SlideShare a Scribd company logo
Optimization in Deep Learning
Houston Machine Learning Deep Learning Series
How to get to the lake
Roadmap
• Tour of machine learning algorithms (1 session)
• Feature engineering (1 session)
• Feature selection - Yan
• Supervised learning (4 sessions)
• Regression models -Yan
• SVM and kernel SVM - Yan
• Tree-based models - Dario
• Bayesian method - Xiaoyang
• Ensemble models - Yan
• Unsupervised learning (3 sessions)
• K-means clustering
• DBSCAN - Cheng
• Mean shift
• Agglomerative clustering – Kunal
• Spectral clustering – Yan
• Dimension reduction for data visualization - Yan
• Deep learning
• Neural network - Yan
• Convolutional neural network – Hengyang Lu
• Recurrent neural networks – Yan
• Hands-on session with deep nets - Yan
Slides posted on:
http://www.slideshare.net/xuyangela
More deep learning coming up!
• Optimization in Deep learning (today’s session)
• Behind AlphaGo
• Mastering the game of Go with deep neural networks
and tree search
• Attention network
• Application of Deep Learning and showcase
Outline
• Gradient Descent
• Stochastic Gradient Descent (SGD)
• Variants of SGD
• Use “momentum”
• Nestrov’s Accelerated Gradient (NAG)
• Adaptive Gradient (AdaGrad)
• Root Mean Square Propagation (RMSProp)
• Adaptive Moment Estimation (Adam)
Gradient descent
Gradient descent
Scaling to large N
Stochastic Gradient Descent (SGD)
Mini-batch SGD
-Speed
Performance comparison
SGD recommendation
• Randomly shuffle training samples
• Monitor training and validation error
• Experiment learning rates using small sample of
training set
• Leverage sparsity of training samples
• Varying learning rate:
Variants of SGD
• Use “momentum”
• Nestrov’s Accelerated Gradient (NAG)
• Adaptive Gradient (AdaGrad)
• Root Mean Square Propagation (RMSProp)
• Adaptive Moment Estimation (Adam)
Ref:
https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/conte
nt/1/adam_pres.pdf
Performance comparison
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
Long Valley
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
Saddle point
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
The momentum method by Dr. Geoffrey Hinton
https://www.youtube.com/watch?v=LdkkZglLZ0Q&list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9&index=27
SGD with momentum
Start with 0.5
NAG (Nesterov’s Accelerated Gradient)
AdaGrad
Adaptive learning rate:
• weights that receive high gradients will have their
effective learning rate reduced
• weights that receive small or infrequent updates
will have their effective learning rate increased
RMSProp
Adam
Adam
Comparisons of Different Optimization
Methods
MINIST
Comparisons of Different Optimization
Methods
CIFAR-10
Comparisons of Different Optimization
Methods
Summary of learning methods for DL
https://www.youtube.com/watch?v=defQQqkXEfE&list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9&index=29 from:7:33
Try it out!
From hands-on session: https://www.dropbox.com/s/92sckhnf1hjgjlo/CNN.zip?dl=0
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
…….
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
Optimizer: SGD, RMSprop, Adagrad, Adam…. (https://keras.io/optimizers/)
Summary
Full-batch
GD
SGD
Momentum
SGD
NAG
AdaGrad
RMSProp
Adam
Speed up by
momentum
Adaptive learning rate
More deep learning coming up!
• Optimization in Deep learning (today’s session)
• Behind AlphaGo
• Mastering the game of Go with deep neural networks
and tree search
• Attention network
• Application of Deep Learning and showcase
• Any proposal?
Thank you
Slides will be posted at: http://www.slideshare.net/xuyangela
Leave a
group
review
please 
Ad

More Related Content

What's hot (20)

Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
Knoldus Inc.
 
Simulated Annealing
Simulated AnnealingSimulated Annealing
Simulated Annealing
Joy Dutta
 
Deep learning presentation
Deep learning presentationDeep learning presentation
Deep learning presentation
Tunde Ajose-Ismail
 
An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms
Hakky St
 
Feature selection
Feature selectionFeature selection
Feature selection
dkpawar
 
Feedforward neural network
Feedforward neural networkFeedforward neural network
Feedforward neural network
Sopheaktra YONG
 
backpropagation in neural networks
backpropagation in neural networksbackpropagation in neural networks
backpropagation in neural networks
Akash Goel
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
mrizwan969
 
