An analysis is made for optimized path planning for mobile robot by using parallel genetic algorithm. The
parallel genetic algorithm (PGA) is applied on the visible midpoint approach to find shortest path for mobile
robot. The hybrid ofthese two algorithms provides a better optimized solution for smooth and shortest path for
mobile robot. In this problem, the visible midpoint approach is used to make the effectiveness for avoiding
local minima. It gives the optimum paths which are always consisting on free trajectories. But the
proposedhybrid parallel genetic algorithm converges very fast to obtain the shortest route from source to
destination due to the sharing of population. The total population is partitioned into a number subgroups to
perform the parallel GA. The master thread is the center of information exchange and making selection with
fitness evaluation.The cell to cell crossover makes the algorithm significantly good. The problem converges
quickly with in a less number of iteration.