan KesslerSpark Summit EU talk by Stephan Kessler
Spark Summit EU talk by Stephan Kessler
Spark Summit
 
Leveraging Apache Spark for Scalable Data Prep and Inference in Deep Learning
Leveraging Apache Spark for Scalable Data Prep and Inference in Deep LearningLeveraging Apache Spark for Scalable Data Prep and Inference in Deep Learning
Leveraging Apache Spark for Scalable Data Prep and Inference in Deep Learning
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Scalable Acceleration of XGBoost Training on Apache Spark GPU Clusters
Scalable Acceleration of XGBoost Training on Apache Spark GPU ClustersScalable Acceleration of XGBoost Training on Apache Spark GPU Clusters
Scalable Acceleration of XGBoost Training on Apache Spark GPU Clusters
Databricks
 
Creating an 86,000 Hour Speech Dataset with Apache Spark and TPUs
Creating an 86,000 Hour Speech Dataset with Apache Spark and TPUsCreating an 86,000 Hour Speech Dataset with Apache Spark and TPUs
Creating an 86,000 Hour Speech Dataset with Apache Spark and TPUs
Databricks
 
Spark Summit EU talk by Debasish Das and Pramod Narasimha
Spark Summit EU talk by Debasish Das and Pramod NarasimhaSpark Summit EU talk by Debasish Das and Pramod Narasimha
Spark Summit EU talk by Debasish Das and Pramod Narasimha
Spark Summit
 
Spark at Bloomberg: Dynamically Composable Analytics
Spark at Bloomberg:  Dynamically Composable Analytics Spark at Bloomberg:  Dynamically Composable Analytics
Spark at Bloomberg: Dynamically Composable Analytics
Jen Aman
 
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit EU talk by Kent Buenaventura and Willaim LauSpark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit EU talk by Kent Buenaventura and Willaim Lau
Spark Summit
 
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflowImproving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Databricks
 
An Introduction to Sparkling Water by Michal Malohlava
An Introduction to Sparkling Water by Michal MalohlavaAn Introduction to Sparkling Water by Michal Malohlava
An Introduction to Sparkling Water by Michal Malohlava
Spark Summit
 
Spark Summit EU talk by Luca Canali
Spark Summit EU talk by Luca CanaliSpark Summit EU talk by Luca Canali
Spark Summit EU talk by Luca Canali
Spark Summit
 
Spark Summit EU talk by Yiannis Gkoufas
Spark Summit EU talk by Yiannis GkoufasSpark Summit EU talk by Yiannis Gkoufas
Spark Summit EU talk by Yiannis Gkoufas
Spark Summit
 
Efficient State Management With Spark 2.0 And Scale-Out Databases
Efficient State Management With Spark 2.0 And Scale-Out DatabasesEfficient State Management With Spark 2.0 And Scale-Out Databases
Efficient State Management With Spark 2.0 And Scale-Out Databases
Jen Aman
 
Relationship Extraction from Unstructured Text-Based on Stanford NLP with Spa...
Relationship Extraction from Unstructured Text-Based on Stanford NLP with Spa...Relationship Extraction from Unstructured Text-Based on Stanford NLP with Spa...
Relationship Extraction from Unstructured Text-Based on Stanford NLP with Spa...
Spark Summit
 
Spark Summit EU talk by Mikhail Semeniuk Hollin Wilkins
Spark Summit EU talk by Mikhail Semeniuk Hollin WilkinsSpark Summit EU talk by Mikhail Semeniuk Hollin Wilkins
Spark Summit EU talk by Mikhail Semeniuk Hollin Wilkins
Spark Summit
 
Tracing the Breadcrumbs: Apache Spark Workload Diagnostics
Tracing the Breadcrumbs: Apache Spark Workload DiagnosticsTracing the Breadcrumbs: Apache Spark Workload Diagnostics
Tracing the Breadcrumbs: Apache Spark Workload Diagnostics
Databricks
 