An introduction to Machine Learning
An introduction to Machine LearningAn introduction to Machine Learning
An introduction to Machine Learning
butest
 
Decision Tree Learning
Decision Tree LearningDecision Tree Learning
Decision Tree Learning
Milind Gokhale
 
Unit I & II in Principles of Soft computing
Unit I & II in Principles of Soft computing Unit I & II in Principles of Soft computing
Unit I & II in Principles of Soft computing
Sivagowry Shathesh
 
Linear regression with gradient descent
Linear regression with gradient descentLinear regression with gradient descent
Linear regression with gradient descent
Suraj Parmar
 
Principles of soft computing-Associative memory networks
Principles of soft computing-Associative memory networksPrinciples of soft computing-Associative memory networks
Principles of soft computing-Associative memory networks
Sivagowry Shathesh
 
Feature selection
Feature selectionFeature selection
Feature selection
Dong Guo
 
Decision Trees
Decision TreesDecision Trees
Decision Trees
Student
 
Optimization/Gradient Descent
Optimization/Gradient DescentOptimization/Gradient Descent
Optimization/Gradient Descent
kandelin
 
Activation function
Activation functionActivation function
Activation function
Astha Jain
 
Autoencoders in Deep Learning
Autoencoders in Deep LearningAutoencoders in Deep Learning
Autoencoders in Deep Learning
milad abbasi
 
Statistical Pattern recognition(1)
Statistical Pattern recognition(1)Statistical Pattern recognition(1)
Statistical Pattern recognition(1)
Syed Atif Naseem
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
Knoldus Inc.
 
Simulated Annealing
Simulated AnnealingSimulated Annealing
Simulated Annealing
Joy Dutta
 
An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms
Hakky St
 
Feature selection
Feature selectionFeature selection
Feature selection
dkpawar
 
Feedforward neural network
Feedforward neural networkFeedforward neural network
Feedforward neural network
Sopheaktra YONG
 
backpropagation in neural networks
backpropagation in neural networksbackpropagation in neural networks
backpropagation in neural networks
Akash Goel
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
mrizwan969
 
An introduction to Machine Learning
An introduction to Machine LearningAn introduction to Machine Learning
An introduction to Machine Learning
butest
 
Decision Tree Learning
Decision Tree LearningDecision Tree Learning
Decision Tree Learning
Milind Gokhale
 
Unit I & II in Principles of Soft computing
Unit I & II in Principles of Soft computing Unit I & II in Principles of Soft computing
Unit I & II in Principles of Soft computing
Sivagowry Shathesh
 
Linear regression with gradient descent
Linear regression with gradient descentLinear regression with gradient descent
Linear regression with gradient descent
Suraj Parmar
 
Principles of soft computing-Associative memory networks
Principles of soft computing-Associative memory networksPrinciples of soft computing-Associative memory networks
Principles of soft computing-Associative memory networks
Sivagowry Shathesh
 
Feature selection
Feature selectionFeature selection
Feature selection
Dong Guo
 
Decision Trees
Decision TreesDecision Trees
Decision Trees
Student
 
Optimization/Gradient Descent
Optimization/Gradient DescentOptimization/Gradient Descent
Optimization/Gradient Descent
kandelin
 
Activation function
Activation functionActivation function
Activation function
Astha Jain
 
Autoencoders in Deep Learning
Autoencoders in Deep LearningAutoencoders in Deep Learning
Autoencoders in Deep Learning
milad abbasi
 
Statistical Pattern recognition(1)
Statistical Pattern recognition(1)Statistical Pattern recognition(1)
Statistical Pattern recognition(1)
Syed Atif Naseem
 

Similar to Optimization in Deep Learning (20)

Spectral clustering - Houston ML Meetup
Spectral clustering - Houston ML MeetupSpectral clustering - Houston ML Meetup
Spectral clustering - Houston ML Meetup
Yan Xu
 
Kaggle nlp approaches
Kaggle nlp approachesKaggle nlp approaches
Kaggle nlp approaches
prabu palanisamy
 
Classification of Grasp Patterns using sEMG
Classification of Grasp Patterns using sEMGClassification of Grasp Patterns using sEMG
Classification of Grasp Patterns using sEMG
Priyanka Reddy
 
Apache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenchesApache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenches
Vinay Shukla
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Yan Xu
 
Saturn - UCSD CNS Research Review
Saturn - UCSD CNS Research ReviewSaturn - UCSD CNS Research Review
Saturn - UCSD CNS Research Review
KabirNagrecha
 
