Biometric retrieval is a challenging task as the size of the databases have increased considerably. In this work, a novel optimized kd-tree algorithm is implemented to enhance the efficiency of indexing and retrieving for a multibiometric database comprising of iris and fingerprints. To improve the retrieval performance, fingerprint image is represented by minutiae features and iris image is represented by texture features and the features are fused together by feature level fusion. Dimension reduction of the feature vector is carried out using Principal Component Analysis to reduce the storage space and increase retrieval rate. The proposed optimized kd-tree indexing technique with dimension reduction aims to overcome the limitations of the existing nearest kd-tree. From the experimental results, it is concluded that the proposed optimized kd-tree indexing algorithm with dimension reduction has reduced False Acceptance Rate and False Rejection Rate and has improved Hit rate to 95% at 60% penetration rate compared to existing nearest kd-tree techniquefor a multibiometric database.