Building the Foundations of an Intelligent, Event-Driven Data Platform at EFSA
Building the Foundations of an Intelligent, Event-Driven Data Platform at EFSABuilding the Foundations of an Intelligent, Event-Driven Data Platform at EFSA
Building the Foundations of an Intelligent, Event-Driven Data Platform at EFSA
Databricks
 

Similar to Operationalize Apache Spark Analytics (20)

MLeap: Release Spark ML Pipelines
MLeap: Release Spark ML PipelinesMLeap: Release Spark ML Pipelines
MLeap: Release Spark ML Pipelines
DataWorks Summit/Hadoop Summit
 
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick WendellApache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Databricks
 
AI at Scale
AI at ScaleAI at Scale
AI at Scale
Adi Polak
 
MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
  MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...  MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
Spark Summit
 
Spark Summit East 2016 - MLeap Presentation
Spark Summit East 2016 -   MLeap PresentationSpark Summit East 2016 -   MLeap Presentation
Spark Summit East 2016 - MLeap Presentation
Mikhail Semeniuk
 
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar ProkopecLearning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
trddarvai
 
Building Machine Learning inference pipelines at scale | AWS Summit Tel Aviv ...
Building Machine Learning inference pipelines at scale | AWS Summit Tel Aviv ...Building Machine Learning inference pipelines at scale | AWS Summit Tel Aviv ...
Building Machine Learning inference pipelines at scale | AWS Summit Tel Aviv ...
AWS Summits
 
Putting the Spark into Functional Fashion Tech Analystics
Putting the Spark into Functional Fashion Tech AnalysticsPutting the Spark into Functional Fashion Tech Analystics
Putting the Spark into Functional Fashion Tech Analystics
Gareth Rogers
 
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
Databricks
 
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Simplilearn
 
Building Machine Learning Inference Pipelines at Scale (July 2019)
Building Machine Learning Inference Pipelines at Scale (July 2019)Building Machine Learning Inference Pipelines at Scale (July 2019)
Building Machine Learning Inference Pipelines at Scale (July 2019)
Julien SIMON
 
Running Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs Using KubernetesRunning Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs Using Kubernetes
Databricks
 
Media_Entertainment_Veriticals
Media_Entertainment_VeriticalsMedia_Entertainment_Veriticals
Media_Entertainment_Veriticals
Peyman Mohajerian
 
Himansu-Java&BigdataDeveloper
Himansu-Java&BigdataDeveloperHimansu-Java&BigdataDeveloper
Himansu-Java&BigdataDeveloper
Himansu Behera
 
Building machine learning inference pipelines at scale (March 2019)
Building machine learning inference pipelines at scale (March 2019)Building machine learning inference pipelines at scale (March 2019)
Building machine learning inference pipelines at scale (March 2019)
Julien SIMON
 
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar ProkopecLearning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
fryerlidoro
 
Apache Spark - A High Level overview
Apache Spark - A High Level overviewApache Spark - A High Level overview
Apache Spark - A High Level overview
Karan Alang
 
Recent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced AnalyticsRecent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced Analytics
Databricks
 
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar ProkopecLearning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
trtekatsuro
 
Flink Forward Berlin 2017: Piotr Wawrzyniak - Extending Apache Flink stream p...
Flink Forward Berlin 2017: Piotr Wawrzyniak - Extending Apache Flink stream p...Flink Forward Berlin 2017: Piotr Wawrzyniak - Extending Apache Flink stream p...
Flink Forward Berlin 2017: Piotr Wawrzyniak - Extending Apache Flink stream p...
Flink Forward
 
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick WendellApache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Apache® Spark™ 1.6 presented by Databricks co-founder Patrick Wendell
Databricks
 
MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
  MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...  MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
MLLeap, or How to Productionize Data Science Workflows Using Spark by Mikha...
Spark Summit
 
Spark Summit East 2016 - MLeap Presentation
Spark Summit East 2016 -   MLeap PresentationSpark Summit East 2016 -   MLeap Presentation
Spark Summit East 2016 - MLeap Presentation
Mikhail Semeniuk
 
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar ProkopecLearning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
trddarvai
 