Saturn: Joint Optimization for Large-Model Deep Learning
Saturn: Joint Optimization for Large-Model Deep LearningSaturn: Joint Optimization for Large-Model Deep Learning
Saturn: Joint Optimization for Large-Model Deep Learning
KabirNagrecha
 
Prediction as a service with ensemble model in SparkML and Python ScikitLearn
Prediction as a service with ensemble model in SparkML and Python ScikitLearnPrediction as a service with ensemble model in SparkML and Python ScikitLearn
Prediction as a service with ensemble model in SparkML and Python ScikitLearn
Josef A. Habdank
 
Machine Learning for Everyone
Machine Learning for EveryoneMachine Learning for Everyone
Machine Learning for Everyone
Aly Abdelkareem
 
Spark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef HabdankSpark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef Habdank
Spark Summit
 
An overview of gradient descent optimization algorithms.pdf
An overview of gradient descent optimization algorithms.pdfAn overview of gradient descent optimization algorithms.pdf
An overview of gradient descent optimization algorithms.pdf
vudinhphuong96
 
MSCV Capstone Spring 2020 Presentation - RL for AD
MSCV Capstone Spring 2020 Presentation - RL for ADMSCV Capstone Spring 2020 Presentation - RL for AD
MSCV Capstone Spring 2020 Presentation - RL for AD
Mayank Gupta
 
Training Neural Networks
Training Neural NetworksTraining Neural Networks
Training Neural Networks
Databricks
 
Session-aware Linear Item-Item Models for Session-based Recommendation (WWW 2...
Session-aware Linear Item-Item Models for Session-based Recommendation (WWW 2...Session-aware Linear Item-Item Models for Session-based Recommendation (WWW 2...
Session-aware Linear Item-Item Models for Session-based Recommendation (WWW 2...
민진 최
 
GANs for Anti Money Laundering
GANs for Anti Money LaunderingGANs for Anti Money Laundering
GANs for Anti Money Laundering
Jim Dowling
 
Data mining with Weka
Data mining with WekaData mining with Weka
Data mining with Weka
AlbanLevy
 
Scaling Face Recognition with Big Data - Key Notes at DevTalks Bucharest 2017
Scaling Face Recognition with Big Data - Key Notes at DevTalks Bucharest 2017Scaling Face Recognition with Big Data - Key Notes at DevTalks Bucharest 2017
Scaling Face Recognition with Big Data - Key Notes at DevTalks Bucharest 2017
VisageCloud
 
InfoEducatie - Face Recognition Architecture
InfoEducatie - Face Recognition ArchitectureInfoEducatie - Face Recognition Architecture
InfoEducatie - Face Recognition Architecture
Bogdan Bocse
 
Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and...
Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and...Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and...
Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and...
Lionel Briand
 
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ..."Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
Edge AI and Vision Alliance
 
Spectral clustering - Houston ML Meetup
Spectral clustering - Houston ML MeetupSpectral clustering - Houston ML Meetup
Spectral clustering - Houston ML Meetup
Yan Xu
 
Classification of Grasp Patterns using sEMG
Classification of Grasp Patterns using sEMGClassification of Grasp Patterns using sEMG
Classification of Grasp Patterns using sEMG
Priyanka Reddy
 
Apache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenchesApache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenches
Vinay Shukla
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Yan Xu
 
Saturn - UCSD CNS Research Review
Saturn - UCSD CNS Research ReviewSaturn - UCSD CNS Research Review
Saturn - UCSD CNS Research Review
KabirNagrecha
 
Saturn: Joint Optimization for Large-Model Deep Learning
Saturn: Joint Optimization for Large-Model Deep LearningSaturn: Joint Optimization for Large-Model Deep Learning
Saturn: Joint Optimization for Large-Model Deep Learning
KabirNagrecha
 
Prediction as a service with ensemble model in SparkML and Python ScikitLearn
Prediction as a service with ensemble model in SparkML and Python ScikitLearnPrediction as a service with ensemble model in SparkML and Python ScikitLearn
Prediction as a service with ensemble model in SparkML and Python ScikitLearn
Josef A. Habdank
 
Machine Learning for Everyone
Machine Learning for EveryoneMachine Learning for Everyone
Machine Learning for Everyone
Aly Abdelkareem
 
Spark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef HabdankSpark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef Habdank
Spark Summit
 
An overview of gradient descent optimization algorithms.pdf
An overview of gradient descent optimization algorithms.pdfAn overview of gradient descent optimization algorithms.pdf
An overview of gradient descent optimization algorithms.pdf
vudinhphuong96
 
MSCV Capstone Spring 2020 Presentation - RL for AD
MSCV Capstone Spring 2020 Presentation - RL for ADMSCV Capstone Spring 2020 Presentation - RL for AD
MSCV Capstone Spring 2020 Presentation - RL for AD
Mayank Gupta
 
Training Neural Networks
Training Neural NetworksTraining Neural Networks
Training Neural Networks
Databricks
 
Session-aware Linear Item-Item Models for Session-based Recommendation (WWW 2...
Session-aware Linear Item-Item Models for Session-based Recommendation (WWW 2...Session-aware Linear Item-Item Models for Session-based Recommendation (WWW 2...
Session-aware Linear Item-Item Models for Session-based Recommendation (WWW 2...
민진 최
 
GANs for Anti Money Laundering
GANs for Anti Money LaunderingGANs for Anti Money Laundering
GANs for Anti Money Laundering
Jim Dowling
 
Data mining with Weka
Data mining with WekaData mining with Weka
Data mining with Weka
AlbanLevy
 
Scaling Face Recognition with Big Data - Key Notes at DevTalks Bucharest 2017
Scaling Face Recognition with Big Data - Key Notes at DevTalks Bucharest 2017Scaling Face Recognition with Big Data - Key Notes at DevTalks Bucharest 2017
Scaling Face Recognition with Big Data - Key Notes at DevTalks Bucharest 2017
VisageCloud
 
InfoEducatie - Face Recognition Architecture
InfoEducatie - Face Recognition ArchitectureInfoEducatie - Face Recognition Architecture
InfoEducatie - Face Recognition Architecture
Bogdan Bocse
 
Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and...
Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and...Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and...
Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and...
Lionel Briand
 
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ..."Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
"Energy-efficient Hardware for Embedded Vision and Deep Convolutional Neural ...
Edge AI and Vision Alliance
 
Ad

More from Yan Xu (20)

Kaggle winning solutions: Retail Sales Forecasting
Kaggle winning solutions: Retail Sales ForecastingKaggle winning solutions: Retail Sales Forecasting
Kaggle winning solutions: Retail Sales Forecasting
Yan Xu
 
Basics of Dynamic programming
Basics of Dynamic programming Basics of Dynamic programming
Basics of Dynamic programming
Yan Xu
 
Walking through Tensorflow 2.0
Walking through Tensorflow 2.0Walking through Tensorflow 2.0
Walking through Tensorflow 2.0
Yan Xu
 
Practical contextual bandits for business
Practical contextual bandits for businessPractical contextual bandits for business
Practical contextual bandits for business
Yan Xu
 
Introduction to Multi-armed Bandits
Introduction to Multi-armed BanditsIntroduction to Multi-armed Bandits
Introduction to Multi-armed Bandits
Yan Xu
 
A Data-Driven Question Generation Model for Educational Content - by Jack Wang
A Data-Driven Question Generation Model for Educational Content - by Jack WangA Data-Driven Question Generation Model for Educational Content - by Jack Wang
A Data-Driven Question Generation Model for Educational Content - by Jack Wang
Yan Xu
 
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Yan Xu
 
Deep Hierarchical Profiling & Pattern Discovery: Application to Whole Brain R...
Deep Hierarchical Profiling & Pattern Discovery: Application to Whole Brain R...Deep Hierarchical Profiling & Pattern Discovery: Application to Whole Brain R...
Deep Hierarchical Profiling & Pattern Discovery: Application to Whole Brain R...
Yan Xu
 
Detecting anomalies on rotating equipment using Deep Stacked Autoencoders - b...
Detecting anomalies on rotating equipment using Deep Stacked Autoencoders - b...Detecting anomalies on rotating equipment using Deep Stacked Autoencoders - b...
Detecting anomalies on rotating equipment using Deep Stacked Autoencoders - b...
Yan Xu
 
Introduction to Autoencoders
Introduction to AutoencodersIntroduction to Autoencoders
Introduction to Autoencoders
Yan Xu
 
State of enterprise data science
State of enterprise data scienceState of enterprise data science
State of enterprise data science
Yan Xu
 
Long Short Term Memory
Long Short Term MemoryLong Short Term Memory
Long Short Term Memory
Yan Xu
 