Building Machine Learning inference pipelines at scale | AWS Summit Tel Aviv ...
Building Machine Learning inference pipelines at scale | AWS Summit Tel Aviv ...Building Machine Learning inference pipelines at scale | AWS Summit Tel Aviv ...
Building Machine Learning inference pipelines at scale | AWS Summit Tel Aviv ...
AWS Summits
 
Putting the Spark into Functional Fashion Tech Analystics
Putting the Spark into Functional Fashion Tech AnalysticsPutting the Spark into Functional Fashion Tech Analystics
Putting the Spark into Functional Fashion Tech Analystics
Gareth Rogers
 
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2....
Databricks
 
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Apache Spark Architecture | Apache Spark Architecture Explained | Apache Spar...
Simplilearn
 
Building Machine Learning Inference Pipelines at Scale (July 2019)
Building Machine Learning Inference Pipelines at Scale (July 2019)Building Machine Learning Inference Pipelines at Scale (July 2019)
Building Machine Learning Inference Pipelines at Scale (July 2019)
Julien SIMON
 
Running Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs Using KubernetesRunning Apache Spark Jobs Using Kubernetes
Running Apache Spark Jobs Using Kubernetes
Databricks
 
Media_Entertainment_Veriticals
Media_Entertainment_VeriticalsMedia_Entertainment_Veriticals
Media_Entertainment_Veriticals
Peyman Mohajerian
 
Himansu-Java&BigdataDeveloper
Himansu-Java&BigdataDeveloperHimansu-Java&BigdataDeveloper
Himansu-Java&BigdataDeveloper
Himansu Behera
 
Building machine learning inference pipelines at scale (March 2019)
Building machine learning inference pipelines at scale (March 2019)Building machine learning inference pipelines at scale (March 2019)
Building machine learning inference pipelines at scale (March 2019)
Julien SIMON
 
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar ProkopecLearning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
fryerlidoro
 
Apache Spark - A High Level overview
Apache Spark - A High Level overviewApache Spark - A High Level overview
Apache Spark - A High Level overview
Karan Alang
 
Recent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced AnalyticsRecent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced Analytics
Databricks
 
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar ProkopecLearning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
Learning Concurrent Programming in Scala Second Edition Aleksandar Prokopec
trtekatsuro
 
Flink Forward Berlin 2017: Piotr Wawrzyniak - Extending Apache Flink stream p...
Flink Forward Berlin 2017: Piotr Wawrzyniak - Extending Apache Flink stream p...Flink Forward Berlin 2017: Piotr Wawrzyniak - Extending Apache Flink stream p...
Flink Forward Berlin 2017: Piotr Wawrzyniak - Extending Apache Flink stream p...
Flink Forward
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks
 
Ad

Recently uploaded (20)