Deep Feed Forward Neural Networks and Regularization
Deep Feed Forward Neural Networks and RegularizationDeep Feed Forward Neural Networks and Regularization
Deep Feed Forward Neural Networks and Regularization
Yan Xu
 
Linear algebra and probability (Deep Learning chapter 2&3)
Linear algebra and probability (Deep Learning chapter 2&3)Linear algebra and probability (Deep Learning chapter 2&3)
Linear algebra and probability (Deep Learning chapter 2&3)
Yan Xu
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
Yan Xu
 
Secrets behind AlphaGo
Secrets behind AlphaGoSecrets behind AlphaGo
Secrets behind AlphaGo
Yan Xu
 
Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network
Yan Xu
 
Introduction to Neural Network
Introduction to Neural NetworkIntroduction to Neural Network
Introduction to Neural Network
Yan Xu
 
Nonlinear dimension reduction
Nonlinear dimension reductionNonlinear dimension reduction
Nonlinear dimension reduction
Yan Xu
 
Mean shift and Hierarchical clustering
Mean shift and Hierarchical clustering Mean shift and Hierarchical clustering
Mean shift and Hierarchical clustering
Yan Xu
 
Kaggle winning solutions: Retail Sales Forecasting
Kaggle winning solutions: Retail Sales ForecastingKaggle winning solutions: Retail Sales Forecasting
Kaggle winning solutions: Retail Sales Forecasting
Yan Xu
 
Basics of Dynamic programming
Basics of Dynamic programming Basics of Dynamic programming
Basics of Dynamic programming
Yan Xu
 
Walking through Tensorflow 2.0
Walking through Tensorflow 2.0Walking through Tensorflow 2.0
Walking through Tensorflow 2.0
Yan Xu
 
Practical contextual bandits for business
Practical contextual bandits for businessPractical contextual bandits for business
Practical contextual bandits for business
Yan Xu
 
Introduction to Multi-armed Bandits
Introduction to Multi-armed BanditsIntroduction to Multi-armed Bandits
Introduction to Multi-armed Bandits
Yan Xu
 
A Data-Driven Question Generation Model for Educational Content - by Jack Wang
A Data-Driven Question Generation Model for Educational Content - by Jack WangA Data-Driven Question Generation Model for Educational Content - by Jack Wang
A Data-Driven Question Generation Model for Educational Content - by Jack Wang
Yan Xu
 
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Yan Xu
 
Deep Hierarchical Profiling & Pattern Discovery: Application to Whole Brain R...
Deep Hierarchical Profiling & Pattern Discovery: Application to Whole Brain R...Deep Hierarchical Profiling & Pattern Discovery: Application to Whole Brain R...
Deep Hierarchical Profiling & Pattern Discovery: Application to Whole Brain R...
Yan Xu
 
Detecting anomalies on rotating equipment using Deep Stacked Autoencoders - b...
Detecting anomalies on rotating equipment using Deep Stacked Autoencoders - b...Detecting anomalies on rotating equipment using Deep Stacked Autoencoders - b...
Detecting anomalies on rotating equipment using Deep Stacked Autoencoders - b...
Yan Xu
 
Introduction to Autoencoders
Introduction to AutoencodersIntroduction to Autoencoders
Introduction to Autoencoders
Yan Xu
 
State of enterprise data science
State of enterprise data scienceState of enterprise data science
State of enterprise data science
Yan Xu
 
Long Short Term Memory
Long Short Term MemoryLong Short Term Memory
Long Short Term Memory
Yan Xu
 
Deep Feed Forward Neural Networks and Regularization
Deep Feed Forward Neural Networks and RegularizationDeep Feed Forward Neural Networks and Regularization
Deep Feed Forward Neural Networks and Regularization
Yan Xu
 
Linear algebra and probability (Deep Learning chapter 2&3)
Linear algebra and probability (Deep Learning chapter 2&3)Linear algebra and probability (Deep Learning chapter 2&3)
Linear algebra and probability (Deep Learning chapter 2&3)
Yan Xu
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
Yan Xu
 
Secrets behind AlphaGo
Secrets behind AlphaGoSecrets behind AlphaGo
Secrets behind AlphaGo
Yan Xu
 
Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network
Yan Xu
 
Introduction to Neural Network
Introduction to Neural NetworkIntroduction to Neural Network
Introduction to Neural Network
Yan Xu
 
Nonlinear dimension reduction
Nonlinear dimension reductionNonlinear dimension reduction
Nonlinear dimension reduction
Yan Xu
 
Mean shift and Hierarchical clustering
Mean shift and Hierarchical clustering Mean shift and Hierarchical clustering
Mean shift and Hierarchical clustering
Yan Xu
 
Ad

Recently uploaded (20)

4. Chapter 4 - FINAL Promoting Inclusive Culture (2).pdf
4. Chapter 4 - FINAL Promoting Inclusive Culture (2).pdf4. Chapter 4 - FINAL Promoting Inclusive Culture (2).pdf
4. Chapter 4 - FINAL Promoting Inclusive Culture (2).pdf
abayamargaug
 
SuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptxSuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptx
BurkanAlpKale
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
Multydisciplinary Nature of Environmental Studies
Multydisciplinary Nature of Environmental StudiesMultydisciplinary Nature of Environmental Studies
Multydisciplinary Nature of Environmental Studies
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxVERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
hipachi8
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
Polytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptxPolytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
when is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptxwhen is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptx
Rukhnuddin Al-daudar
 
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Himarsha Jayanetti
 
Gel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptxGel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary RecommendationsLipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Sarumathi Murugesan
 
Gender Bias and Empathy in Robots: Insights into Robotic Service Failures
Gender Bias and Empathy in Robots:  Insights into Robotic Service FailuresGender Bias and Empathy in Robots:  Insights into Robotic Service Failures
Gender Bias and Empathy in Robots: Insights into Robotic Service Failures
Selcen Ozturkcan
 
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,PhosphorosClass-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
govindapathak8
 
Antonie van Leeuwenhoek- Father of Microbiology
Antonie van Leeuwenhoek- Father of MicrobiologyAntonie van Leeuwenhoek- Father of Microbiology
Antonie van Leeuwenhoek- Father of Microbiology
Anoja Kurian
 
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptxQuiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
NutriGen
 
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
ss0077014
 
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
Sérgio Sacani
 
Chromatography, types, techniques, ppt.pptx
Chromatography, types, techniques, ppt.pptxChromatography, types, techniques, ppt.pptx
Chromatography, types, techniques, ppt.pptx
Dr Showkat Ahmad Wani
 
Parallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdfParallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdf
rk5867336912
 
4. Chapter 4 - FINAL Promoting Inclusive Culture (2).pdf
4. Chapter 4 - FINAL Promoting Inclusive Culture (2).pdf4. Chapter 4 - FINAL Promoting Inclusive Culture (2).pdf
4. Chapter 4 - FINAL Promoting Inclusive Culture (2).pdf
abayamargaug
 
SuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptxSuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptx
BurkanAlpKale
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxVERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
hipachi8
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
Polytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptxPolytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
when is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptxwhen is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptx
Rukhnuddin Al-daudar
 
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Himarsha Jayanetti
 
Gel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptxGel Electrophorosis, A Practical Lecture.pptx
Gel Electrophorosis, A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary RecommendationsLipids: Classification, Functions, Metabolism, and Dietary Recommendations
Lipids: Classification, Functions, Metabolism, and Dietary Recommendations
Sarumathi Murugesan
 
Gender Bias and Empathy in Robots: Insights into Robotic Service Failures
Gender Bias and Empathy in Robots:  Insights into Robotic Service FailuresGender Bias and Empathy in Robots:  Insights into Robotic Service Failures
Gender Bias and Empathy in Robots: Insights into Robotic Service Failures
Selcen Ozturkcan
 
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,PhosphorosClass-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
govindapathak8
 
Antonie van Leeuwenhoek- Father of Microbiology
Antonie van Leeuwenhoek- Father of MicrobiologyAntonie van Leeuwenhoek- Father of Microbiology
Antonie van Leeuwenhoek- Father of Microbiology
Anoja Kurian
 
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptxQuiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
NutriGen
 
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
Water analysis practical for ph, tds, hardness, acidity, conductivity, and ba...
ss0077014
 
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5On the Lunar Origin of Near-Earth Asteroid 2024 PT5
On the Lunar Origin of Near-Earth Asteroid 2024 PT5
Sérgio Sacani
 
Chromatography, types, techniques, ppt.pptx
Chromatography, types, techniques, ppt.pptxChromatography, types, techniques, ppt.pptx
Chromatography, types, techniques, ppt.pptx
Dr Showkat Ahmad Wani
 
Parallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdfParallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdf
rk5867336912
 

Optimization in Deep Learning

Editor's Notes

  • #8: Perpendicular contour