183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 

Operationalize Apache Spark Analytics

  • 2. Operationalize Apache Spark Analytics Ivan Nardini Sr. Associate Customer Advisor, SAS Institute | CI & Analytics | ModelOps | Decisioning Artem Glazkov Sr. Consultant, SAS Instintute | Decisioning | ModelOps | Customer Advisory
  • 3. Operationalize Apache Spark Analytics Ivan Nardini SAS Governance options with Apache® Spark Analytics ▪ Govern Spark Models – PMML ▪ Orchestrate Spark Models - Livy Artem Glazkov Managing Spark ML model lifecycle demo scenario: ▪ Code-agnostics model repository ▪ BPM tool for model governance ▪ Capturing model performance over time
  • 5. Model Ops Challenges ▪ Change in customer behavior ▪ Internal and external environment changes ▪ Track performance for models with long and short target actualization ▪ Role-based approach ▪ Elaborate clear action plan for the model ▪ Combine business rules, scripts, and user expertise in governance process DecisioningModel Performance decay Retrain automation ▪ Orchestrate repetitive procedures ▪ Reduce time gap between model development and deployment stages ▪ Figure out right model in the right moment for retrain
  • 6. How we meet ModelOps challenges using SAS Model Manager and SAS Workflow Manager Including two build-in scoring engines (CAS and MAS) and external engines Integration with engines Orchestration GUI + code govern SAS and Open Source models Openness One place to store all models Repository Built-in and customized model quality assessment Reporting Automate all repetitive model management tasks
  • 7. Why we should track model performance decay Predictivepowerofthemodel time t1 t2 t3 t4 Deployed model Alerting trigger Additional value Retrained and redeployed model
  • 8. should track model performance decay How do you operationalize Spark Models?
  • 9. SAS Governance options with Apache Spark Analytics
  • 10. Govern Spark Models using SAS - PMML
  • 11. PMML is one of the leading standard for statistical and data mining models. PMML enables model development on one system using one application and deploy the model on another system using another application, simply by transmitting an XML configuration file. Govern Spark models – Spark PMML
  • 12. Govern Spark models – Spark PMML The JPMML-SparkML library converts Apache Spark ML pipelines to PMML data format. It is written in Java. But the JPMML family includes Python (and R) wrapper libraries for the JPMML-SparkML library. For Python, we have the pyspark2pmml package that works with the official PySpark interface: • The pyspark2pmml.PMMLBuilder Python class is an API clone of the org.jpmml.sparkml.PMMLBuilder Java class. • The Apache Spark connection is typically available in PySpark session as the sc variable. The SparkContext class has an _jvm attribute, which gives Python users direct access to JPMML-SparkML functionality via the Py4J gateway. Then in your Spark session, you fit your pipeline and then use PMMLBuilder to create its PMML file.
  • 13. Govern Spark models: SAS Model Manager and PMML SAS Model Manager GUI/ REST API PySpark Mlib Register into Spark Development Environment SAS Workflow Manager SAS Data Connector Spark Production Environment SAS Viya Governance Environment Score new data In-DB Process for Spark by SAS REST API
  • 14. In this scenario we are translate OS model score code to SAS and utilize Embeded Process for Hadoop. We use build-in SAS Viya capabilities for creating SAS Model Manager reports, based on the scored data provided by running of the Embedded process. Govern Spark models: The «PMML» workflow
  • 15. PMML approach Pro and Cons PROs: • SAS In-database technology (Accelator Scoring) CONs: • Technology Bottlenecks (PMML supports a limited set of algorithms) Govern Spark models (PMML)
  • 17. Orchestrate Spark models – What’s Apache Livy? Apache Livy is a service enables easy submission of Spark jobs or snippets of Spark code, synchronous or asynchronous result retrieval, as well as Spark Context management, all via a simple REST interface or an RPC client library. SAS Viya client
  • 18. Govern Spark models – Apache Livy Like Python Sklearn models, we register the parquet version of Spark Mlib model and (optionally) the scoring code: • Parquet model contains the model metainfo to score new data in the Hadoop/Spark ecosystems. • Scoring code is a REST API recipe will submit from Livy Server to Spark cluster for loading the model and get score back Then we use SAS Workflow Manager capabilities (Job execution and REST API service) to: 1. Submit Scoring REST API call 2. Get back the scoring data 3. Generate Performance monitoring
  • 19. SAS Model Manager GUI/ REST API PySpark Mlib Register into Spark Development Environment SAS Workflow Manager Spark Production Environment SAS Viya Governance Environment REST API Apache Livy Score new data Govern Spark models: SAS Model Manager and Apache Livy
  • 20. In this scenario SAS Model Manager and SAS Workflow Manager acting more like orchestrator of service task and user reviews. We utilize build-in SAS Viya capabilities for creating Model Manager reports, based on the scored data provided by native spark. Govern Spark models: «Apache Livy» workflow
  • 21. PMML and Livy approaches Pro and Cons PROs: • SAS In-database technology (Accelator Scoring) CONs: • Technology Bottlenecks (PMML supports a limited set of algorithms) Govern Spark models (PMML) Orchestrate Spark Models (Livy) PROs: • Native integrations (no score code manipulation or conversion) CONs: • Configuration needed (Livy server)
  • 22. Demo
  • 23. Feedback Your feedback is important to us. Don’t forget to rate and review the sessions.